计量经济学(多元回归分析推断)
- 格式:pdf
- 大小:892.03 KB
- 文档页数:32
计量经济学多元回归分析案例引言计量经济学是运用数理统计和经济学方法研究经济现象的一门学科。
在实际研究中,多元回归分析是一种常用的方法。
本文将通过一个实际案例来介绍计量经济学中的多元回归分析方法和应用。
研究背景单因素回归分析在计量经济学中,单因素回归分析是最基本的方法之一。
它通过确定一个因变量和一个自变量之间的关系,来解释因变量的变化。
然而,在现实世界中,经济现象往往受到多个因素的影响,因此需要使用多元回归分析来更全面地解释经济现象的变化。
问题陈述本研究的问题是探究某个城市的房价与多个因素之间的关系。
具体来说,我们感兴趣的因变量是房价,自变量包括房屋面积、地理位置、周边设施等。
我们希望通过建立一个多元回归模型来解释房价的变化,并分析不同因素对房价的影响程度。
数据收集为了进行多元回归分析,我们需要收集相关的数据。
在本案例中,我们采集了以下数据:1.房价:通过不同的房地产网站获取该城市的房屋销售数据,包括每个房屋的售价信息。
2.房屋面积:通过购房广告或房产中介提供的信息收集每个房屋的面积数据。
3.地理位置:通过经纬度或邮政编码信息获取每个房屋的地理位置信息。
4.周边设施:通过地图应用或开放的公共数据接口获取每个房屋周边设施(如学校、医院、商场等)的数量和距离信息。
数据预处理在进行多元回归分析前,我们需要对收集到的数据进行预处理。
缺失值处理在数据收集过程中,可能会出现数据缺失的情况。
对于缺失的数据,我们可以选择删除相应的样本,或者通过插补方法进行填充。
在本案例中,我们选择使用均值填充的方法。
数据转换由于多元回归模型要求变量之间具有线性关系,因此我们需要对非数值型数据进行转换。
在本案例中,地理位置可以通过编码转换为数值型变量。
模型建立在进行多元回归分析时,我们需要选择适当的模型来描述因变量和自变量之间的关系。
在本案例中,我们选择使用普通最小二乘法(OLS)来估计回归模型的参数。
模型表达式我们将房价作为因变量(Y),房屋面积、地理位置和周边设施作为自变量(X)。
伍德⾥奇《计量经济学导论》(第6版)复习笔记和课后习题详解-多元回归分析:推断【圣才出品】第4章多元回归分析:推断4.1复习笔记考点⼀:OLS估计量的抽样分布★★★1.假定MLR.6(正态性)假定总体误差项u独⽴于所有解释变量,且服从均值为零和⽅差为σ2的正态分布,即:u~Normal(0,σ2)。
对于横截⾯回归中的应⽤来说,假定MLR.1~MLR.6被称为经典线性模型假定。
假定下对应的模型称为经典线性模型(CLM)。
2.⽤中⼼极限定理(CLT)在样本量较⼤时,u近似服从于正态分布。
正态分布的近似效果取决于u中包含多少因素以及因素分布的差异。
但是CLT的前提假定是所有不可观测的因素都以独⽴可加的⽅式影响Y。
当u是关于不可观测因素的⼀个复杂函数时,CLT论证可能并不适⽤。
3.OLS估计量的正态抽样分布定理4.1(正态抽样分布):在CLM假定MLR.1~MLR.6下,以⾃变量的样本值为条件,有:∧βj~Normal(βj,Var(∧βj))。
将正态分布函数标准化可得:(∧βj-βj)/sd(∧βj)~Normal(0,1)。
注:∧β1,∧β2,…,∧βk的任何线性组合也都符合正态分布,且∧βj的任何⼀个⼦集也都具有⼀个联合正态分布。
考点⼆:单个总体参数检验:t检验★★★★1.总体回归函数总体模型的形式为:y=β0+β1x1+…+βk x k+u。
假定该模型满⾜CLM假定,βj的OLS 量是⽆偏的。
2.定理4.2:标准化估计量的t分布在CLM假定MLR.1~MLR.6下,(∧βj-βj)/se(∧βj)~t n-k-1,其中,k+1是总体模型中未知参数的个数(即k个斜率参数和截距β0)。
t统计量服从t分布⽽不是标准正态分布的原因是se(∧βj)中的常数σ已经被随机变量∧σ所取代。
t统计量的计算公式可写成标准正态随机变量(∧βj-βj)/sd(∧βj)与∧σ2/σ2的平⽅根之⽐,可以证明⼆者是独⽴的;⽽且(n-k-1)∧σ2/σ2~χ2n-k-1。
计量经济学:多元回归分析推断引言多元回归分析是计量经济学中常用的一种分析方法,用于探究多个自变量对一个因变量的影响关系。
本文将介绍多元回归分析的基本概念和原理,并且解释如何使用多元回归分析进行推断。
多元回归模型多元回归模型可以表示为:multivariate_regression_model其中,Y是因变量,表示我们想要解释的变量;X1, X2, …, Xk是自变量,表示对因变量有可能影响的变量;β0, β1, β2, …, βk是回归系数,表示自变量对因变量的影响程度;ε是误差项,表示我们未能观测到的其他影响因素。
多元回归模型的目标是通过估计回归系数,来解释因变量与自变量之间的关系,并且用这个模型进行推断。
多元回归模型的估计多元回归模型的估计可以使用最小二乘法进行。
最小二乘法的基本思想是,通过最小化因变量Y与预测值Y_hat之间的平方差,来求解回归系数的估计值。
最小二乘法估计的求解过程,可以用矩阵表示如下:multivariate_regression_estimation其中,X是自变量的矩阵,Y是因变量的向量,X T表示X的转置,(-1)表示矩阵的逆运算。
多元回归的推断多元回归模型的估计结果可以用于进行推断。
对回归系数进行假设检验,可以判断自变量对因变量是否有显著影响。
常用的假设检验有以下几种:1. 假设检验回归系数是否等于零:用于判断自变量是否对因变量有显著影响。
2. 假设检验回归系数是否等于某个特定值:用于判断自变量对因变量的影响是否等于某个理论值。
3. 假设检验多个回归系数是否同时等于零:用于判断自变量组合的整体影响是否显著。
假设检验的结果通常使用P值进行解释。
如果P值小于预先设定的显著性水平(通常为0.05),则拒绝原假设,认为回归系数是显著不等于零的。
多元回归的解释力度除了进行推断以外,多元回归模型还可以用于解释因变量的变异程度。
通过计算决定系数(R-squared),可以评估自变量对因变量的解释力度。