计量经济学实验报告(多元线性回归 自相关 )
- 格式:doc
- 大小:693.50 KB
- 文档页数:19
2012 — 2013 第 1 学期计量经济学实验报告实验(三):计量经济检验与修正实验学号:0101702 姓名:宋蕾专业: 财务管理选课班级:A(2实验日期: 2 0 11.112实验地点:南区综合楼经济管理与创业模拟实验中心实验室实验名称:计量经济检验与修正实验【实验目标、要求】使学生掌握用Eviews做1.异方差性检验和修正方法;2.自相关性检验和修正方法;3.【实验内容】实验内容以课后练习:以114页第6题、130页应用题第2题为例进行操作【实验步骤】一、第114页第6题(一)创建工作文件在主菜单上依次单击File T New^Workfile ,选择数据类型和起止日期。
时间序列提供起止日期(年、季度、月度、周、日),非时间序列提供最大观察个数。
本题中在workfile structure type 中选Unstructured/Undated, 在Data range Observation 中填 2 8。
单击OK后屏幕出现Workfile工作框,如图所示。
(二)输入和编辑数据在命令窗口直接输入:Data Y X . 屏幕出现数据编辑框,如下图所示。
点击上图中对话框的"Edit +/-",将数据进行输入,如下图所示。
数据输入完毕,单击工作文件窗口工具条的存入磁盘。
(三)0 LS估计参数利用2008年中国部分省市城镇居民家庭平均全年可支配收入(的相关数据表,作散点图。
Eviews命令:scat X Y ; 如图所示X)与消费性支出(Y)Save或单击菜单兰的File宀Save将数据可看出2 0 0 8年中国部分省市城镇居民家庭平均全年可支配收入 (X)与消费性支出(Y)的关系近似直线关系可建立线性回归模型。
在主菜单命令行键入:“LS Y C X ”,然后回车。
即可直接出现如下图所示的计算结果Depe ndent Variable: Y Method: Least Squares Date: 12/12/12 Time: 20:15 Sample: 1 28In cluded observati ons: 28VariableCoefficie ntStd. Errort-StatisticProb.C 735.1080 477.1123 1.540744 0.1355 X0.6662220.03055821.802130.0000R-squared0.948138Mean depe ndent var 10780.65 Adjusted R-squared 0.946144 S.D. dependent var 2823.752 S.E. of regressi on 655.3079 Akaike info criteri on 15.87684 Sum squared resid 11165139 Schwarz criteri on 15.97199 Log likelihood -220.2757 F-statistic 475.3327 Durb in -Watson stat1.778976Prob(F-statistic)0.000000(477. 1123) (0 . 030558) 点击 store to DB,将估计式以“ eq01 ”为名保存。
一、实验目的及要求:1、目的利用EVIEWS 实验软件,使学生在实验过程中全面了解和熟悉计量经济学的基本概念,熟悉一元线性回归模型估计的基本程序和基本方法。
2、内容及要求(1) 熟悉EVIEWS实验软件的基本操作程序和方法; (2) 掌握一元线性回归模型基本概念,了解其估计和检验原理 (3) 提交实验报告二、仪器用具:三、实验结果与数据处理:1下面是利用1970-1980年美国数据得到的回归结果。
其中Y 表示美国咖啡消费(杯/日.人),X 表示平均零售价格(美元/磅)。
注:262.2)9(2/=αt ,228.2)10(2/=αt6628.006.42)()1216.0(4795.06911.2ˆ2===-=R t se X Y tt)(值1. 写空白处的数值。
12. 对模型中的参数进行显著性检验。
3. 解释斜率系数1β的含义,并给出其95%的置信区间。
解:(1)1308.221216.06911.2)(00===ββse t0114.006.424795.0)(11-=-==tse ββ(2)用t 检验法分别对模型中的参数0β1β进行显著性水平检验: 在5%的显著性水平下,模型的自由度为11-2=9,且262.2)9(025.0=t 由于262.21308.220>=βt ,故该模型的截距项在统计上是显著的; 同理 262.206.421>=βt ,即斜率系数在统计上也是显著的。
(3)斜率系数4795.01-=β,小于0,在其他条件不变的情况下,咖啡的平均零售价格每增加一个单位,美国咖啡的日消费将平均减少0.4795个单位,说明咖啡的消费量与其平均零售价格呈负相关关系。
1β的95%的置信区间为:]4537.0,5053.0[)]ˆ(ˆ),ˆ(ˆ[12/112/1--+-即ββββααse t se t2美国各航空公司业绩的统计数据公布在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上。
上海海关学院
实验报告
实验课程名称 __ 计量经济学_ _
指导教师姓名 __ 高军______
学生姓名__王圣___
学生专业班级__税收1401 __
填写日期__2017.6.10
四、模型设定
为分析建筑业企业利润总额(Y)和建筑业总产值(X)的关系,作如下散点图:
Y i=2.368138+0.034980X i (9.049371) (0.001754)
检验
F=;查表可得
绝原假设,此即表明模型存在异方差。
表.用权数w2的结果
(3) w3=1/x^0.5
经估计检验发现用权数w2的效果最好。
可以看出,运用加权最小二乘法消除了异方检验均显著,F检验也显著,即估计结果为
表示国内生产总值。
三、检验自相关
该回归方程可决系数较高,回归系数显著。
dL=1.316,dU=1.469, DW<dL,
,说明在
4.利用EViews软件作如图残差图
LM=TR²=27×0.517409=13.970043,其中p 值为0.0009,表明存在自相关。
自相关问题的处理
由最终模型可知,中国进口需求总额每增加1亿元,平均说来国内生产总值
20。
计量经济学实验报告(多元线性回归自相关 )1. 背景计量经济学是一门关于经济现象的定量分析方法研究的学科。
它的发展使得我们可以对经济现象进行更加准确的分析和预测,并对社会发展提供有利的政策建议。
本文通过对多元线性回归模型和自相关模型的实验研究,来讨论模型的建立与评价。
2. 多元线性回归模型在多元线性回归模型中,我们可以通过各个自变量对因变量进行预测和解释。
例如,我们可以通过考虑家庭收入、年龄和教育程度等自变量,来预测某个家庭的消费水平。
多元线性回归模型的一般形式为:$y_i=\beta_0+\beta_1 x_{i1}+\beta_2 x_{i2}+...+\beta_k x_{ik}+\epsilon_i$在建立模型之前,我们需要对因变量和自变量进行观测和测算。
例如,我们可以通过调查一定数量的家庭,获得他们的收入、年龄、教育程度和消费水平等数据。
接下来,我们可以通过多元线性回归模型,对家庭消费水平进行预测和解释。
在实际的研究中,我们需要对多元线性回归模型进行评价。
其中一个重要的评价指标是 $R^2$ 值,它表示自变量对因变量的解释程度。
$R^2$ 值越高,说明多元线性回归模型的拟合程度越好。
3. 自相关模型在多元线性回归模型中,我们假设各个误差项之间相互独立,即不存在自相关性。
但实际上,各个误差项之间可能会互相影响,产生自相关性。
例如,在一个气温预测模型中,过去的温度对当前的温度有所影响,说明当前的误差项和过去的误差项之间存在相关性。
我们可以通过自相关函数来研究误差项之间的相关性。
自相关函数表示当前误差项和过去 $l$ 期的误差项之间的相关性。
其中,$l$ 称为阶数。
自相关函数的一般形式为:$\rho_l={\frac{\sum_{t=l+1}^{T}(y_t-\bar{y})(y_{t-l}-\bar{y})}{\sum_{t=1}^{T}(y_t-\bar{y})^2}}$在自相关模型中,我们通过对误差项进行差分或滞后变量,来消除误差项之间的自相关性。
自相关问题的检验与修正【实验目的与要求】熟练使用EViews软件进行计量分析,理解自相关的检验和估计的基本方法【实验准备】1.自相关的基本概念:若Cov(u i,u j)=E(u i uj)=0(i≠j)不成立,即线性回归模型扰动项的方差—协方差矩阵的非主对角线元素不全为零,则称为扰动项自相关,或序列相关(serial correlation)2.自相关的后果:(1)在扰动项自相关的情况下,尽管OLS估计量仍为无偏估计量,但不再具有最小方差的性质,即不是BLUE。
(2)OLS估计量的标准误差不再是真实标准误差的无偏估计量,使得在自相关的情况下,无法再信赖回归参数的置信区间或假设检验的结果。
3.检验自相关的基本方法:残差检验、D.W检验、Q检验4.自相关的修正方法:广义差分法。
【实验内容】1.利用实验数据建立实际有效汇率REER对名义有效汇率NEER的一元回归模型,根据残差检验、D.W 检验、Q检验判别是否存在自相关。
2.利用实验数据,建立中国出口EX对中国进口IM的一元回归模型,根据残差检验、D.W检验、Q 检验判别是否存在自相关。
3.如果检验结果为存在自相关,根据残差检验和D.W检验估计一阶自相关系数。
4.根据估计出的一阶自相关系数,利用广义差分法估计模型。
5.对利用广义差分法估计得到的模型,根据残差检验、D.W检验、Q检验判别是否存在自相关。
6.对实际有效汇率REER对名义有效汇率NEER和中国出口EX对中国进口IM的一元回归模型,根据残差检验和Q检验判别是否存在高阶自相关。
7.如果检验结果为存在高阶自相关,根据残差检验估计高阶自相关系数。
8.根据估计出的高阶自相关系数,利用广义差分法估计模型。
9.对利用广义差分法估计得到的模型,根据残差检验和Q检验判别是否存在高阶自相关。
10.对在同样数据基础上得到的不同模型进行比较分析。
以下实验数据为1980-2003年人民币名义有效汇率(NEER)和实际有效汇率(REER)的数据(来源于国际货币基金组织出版的国际金融统计(IFS))和1982-2002年中国出口(EX)和进口(IM)(单位:亿美元)的数据(来源于中国商务部网站)。
实验报告课程名称计量经济学实验项目名称多元线性回归自相关异方差多重共线性班级与班级代码 08国际商务1班实验室名称(或课室)实验楼910 专业国际商务任课教师刘照德学号: 043姓名:张柳文实验日期: 2011 年 06 月 23日广东商学院教务处制姓名张柳文实验报告成绩评语:指导教师(签名)年月日说明:指导教师评分后,实验报告交院(系)办公室保存。
计量经济学实验报告实验项目:多元线性回归、自相关、异方差、多重共线性实验目的:掌握多元线性回归模型、自相关模型、异方差模型、多重共线性模型的估计和检验方法和处理方法实验要求:选择方程进行多元线性回归;熟悉图形法检验和掌握D-W 检验,理解广义差分法变换和掌握迭代法;掌握Park或Glejser检验,理解同方差性变换;实验原理:普通最小二乘法图形检验法 D-W检验广义差分变换加权最小二乘法 Park检验等实验步骤:首先:选择数据为了研究影响中国税收收入增长的主要原因,选择国内生产总值(GDP)、财政支出(ED)、商品零售价格指数(RPI)做为解释变量,对税收收入(Y)做多元线性回归。
从《中国统计年鉴》2011中收集1978—2009年各项影响因素的数据。
如下表所示:中国税收收入及相关数据实验一:多元线性回归1、将数据导入后,分别对三个解释变量与被解释变量做散点图,选择两个变量作为group打开,在数据表“group”中点击view/graph/scatter/simple scatter,出现数据的散点图,分别如下图所示:从散点图看,变量间不一定呈现线性关系,可以试着作线性回归。
2、进行因果关系检验在“workfile”中按住“ctrl”键,点击所要选择的变量,作为组打开后,在“View”下拉列表中选择“Grange Causality”,滞后期为2,得出如下结果:Pairwise Granger Causality TestsDate: 06/23/11 Time: 16:14Sample: 1978 2009Lags: 2Null Hypothesis:Obs F-Statistic ProbabilityED does not Granger Cause Y30Y does not Granger Cause EDPairwise Granger Causality TestsDate: 06/23/11 Time: 16:15Sample: 1978 2009Lags: 2Null Hypothesis:Obs F-Statistic ProbabilityGDP does not Granger Cause Y30Y does not Granger Cause GDPPairwise Granger Causality TestsDate: 06/23/11 Time: 16:19Sample: 1978 2009Lags: 2Null Hypothesis:Obs F-Statistic ProbabilityRPI does not Granger Cause Y30Y does not Granger Cause RPI从因果关系检验看,ED明显影响财政收入Y,其他两个因素影响不显著。
3、做多元线性回归选中变量作为组打开,在下拉列表“Proc”中选择“MakeEquation”按“确定”,得到多元回归模型:根据图中数据,模型估计的结果为:53.36408ED 0.616282GDP 0.046340RPI 39706.56Y -*+*+*=()t=996573.0R 2= 996206.0R 2=- F= df=27模型估计结果说明,在假定其他变量不变的情况下,当年RPI 每增长1%,平均来说税收收入会增长亿元;当年GDP 每增长1亿元,平均来说税收收入会增长亿元;当年财政支出每增长1亿元,平均来说税收收入会增长亿元。
可决系数996573.0R 2=,修正后的可决系数996206.0R 2=-,说明模型的样本的拟合很好。
F 检验的数值很大,可以判定,在给定显著性水平α=的情况下,拒绝原假设。
说明回归方程显著,既“国内生产总值”、“财政支出”、“商品零售价格指数”等变量联合起来确实对“税收收入”有显著影响。
从t 检验的值可以看出,GDP 、ED 均对税收收入有显著影响,但是RPI 指数的t 检验值为,不通过检验。
实验二:自相关1、根据前面的数据把GDP 作为解释变量,税收收入作为被解释变量进行一元回归。
结果如下:Dependent Variable: Y Method: Least Squares Date: 06/23/11 Time: 19:01 Sample: 1978 2009Included observations: 32Variable Coefficient Std. Error t-Statistic Prob.GDP CR-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike info criterionSum squared resid+08Schwarz criterion Log likelihood F-statisticDurbin-Watson statProb(F-statistic )把回归分析结果报告出来如下:21.71552GDP169682.0Y-*=()()t=0.984406R2= SE= DW=0.115021 F=从报告可以一目了然地看出,D-W值近似为0,存在自相关。
2、用图形检验法检查是否存在自相关做残差趋势图:在进行一元回归的界面上,点击“resid”,生成残差趋势图:在“workfile”窗口找到“show”,点击在弹出的“show”对话框中输入“resid(-1) resid”,单击“OK”点击“view/graph/scatter/simple scatter”,生成残差散点图:从以上残差趋势图和残差散点图可以看出,方程存在正自相关。
3、回归自相关的处理在Y对GDP远回归中添入AR(1)项,如图:点击“确定”,回归结果如下:此时D-W值由原来的提高到,还没有消除自相关,继续处理,再加入AR(2)项,结果如下:Dependent Variable: YMethod: Least SquaresDate: 06/23/11 Time: 20:01Sample (adjusted): 1980 2009Included observations: 30 after adjustmentsConvergence achieved after 9 iterationsVariable Coefficient Std. Error t-Statistic Prob.GDPC AR(1) AR(2)R-squaredMean dependent varAdjusted R-squared. dependent var . of regression Akaike infocriterionSum squared resid 8204036. Schwarz criterionLog likelihoodF-statisticDurbin-Watson statProb(F-statistic)Inverted AR Roots.90.51此时D-W 检验值达到,消除了自相关。
没有消除和消除了自相关的回归方程分别为:21.71552GDP 169682.0Y -*=))(,)((462035.02A R 4114221.11A R 37.04664GDP 188524.0Y -==+-*=实验三、异方差1、图形检验法首先,Y 对GDP 回归的残差趋势图在前面自相关的实验中已经出现为:接着,用SORT 命令对变量进行排序:然后,进行残差散点图,在“show ”窗口输入指令“gdp resid^2”,点击“OK ”,按照路径“view/graph/scatter/simple scatter ”,生成残差散点图如下:从残差散点图上可以直观地看出,方程不存在异方差。
2、Park 检验对Y 与GDP 回归的Park 检验,实际上就是做形如如下的回归观察其显著性 i t u GDP b b e ++=ln ln 102进行回归,的结果为:Dependent Variable: LOG(RESID^2) Method: Least Squares Date: 06/23/11 Time: 21:53 Sample: 1 32Included observations: 32VariableCoefficientStd. Error t-Statistic Prob.LOG(GDP)CR-squaredMean dependent varAdjusted R-squared. dependent var. of regressionAkaike info criterionSum squared resid Schwarz criterion Log likelihood F-statisticDurbin-Watson statProb(F-statistic )从结果可以看出,方程是不显著的,既不存在异方差3、White检验由一元回归估计结果,按照路径“view/residual tests/White heteroskedasticity(no cross terms or cross terms)”,进入White检验,根据White检验中附注函数的构造,最后一项为变量的交叉乘积项,因为检验一元函数,故无交叉乘积项,因此应选no cross 。
经估计出现White检验结果如下:White Heteroskedasticity Test:F-statistic ProbabilityObs*R-squared ProbabilityTest Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 06/23/11 Time: 22:05 Sample: 1 32Included observations: 32VariableCoefficientStd. Error t-Statistic Prob.C 2593976.1086913.GDP GDP^2R-squaredMean dependentvar3914645. Adjusted R-squared. dependent var 3866921.. of regression 3794644. Akaike infocriterionSum squared resid +14 Schwarz criterionLog likelihoodF-statisticDurbin-Watson statProb(F-statistic)从表中可以看出,n 2R =,由White 检验知,在α=下,查2χ分布表,得临界值2050。