杭州市数学高三上学期理数开学考试试卷B卷
- 格式:doc
- 大小:696.00 KB
- 文档页数:14
株洲市2024年下学期高一年级开学考试试卷数学试题(B 卷)(答案在最后)命题人:时量:120分钟分值:150分第Ⅰ卷(选择题)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.在数轴上与原点距离不大于3的点表示的数的集合是()A.{3|x x ≤-或3}x ≥ B.{|33}x x -≤≤ C.{|3}x x ≤- D.{|3}x x ≥【答案】B【解析】【分析】在数轴上与原点距离不大于3的点表示的数的集合为|x |≤3的集合.【详解】由题意,满足|x |≤3的集合,可得:{|33}x x -≤≤,故选:B2.下列运算正确的是()A.623a a a ÷= B.426a a a ⨯=C.()325a a = D.336a a a +=【答案】B【解析】【分析】根据幂指运算的性质,可得答案.【详解】对于A ,624a a a ÷=,故A 错误;对于B ,426a a a ⨯=,故B 正确;对于C ,236()a a =,故C 错误;对于D ,3332a a a +=,故D 错误.故选:B.3.桌上摆着一个由若干个相同正方体组成的几何体,其三视图如图所示.则组成此几何体需要正方体的个数是()A.7B.8C.9D.10【答案】B【解析】【分析】本题考查由三视图判断几何体,从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】根据俯视图可知该组合体共2行、4列,结合主视图和左视图知该几何体中小正方体的分布情况如图所示:则组成此几何体需要正方体的个数是8,故选:B .4.下列方程中两根之和为6的是()A .26150x x -+= B.21260x x -+=C.22630x x --= D.2318170x x -+=【答案】D【解析】【分析】先判断每个方程的∆是否大于等于0,确定方程是否有解,进而利用根与系数的关系求解即可得结论.【详解】对于A :26150x x -+=,2(6)4115240∆=--⨯⨯=-<,所以方程无实数根,故A 不满足题意,对于B :21260x x -+=,2(12)4161200∆=--⨯⨯=>,所以方程有两个不等实数根且两根之和为12b a-=,故B 不符合题意;对于C :22630x x --=,2(6)42(3)600∆=--⨯⨯-=>,所以方程有两个不等实数根且两根之和为3b a-=,故C 不符合题意;对于D :2318170x x -+=,2(18)43171200∆=--⨯⨯=>,所以方程有两个不等实数根且两根之和为6b a -=,故D 符合题意.故选:D.5.设集合{}22,1,2A a a a =--+,若4A ∈,则a =()A.3-或1-或2B.3-或1-C.3-或2D.1-或2【答案】C【解析】【分析】分14a -=和224a a -+=讨论,即得解.【详解】当14a -=时,3a =-,符合题意;当224a a -+=时,2a =或1a =-.当2a =时,符合题意;当1a =-时,12a -=,与集合元素的互异性矛盾.所以舍去.故3a =-或2a =.故选:C【点睛】本题主要考查元素和集合的关系,意在考查学生对这些知识的理解掌握水平.6.函数22y kx =-与()0k y k x =≠在同一平面直角坐标系中的图象大致是()A. B.C. D.【答案】C【解析】【分析】根据0,0k k ><,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当0k >时,反比例函数k y x=,在一、三象限,而二次函数22y kx =-开口向上,与y 轴交点为()0,2-,都不符;②当0k <时,反比例函数k y x=,在二、四象限,而二次函数22y kx =-开口向下,与y 轴交点为()0,2-,C 符合.故选:C .7.关于x 的不等式组0723x m x +<⎧⎨-≤⎩恰好有5个整数解,则m 的取值范围是()A.76m -<-≤ B.76m --≤≤C.76m -<-≤ D.76m -<<-【答案】A【解析】【分析】分别解一元一次不等式,进而确定不等式组的解,再利用整数解的个数求出范围.【详解】解不等式0x m +<,得x m <-;解不等式723x -≤,得2x ≥,而不等式组0723x m x +<⎧⎨-≤⎩有解,则2m ->,其解为2x m ≤<-,由不等式组0723x m x +<⎧⎨-≤⎩恰好有5个整数解,得67m <-≤,解得76m -<-≤,所以m 的取值范围是76m -<-≤.故选:A8.定义:若抛物线的顶点,抛物线与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线1:3l y x b =+经过点10,4M ⎛⎫ ⎪⎝⎭,一组抛物线的顶点()()()1122331,,2,,3,B y B y B y ,(),n n B n y ⋯(n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:()()1122,0,,0A x A x ,()()3311,0,,0n n A x A x ++⋯(n 为正整数).若1(01)x d d =<<,当d 为()时,这组抛物线中存在美丽抛物线.A .512或712 B.512或1112 C.712或1112 D.712【答案】B【解析】【分析】由抛物线的对称性可知,“美丽抛物线”所构成的直角三角形必是以抛物线顶点为直角顶点的等腰三角形,所以此等腰三角形斜边上的高等于斜边的一半,又01d <<,所以等腰直角三角形斜边的长小于2,所以等腰直角三角形斜边的高一定小于1,即抛物线的定点纵坐标必定小于1,据此解答即可.【详解】因为直线1:3l y x b =+经过点10,4M ⎛⎫ ⎪⎝⎭,则11043b =⨯+,解得14b =,直线11:34l y x =+,由抛物线的对称性知,“美丽抛物线”所构成的直角三角形必是以抛物线顶点为直角顶点的等腰三角形,所以该等腰三角形的高等于斜边的一半,因为01d <<,结合题意可知该等腰直角三角形的斜边长小于2,斜边上的高小于1(即抛物线的顶点纵坐标小于1),因为当1x =时,1117113412y =⨯+=<,当2x =时,21111213412y =⨯+=<,当3x =时,311531344y =⨯+=>,所以美丽抛物线的顶点只有12,B B ,①若1B 为顶点,由171,12B ⎛⎫ ⎪⎝⎭,则7511212d =-=;②若2B 为顶点,由2112,12B ⎛⎫ ⎪⎝⎭,则11111211212d ⎡⎤⎛⎫=---= ⎪⎢⎥⎝⎭⎣⎦,综上所述,d 的值为512或1112时,存在美丽抛物线.故选:B 【点睛】关键点睛:此题主要考查新定义问题,二次函数图象上点的坐标特征,等腰直角三角形的性质,利用抛物线的对称性找出相应的等腰直角三角形是解答该题的关键.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的6分,部分选对得部分分,有选错的得0分.9.已知x ,y ,z 为非零实数,代数式xyz x y z x y z +++的值所组成的集合是M ,则下列判断正确的是()A.0M∉ B.2M ∈ C.4M -Î D.4M Î【答案】CD【解析】【分析】讨论,,x y z 的正负数分布情况判断对应代数式的值,即可确定集合M ,进而确定正确的选项.【详解】当,,x y z 均为负数时,4xyz x y z x y z xyz+++=-;当,,x y z 两负一正时,0xyz x y z x y z xyz+++=;当,,x y z 两正一负时,0xyz x y z x y z +++=;当,,x y z 均为正数时,4xyz x y z x y z xyz +++=;∴{4,0,4}M =-,A 、B 错误,C 、D 正确.故选:CD10.如图,下列是国家统计局公布的数据,下列关于这组数据的说法正确的是()A.众数是2.1B.中位数是1.6C.平均数是2.08D.方差大于1【答案】AC【解析】【分析】根据平均数,众数,中位数以及方差的计算公式,分别对每一项进行分析计算即可得解.【详解】对A :因为2.1出现了2次,出现的次数最多,所以众数数是2.1,故A 正确;对B :把这些数从小到大排列为:1.6,1.8,2.1,2.1,2.8,中位数是2.1,故B 错误;对C :平均数是:()1 2.8 2.1 2.1 1.8 1.6 2.085⨯++++=,故C 正确;对D :()()()()22222 2.8 2.082 2.1 2.08 1.6 2.08 1.8 2.080.165615s -+⨯-+-+-==<,故D 错误.故选:AC .11.已知二次函数()2223y m x mx m =-++-的图象与x 轴有两个交点()()12,0,,0x x ,则下面说法正确的是()A.该二次函数的图象一定过定点()1,5--;B.若该函数图象开口向下,则m 的取值范围为:625m <<;C.当2m >,且12x ≤≤时,y 的最大值为45m -;D.当2m >,且该函数图象与x 轴两交点的横坐标12,x x 满足1232,10x x -<<--<<时,m 的取值范围为:21114m <<【答案】ABD【解析】【分析】代入1x =-,解得5y =-,即可求解A ,根据判别式即可求解B ,利用二次函数的单调性即可求解C ,利用二次函数的图象性质即可列不等式求解.【详解】由()2223y m x mx m =-++-可得()22123y m x x =+--,当1x =-时,5y =-,故二次函数的图象一定过定点()1,5--,A 正确,若该函数图象开口向下,且与x 轴有两个不同交点,则()()220Δ44230m m m m -<⎧⎨=--->⎩,解得:625m <<,故B 正确,当2m >,函数开口向上,对称轴为02m x m =-<-,故函数在12x ≤≤时,单调递增,当2x =时,911y m =-,故y 的最大值为911m -;C 错误,当2m >,则开口向上,又1232,10x x -<<--<<时,则3,4210x y m =-=->,且2,110x y m =-=-<,且1,50x y =-=-<,且0,30x y m ==->,解得21114m <<,m 的取值范围为:21114m <<,D 正确,故选:ABD 第Ⅱ卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.若2,3a b ab +==-,则式子32232a b a b ab ++的值为______.【答案】12-【解析】【分析】由题意可化简()()232232222a b a b ab ab a ab bab a b ++=++=+,从而可求解【详解】由题意得()()23223222223212a b a b ab ab a ab bab a b ++=++=+=-⨯=-.故答案为:12-.13.如图,一段抛物线()()303y x x x =--≤≤记为1C ,它与x 轴交于点O 、1A ;将1C 绕点1A 旋转180︒得到2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得到3C ,交x 轴于点3A 如此进行下去,直至得到13C .若()37,P m 在第13段抛物线13C 上,则m =______.【答案】2【解析】【分析】结合图象根据图象的变换规律,可得出图象13C 与x 轴的交点坐标,从而得出13C 的表达式,代入求解即可.【详解】由题知图象1C 与x 轴的交点坐标分别为()0,0,()3,0,图象在x 轴上方,图象2C 与x 轴的交点坐标分别为()3,0,()6,0,图象在x 轴下方,图象3C 与x 轴的交点坐标分别为()6,0,()9,0,图象在x 轴上方,⋅⋅⋅以此类推,图象13C 与x 轴的交点坐标分别为()36,0,()39,0,且图象在x 轴上方,13C ∴的表达式为()()133639y x x =---,当37x =时,()()373637392y =--⨯-=,即2m =.故答案为:2.14.给定实数集合A ,B ,定义运算{},,A B x x ab a b a A b B ⊗==++∈∈.设{}0,2,4,,18A =⋅⋅⋅,{}98,99,100B =,则A B ⊗中的所有元素之和为______.【答案】29970【解析】【分析】【详解】由(1)(1)1x a b =++-,则可知所有元素之和为(1319)30031029970+++⨯-⨯= .故答案为:29970.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.已知关于x 的一元二次方程2640x x m -++=有两个实数根12,x x .(1)求m 的取值范围;(2)若12,x x 满足1232x x =+,求m 的值.【答案】(1)5m ≤(2)4【解析】【分析】(1)根据判别式列不等式来求得m 的取值范围.(2)利用根与系数关系以及对2x 的符号进行分类讨论,由此求得m 的值.【小问1详解】关于x 的一元二次方程2640x x m -++=有两个实数根12,x x ,()2(6)442040m m ∴∆=--+=-≥,解得:5m ≤,m ∴的取值范围为5m ≤.【小问2详解】关于x 的一元二次方程2640x x m -++=有两个实数根12,x x ,126x x ∴+=①,124x x m =+②.1232x x =+ ,当20x ≥时,有1232x x =+③,联立①③解得:122,4x x ==,84,4;m m ∴=+=当20x <时,有1232x x =-+④,联立①④解得:122,8x x =-=(不合题意,舍去).∴符合条件的m 的值为4.16.甲口袋中装有2个相同的小球,它们分别写有字母A 和B ;乙口袋中装有3个相同的小球,它们分别写有字母,C D 和E ;丙口袋中装有2个相同的小球,它们分别写有字母H 和I .从三个口袋中各随机取出1个小球.(1)取出的3个小球上恰好有1个、2个和3个元音字母的概率分别是多少?(2)取出的3个小球上全是辅音字母的概率是多少?(注:本题中,,,A E I 是元音字母;,,,B C D H 是辅音字母)【答案】(1)P (1个元音)512=,P (2个元音)14=,P (3个元音)112=;(2)16.【解析】【分析】(1)首先根据题意画出树状图,然后根据古典概型求得所有的结果;(2)首先求得取出的3个小球上全是辅音字母的情况,然后利用概率公式求解即可.【小问1详解】如图所示,所有可能出现的情况有12种,记三个小球上恰好有一个、两个和三个的元音字母为事件,,A B C ,事件A 发生的情况有5种,事件B 发生的情况有4种,事件C 发生的情况有1种,所以5411(),(),()1212312P A P B P C ====.【小问2详解】由树状图知共有12种等可能的结果,取出的3个小球上全是辅音字母的有2种情况,所以取出的3个小球上全是辅音字母的概率为21126=.17.对m 、n 定义一种新运算“◊”,规定:5m n am bn ◊=-+(其中a 、b 均为非零常数),等式右边的运算是通常的四则运算,例如:56565a b ◊=-+.(1)已知()231,3110◊=◊-=.①求a b 、的值;②若关于x 的不等式组()()23936x x x t ⎧◊-<⎪⎨◊-≤⎪⎩有且只有一个整数解,试求字母t 的取值范围.(2)若运算“◊”满足加法的交换律,即对于我们所学过的任意数,m n ,结论“m n n m ◊=◊”都成立,试探索a 、b 所应满足的关系式.【答案】(1)①1,2a b ==;②2023t ≤<;(2)0a b +=【解析】【分析】本题考查了解二元一次方程组和解一元一次不等式组、一元一次不等式组的整数解等知识点,能根据已知算式得出方程组或不等式组是解此题的关键.(1)①根据已知新运算得出方程组,求出方程组的解即可;②先根据运算得出不等式组,求出每个不等式的解集,根据已知得出关于t 的不等式组,求出解集即可;(2)根据新运算得出等式,整理后即可得出答案.【小问1详解】①()231,3110◊=◊-= ,∴23513510a b z b -+=⎧⎨++=⎩解得:1,2a b ==;②∵()()239,1, 2.36x x a b x t⎧◊-<⎪==⎨◊-≤⎪⎩∴()()2353119365317xa x b x xa b x t⎧--+=-+<⎪⎨--+=+≤⎪⎩即3119317x x t -+<⎧⎨+≤⎩,解得:23173x t x ⎧>⎪⎪⎨-⎪≤⎪⎩关于x 的不等式组()()239,36x x x t⎧◊-<⎪⎨◊-≤⎪⎩有且只有一个整数解,17123t -∴≤<,解得:2023t ≤<,即字母t 的取值范围是2023t ≤<;【小问2详解】m n n m ◊=◊ ,55ma nb na mb ∴-+=-+,0ma nb na mb ∴--+=,()()0m a b n a b ∴+-+=,()()0a b m n ∴+-=,m n 、为任意数,m n ∴-不一定等于0,0a b ∴+=,即a b 、所应满足的关系式是0a b +=.18.定义:若任意,m n A ∈(m ,n 可以相等),都有10mn +≠,则集合,,1m n B x x m n A mn ⎧⎫+==∈⎨⎬+⎩⎭称为集合A 的生成集;(1)求集合{3,4}A =的生成集B ;(2)若集合{,2}A a =,A 的生成集为B ,B 的子集个数为4个,求实数a 的值;(3)若集合(1,1)A =-,A 的生成集为B ,求证A B =.【答案】(1)387,,51713B ⎧⎫=⎨⎬⎩⎭(2)1a =±或12a =(3)证明见解析【解析】【分析】(1)根据新定义算出x 的值即可求出B ;(2)B 的子集个数为4个,转化为B 中有2个元素,然后列出等式即可求出a 的值;(3)求出B 的范围即可证明出结论【小问1详解】由题可知,(1)当3m n ==时,3331335x +==+⨯,(2)当4m n ==时,44814417x +==+⨯,(3)当3,4m n ==或4,3m n ==时,34713413x +==+⨯所以387,,51713B ⎧⎫=⎨⎬⎩⎭【小问2详解】(1)当2m n ==时,2241225x +==+⨯,(2)当m n a ==时,22211a a a x a a +==++(3)当2,m n a ==或,2m a n ==时,212a x a+=+B 的子集个数为4个,则B 中有2个元素,所以24251a a =+或222112a a a a +=++或24125a a +=+,解得1a =±或12a =(2a =舍去),所以1a =±或12a =.【小问3详解】证明:(),1,1m n A ∀∈-=,()()111011m n m n mn mn++++=>++,()()111011m n m n mn mn---+-=<++,∴111m n mn+<+-<,B A ∴⊆,设任意0x A ∈,取12m =,则12A -∈,所以0012112x n B A x -=∈⊆-,则00000000001121111321122224311111114222211212x x x x x m n x x B mn x x x x -+⎛⎫-+-- ⎪+⎝⎭=====∈+⎛⎫⎛⎫⎛⎫--+- ⎪ ⎪ ⎪⎝⎭⎝⎭+ ⎪ ⎪-⎝⎭,所以A B ⊆;所以A B=19.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点1,1在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(i )若3h t =,且10,0x t ≥>,求h 的值;(ii )若11x t =-,求h 的最大值.【答案】(1)4(2)(i )3;(ii )103【解析】【分析】(1)求出抛物线2y x bx =-+和22y x x =-+的顶点横坐标,根据题意列方程,即可求解;(2)先求出211224h t x t x t =--++,(i )列出方程,即可求出h 的值;(ii )求出h 关于t 的方程,结合二次函数的性质,即可求得h 最大值.【小问1详解】由抛物线2y x bx =-+的顶点的横坐标为2b x =,又由抛物线22y x x =-+的顶点的横坐标为1x =,因为抛物线2y x bx =-+的顶点的横坐标比22y x x =-+的顶点的横坐标大1,可得112b -=,解得4b =.【小问2详解】由点1,1在抛物线22y x x =-+上,可得21112y x x =-+,又由点()11,B x t y h ++在抛物线24y x x =-+上,可得()()21114y h x t x t +=-+++,则()()22111124x x h x t x t -++=-+++,所以211224h t x t x t =--++,(i )因为3h t =,所以2113224t t x t x t =--++,可得()1122t t x t x +=+,因为10,0x t ≥>,可得1t =,则3h =.(ii )将11x t =-代入211224ht x t x t =--++,可得2382h t t =-+-,即2410333h t ⎛⎫=--+ ⎪⎝⎭,当43t =,即113x =时,h 取最大值103.。
八年级数学学科一、选择题(每小题3分,10小题,共30分)1. 下面四个图形中,与是对顶角的图形的个数是( )A. 0B. 1C. 2D. 3答案:B解析:解:根据对顶角的定义可知:只有第三个图中的两个角是对顶角,其它都不是.故选:B.本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角,掌握对顶角的定义是解题的关键.2. 下列命题是真命题的是( )A. 相等的角是对顶角B. 互相垂直的直线一定相交C. 内错角相等D. 邻补角相等答案:B解析:A、相等的角不一定是对顶角,该命题是假命题;B、互相垂直的直线一定相交,该命题是真命题;C、内错角不一定相等,该命题是假命题;D、邻补角互补,该命题是假命题;故选:B.本题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3. 下列各数﹣0.101001,,,,,0,中,无理数的个数有( )A. 1B. 2C. 3D. 4答案:C解析:解:=4,∴无理数有:,,共3个,故选C.本题主要考查了无理数,掌握无理数包括无限不循环小数和开方开不尽的数,能快速准确的找出无理数.4. 点A(x,y)的坐标满足xy>0,x+y<0,那么点A在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C解析:解:∵xy>0,∴xy为同号即为同正或同负,∵x+y<0,∴x<0,y<0,∴点A(x,y)在第三象限,故选:C.此题考查点的坐标,坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点,该知识点是中考的常考点,常与不等式、方程结合起来求字母的取值范围.解决本题的关键是记住平面直角坐标系中各个象限内点的符.5. 用含盐与含盐的盐水配含盐的盐水千克,设需含盐的盐水千克,含盐盐水千克,则所列方程组为( )A. B.C. D.答案:A解析:解:∵含盐的盐水x千克中含盐,含盐的盐水y千克中含盐,含盐的盐水300千克中含盐,∴,故所列方程组为:故选:A.此题考查了二元一次方程组的实际应用,解题的关键是正确分析题目中的等量关系.6. 如图,把沿EF翻折,叠合后的图形如图,若,,则的度数是()A. 15°B. 20°C. 25°D. 35°答案:C解析:解:如图,∵△ABC沿EF翻折,∴∠BEF=,∠CFE=,∴180°-∠AEF=∠1+∠AEF,180°-∠AFE=∠2+∠AFE,∵∠1=95°,∴∠AEF=(180°-95°)=42.5°,∵∠A+∠AEF+∠AFE=180°,∴∠AFE=180°-60°-42.5°=77.5°,∴,∴∠2=25°.故选C.本题考查了折叠的性质:翻折变换(折叠问题)实质上就是轴对称变换;折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.同时考查了三角形的内角和定理的应用.7. 如图,平分,,于点E,,,则的长度为()A. B. C. D. 答案:D解析:解:过C作交延长线与F,∵平分,,,∴,,在和中,,∴,∴;∵,,∴,在和中,,∴,∴,∵,,,∴,则,故选:D.本题主要考查了全等三角形的判定与性质、角平分线的定义,熟练掌握全等三角形的判定与性质是解答的关键.8. 如图,在中,,平分,于E,有下列结论:①;②;③;④平分;其中正确的是()个.A. 1B. 2C. 3D. 4答案:D解析:解:∵,平分,,∴,故①正确;在和中,,∴,∴,∴,故②正确;平分,故④正确;∵,,∴,故③正确;综上所述,结论正确是①②③④共4个.故选:D.本题考查角平分线的性质,全等三角形的判定和性质,熟练掌握角平分线上的点到角两边的距离相等,是解题的关键.9. 如图,已知,,如果添加一个条件使,则添加的条件不可以是()A. B. C. D.答案:D解析:解:∵,∴,即,当时,由可证,故A不符合要求;当时,由可证,故B不符合要求;当时,由可证,故C不符合要求;当,无法使,故D符合要求.故选:D.10. 如图,在平面直角坐标系中,已知点A(0,4),B(2,0),在平面内有一点C(不与点B重合),使得△AOC与△AOB全等,这样点C有()A. 1个B. 2个C. 3个D. 4个答案:C解析:如图所示,满足条件的点有三个,分别为C1(-2,0),C2(-2,4),C3(2,4)故选:C本题考查了坐标与图形、三角形全等的判定,全等三角形的判定及图形坐标特征是解题的关键.二、填空题(每小题3分,8小题,共24分)11. 对于方程,用含x的代数式表示y为____________.答案:y=8-解析:试题分析:由+去分母得x+6y=8,移项得y=8-12. 已知样本:8,6,10,13,10,8,7,10,11,12,10,8,9,11,9,12,10,12,11,9.在列频数分布表时,如果取组距为2,那么应分成__________组,这一组的频率是______.答案:①. 4 ②. ##0.4解析:解:根据题意,得最大的是13,最小的是6,即极差是7,则组数是(组),观察数据,可得这一小组的频数为8个,样本的容量为20,则其频率为.故答案为:4;0.4.本题考查的是频数分布表,掌握组距、分组数的确定方法:组距=(最大值-最小值)÷组数,以及频率的计算方法是解题的关键.13. 已知不等式组的解集为,则的值是______.答案:解析:解:,由①可得:,由②可得:,∵不等式组解集为,∴,解得:,∴,故答案为:.本题主要考查了解一元一次不等式组,解题关键是熟练掌握解一元一次不等式组的方法和步骤,以及写出不等式组解集的口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”.14. 某中学七年级学生外出进行社会实践活动,如果每辆车坐45人,那么有15个学生没车坐;如果每辆车坐60人,那么可以空出一辆车.则共有___辆车,___个学生.答案:①. 5 ②. 240解析:解:设车有x辆,则根据两次学生人数不变,得:45x+15=60(x﹣1),解得x=5,即有辆车,把x=5代入60(x﹣1)=240,即有240个学生,故答案为:①5,②240.本题考查一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题关键.15. 若关于x的不等式组的解集是x>2,则m的取值范围是______.答案:m≤2解析:解:因为不等式组的解集是x>2,根据同大取较大原则可知:m<2,当m=2时,不等式组的解集也是x>2,所以m≤2.故答案为:m≤2.本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.16. 已知关于x的方程的解是非负数,则m的取值范围是______.解析:解:方程,移项得:,∴根据题意得:,解得:,所以m的取值范围是.点评:本题考查了一元一次方程的解,解一元一次不等式,解题的关键是把字母m看作一个常数来解,本题是常见的题型要求掌握.17. 一个多边形的内角和是其外角和的4倍,则这个多边形的边数是_____.答案:10解析:解:设边数为n,由题意得,,解得.所以这个多边形的边数是10.故答案为:10.本题主要考查了多边形的内角和公式与外角和定理,根据题意列出方程是解题的关键.18. 如图,在平面直角坐标系中,,根据这个规律,可得点的坐标是__________.解析:解:观察图形可知,点……的横坐标依次是1、2、3、4、……、n,纵坐标依次是2、0、、0、2、0、、……,四个一循环,故点坐标是.故答案为.本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解题的关键是根据图形中点的坐标得出规律.三、解答题(7小题,共66分)19. 计算:+|﹣2|.答案:﹣﹣1.解析:解:原式=4﹣4﹣3+2﹣=﹣﹣1.此题主要考查了实数的混合运算,正确化简各数是解题的关键.20. (1)解方程组:(2)解不等式组,并把解集在数轴上表示出来.答案:(1);(2)−1≤x<3,在数轴上表示解集见解析.解析:解:(1)①×2+②×3,得:13x=26,解得x=2,将x=2代入②,得:6+2y=12,解得y=3,∴方程组的解为;(2)解不等式①,得:x≥−1,解不等式②,得:x<3,则不等式组的解集为−1≤x<3,将不等式组的解集表示在数轴上如下:本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21. 如图,直线、相交于O,平分,于点O,,求、的度数.答案:,解析:解:∵于点O,,∴,∵与是对顶角,∴.∵平分,∴,∴.此题主要考查了余角,补角及角平分线的定义,角的和差运算,对顶角的性质,熟练的利用角的和差运算进行计算是解本题的关键.22. 已知:,,(1)在坐标系中描出各点,画出.(2)求的面积;(3)设点P在坐标轴上,且与的面积相等,求点P的坐标.答案:(1)见解析(2)4(3)或或或小问1解析:解:如图所示:小问2解析:解:过点C向、轴作垂线,垂足为∴四边形的面积,的面积,的面积,的面积∴的面积=四边形的面积−的面积−的面积−的面积小问3解析:解:①当点在x轴上时,的面积,即解得:所以点P的坐标为或;②当点在y轴上时,的面积,即,解得:.所以点P的坐标为或.所以点P的坐标为或或或本题考查坐标与图形.用点的坐标正确表示出图形面积是解题关键.23. 如图,四边形中,,,,,与相交于点F.(1)求证:;(2)判断线段与的位置关系,并说明理由.答案:(1)见解析(2),理由见解析小问1解析:证明:在和中,,∴;小问2解析:解:垂直;由(1)可得,,∴,∵,∴,∴,即.本题主要考查了三角形全等的判定和性质,解题的关键是掌握三角形全等的判定方法有,以及全等三角形对应边相等,对应角相等.24. 定义:关于x,y的二元一次方程(其中)中的常数项c与未知数系数a,b之一互换,得到的方程叫“交换系数方程”,例如:的交换系数方程为或.(1)方程与它的“交换系数方程”组成的方程组的解为_______;(2)已知关于x,y 的二元一次方程的系数满足,且与它的“交换系数方程”组成的方程组的解恰好是关于x,y的二元一次方程的一个解,求代数式的值;(3)已知整数m,n,t满足条件,并且是关于x,y的二元一次方程的“交换系数方程”求m的值.答案:(1)或(2)2024 (3)小问1解析:解:当的交换系数方程为时,联立,解得:;当的交换系数方程为时,联立,解得:;故答案为:或;小问2解析:解:当的“交换系数方程”为时,联立,解得:,∵,∴,∴,当的“交换系数方程”为时,联立,解得:,∵,∴,∴,综上:与它的“交换系数方程”组成的方程组的解为,把代入方程得:,∴.小问3解析:解:∵是关于x,y的二元一次方程的“交换系数方程”,∴或,①当时,整理得:,解得:,∵,∴,∵m,n,t均为整数,∴,解得:,∴;②当时,整理得:,解得:,不符合题意,综上:.本题主要考查了求解含参数的二元一次方程组,解题的关键是掌握解二元一次方程组的核心思想“消元”,有加减消元法和代入消元法.25. 问题初探和是两个都含有角的大小不同的直角三角板(1)当两个三角板如图(1)所示的位置摆放时,D、B,C在同一直线上,连接,请证明:类比探究(2)当三角板保持不动时,将三角板绕点B顺时针旋转到如图(2)所示的位置,判断与的数量关系和位置关系,并说明理由.拓展延伸如图(3),在四边形中,,连接,,,A到直线的距离为7,请求出的面积.答案:(1)见解析;(2),;(3)解析:(1)∵和是两个都含有角的大小不同的直角三角板,∴,,,∴,∴;(2),,理由如下:∵,∴,∵,,∴,∴,,延长与交于点,∵,∴,∴,∴,∴,∴;(3)过作交延长线于,过作交于,∵,∴,∴,∵∴,∴,∴,,∴,∵A到直线的距离为7,∴,∵,∴,∵,,∴,,∴.此题是几何变换综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,垂直的判断方法,解本题的关键是判断出,是一道难度不大的中考常考题.。
2024-2025学年浙江省杭州市杭六中学九上数学开学考试试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,△ABC 中,AB =AC ,∠A =36°,AB 的垂直平分线DE 交AC 于点D ,交AB 于点E ,下列叙述结论错误的是()A .BD 平分∠ABC B .△BCD 的周长等于AB +BC C .点D 是线段AC 的中点D .AD =BD =BC 2、(4分)观察图中的函数图象,则关于的不等式的解集为()A .B .C .D .3、(4分)下列式子从左到右变形错误的是()A .2b ab a a =B .nn m m -=-C .a a 1b b 1-=-D .2a aab b=4、(4分)为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为1.6m.根据各班选出的学生,测量其身高,计算得到的数据如右表所示,学校应选择()学生平均身高(单位:m )标准差九(1)班 1.570.3九(2)班 1.570.7九(3)班 1.60.3九(4)班 1.60.7A .九(1)班B .九(2)班C .九(3)班D .九(4)班5、(4分)如图所示,已知:点A (0,0),B ,0),C (0,1).在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B 1A 2B 2,第3个△B 2A 3B 3,…,则第n 个等边三角形的边长等于()A .32n B .132n -C .12n D .132n +6、(4分)已知点A 的坐标是(1,2),则点A 关于y 轴的对称点的坐标是()A .(1,2)-B .(1,2)-C .(1,2)--D .(2,1)7、(4分)下列标识中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .8、(4分)下列函数中,自变量x 的取值范围是x≥3的是()A .1y=x 3-B .C .y=x 3-D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)当x___________是二次根式.10、(4分)正八边形的一个内角的度数是度.11、(4分)一组数据2,3,x ,5,7的平均数是4,则这组数据的众数是.12、(4分)一元二次方程x 2-2x -k =0有两个相等的实数根,则k =________。
浙江省四校2024-2025学年高一上学期10月联考模拟练习数学试题(自编供学生使用)(考试时间:120分钟试卷总分:150分)(答案在最后)一、单选题(本大题共8小题,共40分)1.已知集合{2},{1}A x x B x x =>=<∣∣,则()()A B ⋂=R R 痧()A.∅B.{12}xx <<∣C.{}12xx ≤≤∣D.R2.已知集合{|(38)(2)0}A x x x =-+<{|13}B x x =∈-Z ≤≤,则集合A B ⋂中的元素个数为A.2B.3C.4D.53.命题“,sin 0R αα∃∈=”的否定是()A.,sin 0R αα∃∈≠B.,sin 0R αα∀∈≠C.,sin 0R αα∀∈<D.,sin 0R αα∀∈>4.已知,,a b c ∈R ,则下列说法正确的是A.若a b >,则a c b c ->-B.若a b >,则a b c c>C.若ac bc <,则a b<D.若a b >,则22ac bc >5.命题“2,2390x R x ax ∃∈-+<”为假命题,则实数a 的取值范围为()A.)(222⎡⎤∞⋃-∞⎣⎦,+,B.2⎡⎣-22,C.)2⎡∞⎣,D.(2-∞,6.关于x 的不等式22280x ax a --<的解集为()12,x x ,且2115x x -=,则a 的值为()A.152B.152±C.52D.52±7.已知2(0,0)a b ab a b +=>>,下列说法正确的是()A.ab 的最大值为8B.1212a b +--的最小值为2C.a b +有最小值32D.2224a a b b -+-有最大值48.给定集合A ,若对于任意a 、b A ∈,有a b A +∈,且a b A -∈,则称集合A 为闭集合,给出如下三个结论:①集合{}4,2,0,2,4A =--为闭集合;②集合{}3,A n n k k Z ==∈为闭集合;③若集合1A 、2A 为闭集合,则12A A ⋃为闭集合.其中正确结论的个数是()A.0B.1C.2D.3二、多选题(本大题共3小题,共18分)9.下列命题中为真命题的是()A.若0xy =,则0x y +=B.若a b >,则a c b c +>+C.菱形的对角线互相垂直D.若,a b 是无理数,则a b +是无理数10.根据不等式的有关知识,下列日常生活中的说法正确的是()A.自来水管的横截面制成圆形而不是正方形,原因是:圆的面积大于与它具有相同周长的正方形的面积.B.在b 克盐水中含有a 克盐(0)b a >>,再加入n 克盐,全部溶解,则盐水变咸了.C.某工厂第一年的产量为A ,第二年的增长率为a ,第三年的增长率为b ,则这两年的平均增长率为2a b+.D.购买同一种物品,可以用两种不同的策略.第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.用第二种方式购买一定更实惠.11.德国著名数学家狄利克雷在数学领域成就显著,以其命名的函数R 1,Q()0,Q x f x x ∈⎧=⎨∈⎩ð,被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则以下关于狄利克雷函数()f x 的结论中,正确的是()A.函数()f x 满足:()()f x f x -=B.函数()f x 的值域是[]0,1C.对于任意的x ∈R ,都有()()1f f x =D.在()f x 图象上不存在不同的三个点、、A B C ,使得ABC V 为等边三角形三、填空题(本大题共3小题,共15分)12.命题“π0,2x ⎡⎤∀∈⎢⎥⎣⎦,sin 0x ≥”的否定为.13.学校举办秋季运动会时,高一(1)班共有26名同学参加比赛,有12人参加游泳比赛,有9人参加田赛,有13人参加径赛,同时参加游泳比赛和田赛的有3人,同时参加游泳比赛和径赛的有3人,没有人同时参加三项比赛,则只参加游泳比赛的有人;同时参加田赛和径赛的有人.14.甲、乙两地相距240km,汽车从甲地以速度v (km/h)匀速行驶到乙地.已知汽车每小时的运输成本由固定成本和可变成本组成,固定成本为160元,可变成本为16400v 3元.为使全程运输成本最小,汽车应以km/h 的速度行驶.四、解答题(本大题共5小题,共77分)15.用一段长为16m 的篱笆,围成一个一边靠墙的矩形菜地(墙的长度大于16m ),矩形的长宽各为多少时,菜地的面积最大?并求出这个最大值?16.已知2:280p x x --≤,()22:200q x mx m m +-≤>,.(1)当1m =时,若命题“p q ∧”为真命题,求实数x 的取值范围;(2)若p 是q 的充分而不必要条件,求实数m 的取值范围.17.某人准备在一块占地面积为1800平方米的矩形地块中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(如图所示),大棚占地面积为S 平方米,其中:1:2a b =.(1)试用x 表示S ,并标明x 的取值范围;(2)求S 的最大值,并求出S 取最大值时x 的值.18.已知函数()f x =的定义域为集合A ,{}B xx a =<∣.(1)求集合A ;(2)若全集{|4}U x x =≤,1a =-,求()U A B ð;(3)若A B A = ,求a 的取值范围.19.已知函数()2f x ax bx c =++(a ,b ,c ∈R )有最小值4-,且()0f x <的解集为{}13x x -<<.(1)求函数()f x 的解析式;(2)若对于任意的()1,x ∈+∞,不等式()6f x mx m >--恒成立,求实数m 的取值范围.参考答案:题号12345678910答案C CBABDBBBCABD题号11答案AC1.C【分析】求出集合,A B 的补集,根据集合的交集运算,即可得答案.【详解】由于{2},{1}A x x B x x =>=<∣∣,故{|2},{|1}A x x B x x =≤=≥R R 痧,所以()()A B ⋂=R R 痧{}12xx ≤≤∣,故选:C 2.C【详解】依题意,()(){}8|3820|23A x x x x x ⎧⎫=-+<=-<<⎨⎬⎩⎭,{|13}B x Z x =∈-≤≤{}1,0,1,2,3=-,A B ⋂{}1,0,1,2=-,有4个元素,故选C.3.B【分析】原命题为存在性量词命题,按规则可写出其否定.【详解】根据命题否定的定义可得结果为:R α∀∈,sin 0α≠,故选:B.4.A【分析】由不等式的性质可判断A;取特值0c =,可判断BD;取0c <,结合不等式的性质判断C.【详解】对于A,利用不等式的性质可判断A 正确;对于BD,取0c =时,可知B 和D 均错误;对于C,当0c <时,若ac bc <,则a b >,故C 错误.故选:A 5.B【解析】特称命题为假命题,等价于其否定为真命题,利用判别式,即可确定实数a 的取值范围.【详解】“2,2390x R x ax ∃∈-+<”为假命题,等价于“2,2390x R x ax ∀∈-+≥”为真命题,所以()2=3890a ∆-⨯≤所以a ⎡∈⎣,则实数a 的取值范围为⎡⎣.故选:B.6.D【分析】根据22112122(())4x x x x x x -=+-以及韦达定理即可求解.【详解】因为关于x 的不等式22280x ax a --<的解集为()12,,x x 12,x x ∴是方程22280x ax a --=的两个不同的实数根,且224320a a ∆=+>,212122,8x x a x x a ∴+==-,2115x x -= ,()22221212154432x x x x a a ∴=+-=+,221536a =,解得52a =±故选:D.7.B【分析】根据基本不等式运用的三个条件“一正、二定、三相等”,可知8ab ≥,所以A 错误;将原式化成()()122a b --=,即可得()12112121a ab a +=+-≥---,即B 正确;不等式变形可得211ba+=,利用基本不等式中“1”的妙用可知3a b +≥+,C 错误;将式子配方可得222224(1)(2)5a a b b a b -+-=-+--,再利用基本不等式可得其有最小值1-,无最大值,D 错误.【详解】对于A 选项,2ab a b =+≥≥8ab ≥,当且仅当2,4a b ==时等号成立,故ab 的最小值为8,A 错误;对于B 选项,原式化为()()2122,01a ab b a --==>-,故10a ->;02ba b =>-,故20b ->;所以()12112121a ab a +=+-≥---,当且仅当2,4a b ==时等号成立,B 正确;对于C 选项,原式化为211ba +=,故()212123a a b a b b a ba b ⎛⎫+=++=+++≥+ ⎪⎝⎭当且仅当1,2a b =+=+C 错误;对于D 选项,()()222224(1)(2)521251a a b b a b a b -+-=-+--≥---=-,当且仅当12a b ==+1-,D 错误.故选:B 8.B【解析】取2a =,4b =-,利用闭集合的定义可判断①的正误;利用闭集合的定义可判断②的正误;取{}13,A n n k k Z ==∈,{}22,A m m t t Z ==∈,利用特殊值法可判断③的正误.由此可得出合适的选项.【详解】对于命题①,取2a =,4b =-,则6a b A -=∉,则集合{}4,2,0,2,4A =--不是闭集合,①错误;对于命题②,任取1n 、2n A ∈,则存在1k 、2k Z ∈,使得113n k =,223n k =,且12k k Z +∈,12k k Z -∈,所以,()12123n n k k A +=+∈,()12123n n k k A -=-∈,所以,集合{}3,A n n k k Z ==∈为闭集合,②正确;对于命题③,若集合1A 、2A 为闭集合,取{}13,A n n k k Z ==∈,{}22,A m m t t Z ==∈,则{123A A x x k ⋃==或}2,x k k Z =∈,取13A ∈,22A ∈,则()12325A A +=∉⋃,()12321A A -=∉⋃,所以,集合12A A ⋃不是闭集合,③错误.因此,正确的结论个数为1.故选:B.9.BC【分析】对于A,由0xy =得0x =或0y =即可判断;对于B,由不等式性质即可判断;对于C,由菱形性质即可判断;对于D,举反例如a b ==【详解】对于A,若0xy =,则0x =或0y =,故x y +不一定为0,故A 错误;对于B,若a b >,则由不等式性质a c b c +>+,故B 正确;对于C,由菱形性质可知菱形的对角线互相垂直,故C 正确;对于D,若,a b 是无理数,则a b +不一定是无理数,如a b ==0a b +=是有理数,故D 错误.故选:BC.10.ABD【分析】根据题意利用不等式的性质以及作差法、基本不等式逐项分析判断.【详解】对于选项A:设周长为0l >,则圆的面积为22π2π4πl l S ⎛⎫== ⎪⎝⎭圆,正方形的面积为22416l l S ⎛⎫==⎪⎝⎭正方形,因为211,04π16l >>,可得224π16l l >,即S S >圆正方形,故A 正确;对于选项B:原盐水的浓度为a b ,加入0n >克盐,盐水的浓度为a n b n++,则()()n b a a n a b n b b b n -+-=++,因为0,0b a n >>>,可得0,0b a b n ->+>,所以()()0n b a a n a b n b b b n -+-=>++,即a n ab n b+>+,故B 正确;对于选项C:设这两年的平均增长率为x ,则()()()2111A a b A x ++=+,可得1x ,因为()()111122a b a bx ++++=≤=+,即2a b x +≤,当且仅当11a b +=+,即a b =时,等号成立,即这两年的平均增长率不大于2a b+,故C 错误;对于选项D:按第一种策略购物,设第一次购物时的价格为1p 元/kg,购kg n ,第二次购物时的价格为2p 元/kg,购kg n ,两次购物的平均价格为121222p n p n p p n ++=;若按第二种策略购物,第一次花m 元钱,能购1kg mp 物品,第二次仍花m 元钱,能购2kg m p 物品,两次购物的平均价格为12122211m m m p p p p =++.比较两次购的平均价格:()()()()22121212121212121212124220112222p p p p p p p p p p p p p p p p p p p p +--++-=-==≥++++,当且仅当12p p =时,等号成立,所以第一种策略的平均价格不低于第二种策略的平均价格,因而用第二种策略比较经济,故D 正确;故选:ABD.11.AC【分析】利用R 1,Q ()0,Q x f x x ∈⎧=⎨∈⎩ð,对选项A,B 和C 逐一分析判断,即可得出选项A,B 和C的正误,选项D,通过取特殊点()0,1,,A B C ⎫⎛⎫⎪⎪⎝⎭⎝⎭,此时ABC V 为等边三角形,即可求解.【详解】由于R 1,Q()0,Qx f x x ∈⎧=⎨∈⎩ð,对于选项A,设任意x ∈Q ,则()(),1x f x f x -∈-==Q ;设任意Q x ∈R ð,则()()Q,0x f x f x -∈-==R ð,总之,对于任意实数()(),x f x f x -=恒成立,所以选项A 正确,对于选项B,()f x 的值域为{}0,1,又{}[]0,10,1≠,所以选项B 错误,对于选项C,当x ∈Q ,则()()()()1,11f x f f x f ===,当Q x ∈R ð,则()()()()0,01f x f f x f ===,所以选项C 正确,对于选项D,取()0,1,,0,33A B C ⎫⎛⎫-⎪⎪⎝⎭⎝⎭,此时AB AC BC ===ABC V 为等边三角形,所以选项D 错误,故选:AC.12.π0,2x ⎡⎤∃∈⎢⎥⎣⎦,sin 0x <【分析】根据全称命题的否定为特称命题,即可得答案.【详解】命题“π0,2x ⎡⎤∀∈⎢⎣⎦,sin 0x ≥”为全称命题,它的否定为特称命题,即π0,2x ⎡⎤∃∈⎢⎥⎣⎦,sin 0x <;故答案为:π0,2x ⎡⎤∃∈⎢⎥⎣⎦,sin 0x <13.62【详解】设只参加游泳比赛有x 人,则12336x -=+=,得6x =.不参加游泳的人为261214-=,参加田赛未参加游泳的人为936-=人,参加径赛未参加游泳的人为13310-=人,则同时参加田赛和径赛的人为106142+-=人.14.80【分析】根据汽车每小时的运输成本由固定成本和可变成本组成,固定成本为160元,可变成本为316400v 元,可构建函数,利用导数可求函数的极值,极值就是最值.【详解】解:设全程运输成本为y 元,由题意,得3224011601(160)240()64006400y v v v v =+=,0v >,21602240()6400y v v '=-+.令0y '=,得80v =.当80v >时,0'>y ;当080v <<时,0'<y .所以函数3224011601(160)240()64006400y v v v =+=+在()0,80上递减,在()80,+∞上递增,所以80v =km/h 时,720min y =.故答案为:80.15.长为8宽为4时,菜地面积最大,最大值为32【解析】设菜地长为x ,得162x S x -⎛⎫= ⎪⎝⎭,结合基本不等式可求最值【详解】如图,设菜地长为x ,()016x ∈,,则()1611622x S x x x -⎛⎫==- ⎪⎝⎭,结合基本不等式可知,0160x x >->,,则()()21616642x x x x ⎛⎫+--≤= ⎪⎝⎭,当且仅当8x =时,取到最大值,故()116322S x x =-≤,此时长为8,宽为16842-=,菜地面积最大值为3216.(1)21x -≤≤;(2)4≥m .【解析】(1)求出两个命题为真命题时的解集,然后利用p q ∧为真,求解x 的取值范围.(2)依题意可得p q q ⇒,推不出p ,即可得到不等式组224m m -≤⎧⎨≥⎩,解得即可【详解】解:∵2:280P x x --≤,∴24x -≤≤∵22:20q x mx m +-≤,0m >,∴2m x m -≤≤(1)当1m =时,:21q x -≤≤∵p q ∧为真命题,∴p 真且q 真即2421x x -≤≤⎧⎨-≤≤⎩,∴21x -≤≤(2)设集合{}|24A x x =-≤≤,{}2|m x m B x -=≤≤若p 是q 的充分不必要条件,则AB∴只需满足224m m -≤⎧⎨≥⎩且等号不同时成立得4≥m 17.(1)()4800180833600S x x x=--<<;(2)S 的最大值为1568,此时40x =.【分析】(1)先由题意得1800,2,333xy b a y a b a ===++=+且3,3x y >>,再结合图形即可求解所求S ;(2)由(1)结合基本不等式即可得解.【详解】(1)由题意可得1800,2,333xy b a y a b a ===++=+且3,3x y >>,所以33y a -=,18003600y x x=>⇒<,所以由图()()()()()3322223383823x y S a b a a a x x x x x --=+⨯⨯=+⋅==⋅-----()()()180034800600180831383836003x x x x x x x -⎛⎫=⋅=⋅=-----<<⎪⎝⎭.(2)由(1)()4800180833600S x x x=--<<,所以4800180818082180824015683S x x ⎛⎫=-≤--=+ ⎪⎝⎭,当且仅当48003x x=即40x =时等号成立,所以S 的最大值为1568,此时40x =.18.(1)(2,3]-;(2)[1,3]-;(3)(3,)+∞﹒【分析】(1)求出使f (x )有意义的x 的范围即可;(2)先计算U B ð,再按交集的运算法则计算即可;(3)A B A A B ⋂=⇒⊆,据此即可求解a 的范围﹒【详解】(1)3020x x -≥⎧⎨+>⎩32x x ≤⎧⎨>-⎩,23x ∴-<≤,(2,3]A ∴=-;(2)当1a =-时,()B =-∞,-1,[1,4]U B ∴=-ð,()[1,3]U A B ∴⋂=-ð;(3)A B A =Q I ,A B ∴⊆,3a ∴>,∴a 的求值范围是(3,)+∞.19.(1)2()23f x x x =--(2)m <【分析】(1)根据韦达定理列出方程组解出即可;(2)分离参数得()2122111x m x x x -+∴<=-+--,1x >,利用基本不等式求出右边最值即可.【详解】(1)令()0f x =,则1,2-为方程20ax bx c ++=的两根,则0a ≠,则由题有244423ac b a b a c a ⎧-=-⎪⎪⎪-=⎨⎪⎪=-⎪⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,2()23f x x x ∴=--.(2)由(1)得对()1,x ∀∈+∞,2236x x mx m -->--,即()2231x x m x -+>-,1x >Q ,10x ∴->,()2122111x m x x x -+∴<=-+--,令()211h x x x =-+-,1x >,则()211h x x x =-+≥=-当且仅当211x x-=-,即1x =+时等号成立,故()minh x =m <.。
北京35中2025届10月月考数学(答案在最后)2024.10本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}212,340,ZA x xB x x x x =-≤≤=--<∈,则A B = ()A.{}0,1B.{}11x x -≤<C.{}0,1,2 D.{}12x x -<≤【答案】C 【解析】【分析】计算{}0,1,2,3B =,再计算交集得到答案.【详解】{}{}{}2340,Z 14,Z 0,1,2,3B x x x x x x x =--<∈=-<<∈=,{}12A x x =-≤≤,{}0,1,2A B = .故选:C.2.已知223,tan2,log 3a b c -===,则()A.a b c >>B.a c b >>C.b c a >>D.c a b>>【答案】D 【解析】【分析】确定19a =,0b <,1c >,得到答案.【详解】2139a -==,tan20b =<,22log 3log 21c >==,故c a b >>.故选:D.3.下列函数中既是奇函数,又在区间(0,1)上单调递减的是A.3()f x x = B.()lg ||f x x = C.()f x x=- D.()cos f x x=【答案】C【解析】【分析】判断四个选项中的函数的奇偶性和在()0,1上的单调性,得到答案.【详解】选项A 中,()3f x x =,是奇函数,但在()0,1上单调递增,不满足要求;选项B 中,()lg f x x =,是偶函数,不满足要求,选项C 中,()f x x =-,是奇函数,在()0,1上单调递减,满足要求;选项D 中,()cos f x x =,是偶函数,不满足要求.故选:C.【点睛】本题考查判断函数的奇偶性和单调性,属于简单题.4.在621x x -⎛⎫ ⎪⎝⎭的展开式中,常数项是()A.20-B.15- C.15D.30【答案】C 【解析】【分析】利用二项展开式的通项公式可求常数项.【详解】621x x -⎛⎫ ⎪⎝⎭的展开式的通项公式为()()623616611rrrr r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令360r -=,则2r =,故常数项为()2236115T C =-=,故选:C.【点睛】本题考查二项展开中的指定项,注意利用通项公式帮助计算,本题为基础题.5.已知函数||||()x x f x e e -=-,则函数()f x ()A.是偶函数,且在(0,+∞)上单调递增B.是奇函数,且在(0,+∞)上单调递减C.是奇函数,且在(0,+∞)上单调递增D.是偶函数,且在(0,+∞)上单调递减【答案】A 【解析】【分析】由偶函数的定义判断函数()f x 的奇偶性,结合指数函数的单调性判断函数()f x 的单调性.【详解】∵||||()x x f x e e -=-∴||||||||()()x x x x f x e e e e f x -----=-=-=,∴函数||||()x x f x e e -=-为偶函数,当(0,)x ∈+∞时,1()=x x xxf x e e e e -=--,∵函数x y e =在(0,+∞)上单调递增,函数1x y e=在(0,+∞)上单调递减,∴()e e x x f x -=-在(0,+∞)上单调递增,即函数||||()x x f x e e -=-在(0,+∞)上单调递增.故选:A.6.阅读下段文字:“为无理数,若a b ==ba 为有理数;若则取无理数a =,b =,此时(22ba ====为有理数.”依据这段文字可以证明的结论是()A.是有理数B.C.存在无理数a ,b ,使得b a 为有理数 D.对任意无理数a ,b ,都有b a 为无理数【答案】C 【解析】【分析】根据给定的条件,提取文字信息即可判断作答.【详解】这段文字中,没有证明AB 错误;这段文字的两句话中,都说明了结论“存在无理数a ,b ,使得b a 为有理数”,因此这段文字可以证明此结论,C 正确;这段文字中只提及存在无理数a ,b ,不涉及对任意无理数a ,b ,都成立的问题,D 错误.故选:C 7.若点5π5πsin,cos 66M ⎛⎫⎪⎝⎭在角α的终边上,则tan2α=()A.33 B.33-C.D.【答案】C 【解析】【分析】根据三角函数定义得到tan α=.【详解】5π5πsin ,cos 66M ⎛⎫ ⎪⎝⎭,故5πcos6tan 5πsin6α==,22tan 23tan21tan 13ααα-===--故选:C.8.已知函数()=ln af x x x+,则“0a <”是“函数()f x 在区间()1,+∞上存在零点”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】把函数()f x 拆解为两个函数,画出两个函数的图像,观察可得.【详解】当0a <时,作出ln ,ay x y x==-的图像,可以看出0a <时,函数()f x 在区间()1,+∞上存在零点,反之也成立,故选C.【点睛】本题主要考查以函数零点为载体的充要条件,零点个数判断一般通过拆分函数,通过两个函数的交点个数来判断零点个数.9.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为v (单位:/m s ),鲑鱼的耗氧量的单位数为Q .科学研究发现v 与3log 100Q成正比.当1v m /s =时,鲑鱼的耗氧量的单位数为900.当2m /s v =时,其耗氧量的单位数为()A.1800 B.2700C.7290D.8100【答案】D 【解析】【分析】设3log 100Qv k =,利用当1v m /s =时,鲑鱼的耗氧量的单位数为900求出k 后可计算2m /s v =时鲑鱼耗氧量的单位数.【详解】设3log 100Q v k =,因为1v m /s =时,900Q =,故39001log 2100k k ==,所以12k =,故2m /s v =时,312log 2100Q =即8100Q =.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.10.已知各项均为整数的数列{}n a 满足()*12121,2,3,n n n a a a a a n n --==>+≥∈N ,则下列结论中一定正确的是()A.520a >B.10100a <C.151000a >D.202000a <【答案】C 【解析】【分析】依题意根据数列的递推公式可分别判断各选项,再利用各项均为整数即可判断只有C 选项一定正确.【详解】根据题意可知3123a a a >+=,又数列的各项均为整数,所以3a 最小可以取4,即34a ≥;同理可得4236a a a >+≥,所以4a 最小可以取7,即47a ≥;同理53411a a a >+≥,所以5a 最小可以取12,即512a ≥,即520a <可以成立,因此可得A 不一定正确;同理易得645619,20a a a a >+≥≥;756732,33a a a a >+≥≥;867853,54a a a a >+≥≥;978987,88a a a a >+≥≥;108910142,143a a a a >+≥≥,即10100a <不成立,B 错误;又1191011231,232a a a a >+≥≥;12101112375,376a a a a >+≥≥;131********,609a a a a >+≥≥;14121314985,986a a a a >+≥≥,151314151595,1596a a a a >+≥≥,即可得151000a >一定成立,即C 正确;显然若32000a =,则202000a <明显错误,即D 错误.故选:C第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数1ii+的虚部为________.【答案】-1【解析】【详解】试题分析:1ii 1i+=-+,所以其虚部为-1考点:复数的虚部12.函数()f x =的定义域为R ,请写出满足题意的一个实数a 的值______.【答案】1-(答案不唯一)【解析】【分析】根据函数的定义域求解即可.【详解】因为()f x =R ,所以20x a -≥在R 上恒成立,即2a x ≤,由于20x ≥在R 上恒成立,故实数a 的取值范围为(],0-∞.故答案为:1-(答案不唯一).13.已知数列{}n a 的通项公式为12n n a -=,{}n b 的通项公式为12n b n =-.记数列{}n n a b +的前n 项和为n S ,则4S =____;n S 的最小值为____.【答案】①.1-②.2-【解析】【分析】(1)由题可得1212n n n n a b c n -+==+-,根据等比数列及等差数列的求和公式可得n S ,利用数学归纳法可得3n ≤时,0n c <,4n ≥时,0n c >,进而即得.【详解】由题可知1212n n n a b n -+=+-,所以()()()()()423441712112325271122S +-++-++-++-+-==--=,()()()()1212112112321221122n n n n n n n S n -+--+-++-+++-=-=---= ,令1212n n c n -=+-,则123450,1,1,1,7c c c c c ==-=-==,当4n ≥时,0n c >,即1221n n ->-,下面用数学归纳法证明当4n =时,1221n n ->-成立,假设n k =时,1221k k ->-成立,当1n k =+时,()()()122222121123211k k k k k k -=⋅>-=+-+->+-,即1n k =+时也成立,所以4n ≥时,0n c >,即1221n n ->-,所以3n ≤时,0n c <,4n ≥时,0n c >,由当3n =时,n S 有最小值,最小值为3322132S =--=-.故答案为:1-;2-.14.已知函数()e ,,x x x af x x x a⎧<=⎨-≥⎩,()f x 的零点为__________,若存在实数m 使()f x m =有三个不同的解,则实数a 的取值范围为__________.【答案】①.0②.11,e ⎛⎫- ⎪⎝⎭【解析】【分析】利用导函数判断函数单调性,利用求解极值的方法画出函数的大致图象,分析运算即可得出结果.【详解】令()e xg x x =,可得()()1e xg x x +'=,由()0g x '=可得1x =-,当(),1x ∞∈--时,()0g x '<,此时()g x 在(),1∞--上单调递减,当()1,x ∞∈-+时,()0g x '>,此时()g x 在()1,∞-+上单调递增,因此()g x 在1x =-处取得极小值,也是最小值,即()()min 11eg x g =-=-,又()00g =,且0x <时,()10eg x -≤<,当0x >时,>0,令()h x x =-,其图象为过原点的一条直线,将()(),g x h x 的大致图象画在同一直角坐标系中如下图所示:当0a <时,如下图,在[),+∞a 上()()f x h x x ==-的零点为0,当0a =时,如下图,在[)0,∞+上()()f x h x x ==-的零点为0当0a >时,如下图,在(),a ∞-上()()e xf xg x x ==的零点为0,综上可知,()f x 的零点为0;当1a ≤-时,如下图所示,曲线()f x 与直线y m =至多有两个交点,当11ea -<<时,如下图所示,曲线()f x 与直线y m =至多有三个交点,当1ea ≥时,如下图所示,曲线()f x 与直线y m =至多有两个交点;综上可知,若使()f x m =有三个不同的解,则实数a 的取值范围为11,e ⎛⎫- ⎪⎝⎭.故答案为:0;11,e ⎛⎫- ⎪⎝⎭15.已知函数()()e 111xf x k x =----,给出下列四个结论:①当0k =时,()f x 恰有2个零点;②存在正数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有2个零点;④对任意()0,k f x <只有一个零点.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】把函数()f x 的零点个数问题,转化为函数e 1xy =-与函数()11y k x =-+的交点个数,作出图象分类讨论可得结论.【详解】令()()e 1110xf x k x =----=,得()e 111xk x -=-+,函数()f x 的零点个数,即为方程()e 111xk x -=-+的根的个数,方程()e 111xk x -=-+根的个数,即为e 1xy =-与函数()11y k x =-+的交点个数,又函数()11y k x =-+是过定点(1,1)A 的直线,作出e 1xy =-的图象如图所示,当0k =直线()11y k x =-+与函数e 1xy =-有一个交点,故()()e 111xf x k x =----有一个零点,故①错误;当()11y k x =-+在第一象限与函数e 1xy =-相切时,函数()()e 111xf x k x =----有一个零点,故②正确;函数()11y k x =-+绕着A 顺时针从1y =转到1x =时,两图象只有一个交点,故0k <时,函数()()e 111xf x k x =----只有一个零点,故③错误,④正确.故答案为:②④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.如图,在平面直角坐标系xOy 中,锐角α和钝角β的终边分别与单位圆交于,A B 两点.点A 的纵坐标是45,点B 的横坐标是513-.(1)求cos2α的值;(2)求()sin βα-的值.【答案】(1)725-(2)5665.【解析】【分析】(1)利用三角函数定义可得4sin 5α=,再由二倍角公式计算可得7cos225α=-;(2)利用同角三角函数之间的基本关系以及两角差的正弦公式计算可得结果.【小问1详解】由题可知,锐角α和钝角β的终边分别与单位圆交于,A B 两点;点A 的纵坐标是45,点B 的横坐标是513-,所以45sin ,cos 513αβ==-.即可得27cos212sin 25αα=-=-.【小问2详解】由于22sin cos 1αα+=,且π0,2α⎛⎫∈ ⎪⎝⎭,所以23cos 1sin 5αα=-=,同理由于2π12,π,sin 1cos 213βββ⎛⎫∈=-= ⎪⎝⎭,所以()56sin sin cos cos sin 65βαβαβα-=-=.17.某校举办知识竞赛,已知学生甲是否做对每个题目相互独立,做对,,A B C 三道题目的概率以及做对时获得相应的奖金如表所示.题目A B C做对的概率451214获得的奖金/元204080规则如下:按照,,A B C 的顺序做题,只有做对当前题目才有资格做下一题.[注:甲最终获得的奖金为答对的题目相对应的奖金总和.](1)求甲没有获得奖金的概率;(2)求甲最终获得的奖金X 的分布列及期望;(3)如果改变做题的顺序,最终获得的奖金期望是否相同?如果不同,你认为哪个顺序最终获得的奖金期望最大?(不需要具体计算过程,只需给出判断)【答案】(1)15(2)分布列见解析,40(元)(3)不同,按照,,A B C 的顺序获得奖金的期望最大,理由见解析.【解析】【分析】(1)甲没有获得奖金,则题目A 没有做对,从而求得对应的概率;(2)易知X 的可能取值为0,20,60,140,再根据题目的对错情况进行分析求解概率与分布列,求出期望值;(3)可以分别求出每种顺序的期望,然后比较得知.【小问1详解】甲没有获得奖金,则题目A 没有做对,设甲没有获得奖金为事件M ,则()41155P M =-=.【小问2详解】分别用,,A B C 表示做对题目,,A B C 的事件,则,,A B C 相互独立.由题意,X 的可能取值为0,20,60,140.41412(0)()1;(20)()155525P X P A P X P AB ⎛⎫===-====⨯-= ⎪⎝⎭;4134111(60)()1;(140)()52410524101P X P ABC P X P ABC ===⨯⨯-===⨯⎛⎫ ⎪⎝=⎭=⨯.所以甲最终获得的奖金X 的分布列为X02060140P 1525310110()12310206014040551010E X =⨯+⨯+⨯+⨯=(元).【小问3详解】不同,按照,,A B C 的顺序获得奖金的期望最大,理由如下:由(2)知,按照,,A B C 的顺序获得奖金的期望为40元,若按照,,A C B 的顺序做题,则奖金X 的可能取值为0,20,100,140.141(0)1;(250)1554435P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;41411(100)1;(140)5105421011142P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为110201001403613110550⨯+⨯+⨯+⨯=元;若按照,,B A C 的顺序做题,则奖金X 的可能取值为0,40,60,140.1114(0)1;(400)1212125P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;143141(60)1;(140)254102541011P X P X ==⨯⨯-===⨯⎛⨯ ⎝=⎫⎪⎭.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元;若按照,,B C A 的顺序做题,则奖金X 的可能取值为0,40,120,140.1111(0)1;(480)122432P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(120)1;(140)24024510141145P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为131040601403611110200⨯+⨯+⨯+⨯=元,若按照,,C A B 的顺序做题,则奖金X 的可能取值为0,80,100,140.1314(0)1;(800)1414245P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1141(100)1;(140)10452104111452P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为1080100140284101311200⨯+⨯+⨯+⨯=元,若按照,,C B A 的顺序做题,则奖金X 的可能取值为0,80,120,140.1311(0)1;(880)144214P X P X ⎛⎫==-===⨯-= ⎪⎝⎭;1114(100)1;(140)40425101411425P X P X ==⨯⨯-=⨯⎛⎫ ⎪⎝⎭==⨯=.故期望值为5311108010014026.401048⨯+⨯+⨯+⨯=元,显然按照,,A B C 的顺序获得奖金的期望最大.18.已知()2cos sin ,f x ax x x x a =++∈R .(1)当0a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若函数()f x 在区间ππ,22⎡⎤-⎢⎣⎦上为增函数,求实数a 的取值范围.【答案】(1)2y =(2)[)1,+∞.【解析】【分析】(1)利用导数的几何意义即可求得切线方程;(2)将()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数转化为sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,构造函数()sin cos g x x x x =-并求导得出其单调性,求出最大值可得实数a 的取值范围.【小问1详解】当0a =时,()2cos sin f x x x x =+,易知()2sin sin cos cos sin f x x x x x x x x'=-++=-可得()()00,02f f ='=,所以切线方程为2y =.【小问2详解】易知()sin cos f x a x x x=+'-由函数()f x 在区间ππ,22⎡⎤-⎢⎥⎣⎦上为增函数,可得′≥0在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,即sin cos a x x x ≥-在ππ,22⎡⎤-⎢⎥⎣⎦上恒成立,令()()ππsin cos ,sin ,,22g x x x x g x x x x ⎡⎤=-=∈-⎢⎣'⎥⎦法一:令()sin 0g x x x '==,得0x =,()(),g x g x '的变化情况如下:x π,02⎛⎫- ⎪⎝⎭0π0,2⎛⎫ ⎪⎝⎭()g x '+0+()g x所以()g x 为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.法二:当π02x -<<时,sin 0,sin 0x x x <>;当π02x ≤<时,sin 0,sin 0x x x ≥≥.综上,当ππ22x -<<时,()()0,g x g x '≥为ππ,22⎡⎤-⎢⎥⎣⎦上的增函数,()g x 最大值为π12g ⎛⎫= ⎪⎝⎭.即a 的取值范围是[)1,+∞.19.现有一张长为40cm ,宽为30cm 的长方形铁皮ABCD ,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形ABCD 的一个角剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,设长方体的底面边长为cm x ,高为y cm ,体积为()3cm V .(1)求出x 与y 的关系式;(2)求该铁皮盒体积V 的最大值.【答案】(1)21200,0304x y x x-=<≤;(2)34000cm .【解析】【分析】(1)由题意得到244030x xy +=⨯,化简得到212004x y x -=,并由实际情境得到030x <≤;(2)表达出()()3112004V x x x =-,求导得到其单调性,进而得到最大值.【小问1详解】因为材料利用率为100%,所以244030x xy +=⨯,即212004x y x -=;因为长方形铁皮ABCD 长为40cm ,宽为30cm ,故030x <≤,综上,212004x y x-=,030x <≤;【小问2详解】铁皮盒体积()()222312*********x V x x y x x x x -==⋅=-,()()21120034V x x '=-,令()0V x '=,得20,x =()(),V x V x '的变化情况如下:x ()0,2020()20,30()V x +0-()V x '()V x 在()0,20上为增函数,在()20,30上为减函数,则当20x =时,()V x 取最大值,最大值为()3311200202040040cm ⨯⨯-=.20.已知函数1e ()x f x x-=.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间;(3)当211x x >>时,判断21()()f x f x -与2122x x -的大小,并说明理由.【答案】(1)230x y +-=;(2)单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞;(3)212122()()f x x x f x -->,理由见解析.【解析】【分析】(1)求出函数()f x 的导数,利用导数的几何意义求出切线方程.(2)利用导数求出函数()f x 的单调区间.(3)构造函数2()(),1g x f x x x=->,利用导数探讨函数单调性即可判断得解.【小问1详解】函数1e ()x f x x -=,求导得12(1)e ()xx f x x---=',则()12f '=-,而(1)1f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为12(1)y x -=--,即230x y +-=.【小问2详解】函数()f x 的定义域为(,0)(0,)-∞+∞ ,且12(1)e ()x x f x x---=',当1x <-时,()0f x '>,当10x -<<或0x >时,()0f x '<,所以()f x 的单调递增区间为(,1)∞--,单调递减区间为(1,0)-和(0,)+∞.【小问3详解】当211x x >>时,212122()()f x x x f x -->,证明如下:令2()(),1g x f x x x =->,求导得12(1)e 2()x x g x x-'--+=,令1()(1)e 2,1x h x x x -=--+>,求导得1()e 0x h x x -='>,函数()h x 在(1,)+∞上单调递增,则()(1)0h x h >=,即()0g x '>,函数()g x 在(1,)+∞上为增函数,当211x x >>时,21()()g x g x >,所以212122()()f x x x f x -->.21.已知项数为()*2m m N m ∈≥,的数列{}n a 满足如下条件:①()*1,2,,n a Nn m ∈= ;②12···.m a a a <<<若数列{}n b 满足()12*···1m n n a a a a b N m +++-=∈-,其中1,2,,n m = 则称{}n b 为{}n a 的“伴随数列”.(I )数列13579,,,,是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(II )若{}n b 为{}n a 的“伴随数列”,证明:12···m b b b >>>;(III )已知数列{}n a 存在“伴随数列”{}n b ,且112049m a a ==,,求m 的最大值.【答案】(I )不存在,理由见解析;(II )详见解析;(III )33.【解析】【分析】(I )根据“伴随数列”的定义判断出正确结论.(II )利用差比较法判断出{}n b 的单调性,由此证得结论成立.(III )利用累加法、放缩法求得关于m a 的不等式,由此求得m 的最大值.【详解】(I )不存在.理由如下:因为*413579751b N ++++-=∈-,所以数列1,3,5,7,9不存在“伴随数列”.(II )因为*11,11,1n n n n a a b b n m n N m ++--=≤≤-∈-,又因为12m a a a <<< ,所以10n n a a +-<,所以1101n n n n a a b b m ++--=<-,即1n n b b +<,所以12···m b b b >>>成立.(III )1i j m ∀≤<≤,都有1j i i j a a b b m --=-,因为*i b N ∈,12m b b b >>> ,所以*i j b b N -∈,所以*11204811m m a a b b N m m --==∈--.因为*111n n n n a a b b N m ----=∈-,所以11n n a a m --≥-.而()()()()()()111221111m m m m m a a a a a a a a m m m ----=-+-++-≥-+-++- ()21m =-,即()2204911m -≥-,所以()212048m -≤,故46m ≤.由于*20481N m ∈-,经验证可知33m ≤.所以m 的最大值为33.【点睛】本小题主要考查新定义数列的理解和运用,考查数列单调性的判断,考查累加法、放缩法,属于难题.。
浙江省杭州市采荷中学2024--2025学年上学期七年级期中考试数学试卷一、单选题1.100-的相反数是()A .100B .100-C .100±D .200-2.某种食品保存的温度是-2±2℃,以下几个温度中,适合储存这种食品的是()A .1℃B .-8℃C .4℃D .-1℃3.作为第19届亚运会的主办城市,杭州凭借其独特的文化魅力和自然景观吸引了众多游客.据浙江省文旅厅公开数据,亚运会期间杭州的游客量高达843.2万人次,其中“843.2万”用科学记数法表示应为()A .28.43210´B .68.43210´C .78.43210´D .4843.210´4.在2-,3.14,10%,1.5,227中分数的个数是()A .5个B .4个C .3个D .2个5.已知212m a b +-和243n a b 是同类项,则2m n -的值为()A .1B .3C .5D .76.下列计算正确的是()A .523a a -=B .235a b ab +=C .2325a a a +=D .32ab ba ab-+=-7的值在()A .3和4之间B .4和5之间C .5和6之间D .6和7之间8.在数轴上,若点A 和点B 所表示的数互为相反数,点A 在数轴的右边,并且和原点的距离为2,那么点B 表示的数是()A .2B .-2C .2和-2D .-39.当||5a =,||7b =,且||a b a b +=+,则a b -的值为()A .12-B .2-或12-C .12±D .2±10.小宜跟同学在餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为8份意大利面,m 杯饮料,n 份沙拉()08n m <<<,则他们点了()份A 餐.A 餐:一份意大利面B 餐:一份意大利面加一杯饮料C 餐:一份意大利面加一杯饮料和一份沙拉A .8m-B .8n-C .8m n-+D .8m n--二、填空题11.16的算术平方根是.12.若把单项式2x y -的系数记为a ,次数记为b ,则b a 的值为.13.某花店鲜花标价为:康乃馨a 元/支,向日葵的单价比康乃馨的单价的2倍少5元,则向日葵的单价为元/支(用含a 的代数式表示).14.已知23x y +=,则361x y ++=15,4a b ,则b =,||a b -=16.有三个互不相等的有理数,既可表示为1,a b +,a ;也可表示为0,ba,b 的形式,则ab =三、解答题17.在下面的数轴上表示下列各数,并用“<”把这些数连接起来.3-;3.5;122⎛⎫-- ⎪⎝⎭;|1|--.18.计算:(1)()428⨯-+--(2)()23112442⎛⎫⨯--- ⎪⎝⎭19.我国“华为”公司是世界通示领域的龙头企业,某款手机后置摄像头模组如图所示,其中大圆的半径为5r ,中间小区的半径为2r ,4个半径为r 的高清圆形镜头分布在两系之间.(1)请用含r 的式子表示图中阴影部分的面积;(2)当2r mm =时,求图中阴影部力的面积(π取3)20.已知实数a ,b ,c ,d ,e ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求12225c d ab e +++的值.21.外卖送餐为我们生活带来了许多便利,某学习小组调查了一名外卖小哥一周的送餐情况,规定送餐量超过40单(送一次外卖称为一单)的部分记为“+”,低于40单的部分记为“-”,如表是该外卖小哥一周的送餐量:注:为提高外卖小哥收入,现有送单补贴方案如下:每天送餐量不超过40单的部分,每单补贴4元;超过40单位不超过50单的部分,每单补贴6元;超过50单的部分,每单补贴8元.例如:周二送单补贴为,40⨯4+4⨯6=184(元)星期一二三四五六日送餐量(单位:单)3-4+5-14+8-7+12+(1)求外卖小哥周四的送单补贴为多少?(2)外卖小哥每天的工资由底著30元加上送单补贴构成,求该外卖小哥这一周工资收入多少元?22.观察表格并回答下列问题.(1)表格中x =________,y =________.(2)2.45≈≈________;0.03464≈34.64≈,求m 的值.23.每年12月份陶山甘蔗进入销售旺季.某水果店购进陶山甘蔗60箱,每箱成本8元,标价20元.在售出一部分后,准备进行优惠促销,小美和小乐分别设计了以下方案:促销方案小美每箱15元小乐每箱打7折(1)按小乐的方案,若促销前卖出20箱,则全部售出后可以获得多少利润?(2)按小美的方案,设促销前卖了x 箱,用含x 的代数式表示售完陶山甘蔗所获得利润.(3)按原价售出30箱后,该水果店决定进行组合促销;剩下甘蔗3箱打包成一组,打折出售,每组售出时还赠送1个小礼品.为了使总利润为600元,请你在给出的表格中设计一个销售方案:标价折扣现价礼品成本甘蔗20元/箱折元/箱6元/个24.如图,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c .b 是最小的正整数,且a 、b 满足()2270a c ++-=.(1)填空:a =,b =.(2)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为A ,点A 与点C 之间的距离表示为AC ,点B 与C 之间的距离表示为BC .则BC =.(用含t 的代数式表示)(3)请问:23AB BC -的值是否随着时间t 的变化而改变?若改变,请说明理由;若不变,请求其值.四、填空题25.已知2023,a a -+则262023a +-=26.数学兴趣小组在合作学习过程中,获得知识的同时,也提出新的问题.例如:根据n a b =,知道a 和n 的值,可以求b 的值,如果知道a 和b 的值,可以求n 的值吗?他们为此进行了研究,并规定:若n a b =,那么f a b n =(,).例如:328=,则283f =(,).若83f a =(,),43f b =(,),则,f a b =()五、解答题27.【材料阅读】通过学习数轴和绝对值之后,我们知道,|52|-表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|52|+可以看作|5(2)|--,表示5与2-的差的绝对值,也可理解为5与2-两数在数轴上所对应的两点之间的距离.小亮决定对此进行变化应用:(1)应用一:已知如图,点A 在数轴上表示为2-,数轴上任意一点B 表示的数为x ,则AB 两点的距离可以表示为,(2)应用二:若点B 表示的整数为x ,则当x 为时,|4|x +与|2|x -的值相等;(3)应用三:|5||2|x x ++-表示数轴上有理数x 所对应的点到5-和2所对应的两点距离之和,应用这个知识,请你写出|5||2|x x ++-的最小值为,此时所有符合条件的整数x 的和为(4)应用四:求|1||2||3||1997|x x x x -+-+-+⋯+-的最小值为。
辽宁省大连市滨城高中联盟2024-2025学年高一上学期10月份考试数学试卷一、单选题1.已知集合{}2,1,1,3,5A =--,集合{}250,B x x x =-+>∈Z ,则图中阴影部分所表示的集合为( )A .{}2,1,1--B .{}0,3,5C .{}0,1D .{}0,22.若a <0,b <0,则p =2b a +2a b与q =a +b 的大小关系为( )A .p <qB .p ≤qC .p >qD .p ≥q3.命题“2R,10x x ax ∃∈-+<”为假命题的一个必要不充分条件是( ) A .[2,2]a ∈- B .(2,1)a ∈- C .[2,3]a ∈-D .(2,3)a ∈-4.下列不等式正确的是( )A .已知14a b ≤+≤,12a b -≤-≤,则42a b -的取值范围是[]2,10-B .若11a b>,则a b < C .若22ac bc ≥,则a b ≥ D .若0a >,0b >,且a b <,则a m ab m b+>+ 5.若关于x 、y 的方程组2204210y kx y x y --=⎧⎨--+=⎩的解集中只有一个元素,则实数k 的值为( )A .1B .0或1C .1-D .0或1-6.当一个非空数集G 满足“如果,a b G ∈,则a b +,a b -,ab G ∈,且0b ≠时,aG b∈”时,我们称G 就是一个数域,以下四个数域的命题:①0是任何数域的元素:②若数域G 有非零元素,则2024G ∈;③集合{}3,Z P xx k k ==∈∣是一个数域 ④有理数集是一个数域 其中真命题的个数为( ) A .1B .2C .3D .47.已知关于x 的不等式210ax bx -+>的解集为()2,,m m ⎛⎫-∞⋃+∞ ⎪⎝⎭,其中0m >,则1b m +的最小值为( )A .4B .C .2D .18.对于问题“已知关于x 的不等式20ax bx c ++>的解集为()2,4-,解关于x 的不等式20ax bx c -+>”,给出一种解法:由20ax bx c ++>的解集为()2,4-,得()()2a xb xc -+-+>的解集为()4,2-,即关于x 的不等式20ax bx c -+>的解集为()4,2-,类比上述解法,若关于x 的不等式320ax bx cxd +++>的解集为()()1,48,+∞U ,则关于x 的不等式320842a b cd x x x-+-+>的解集为( ) A .()(),168,2-∞---U B .()(),42,1-∞---U C .111,,2816⎛⎫⎛⎫-∞--- ⎪ ⎪⎝⎭⎝⎭UD .111,,02816⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭U二、多选题9.已知正数x ,y 满足2x y +=,则下列选项正确的是( ) A .11x y+的最小值是2B .xy 的最小值是1C .22x y +的最小值是4D .()1x y +的最大值是9410.下面命题正确的是( )A .对任意的x ∈R ,2214x a x a -+-+≥恒成立,则1a ≤-或3a ≥B 2的最小值是2C .已知a ,b ,(),0c ∈-∞,则1a b +,4b c +,9c a +至少有一个不大于4-D .设a ,b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件11.设非空集合}{S x m x n =≤≤满足:当x ∈S 时,有x 2∈S .给出如下命题,其中真命题是( )A .若m =1,则{}|1S x x =≥B .若12m =-,则14≤n ≤1C .若12n =,则0m ≤ D .若n =1,则10m -≤≤三、填空题12.命题“1x ∀≤,20x x ->”的否定是.13.关于x 的一元二次方程()2640x ax a -+-=的两个正实数根分别为12,x x ,且1228x x +=,则a 的值是.14.若1a b >>,且35a b +=,则141a b b +--的最小值为,2ab b a b --+的最大值为.四、解答题15.已知集合4110A xx ⎧⎫=≤-⎨⎬-⎩⎭,{}221B x a x a =+<<+. (1)当3a =时,求A B ⋂;(2)若A B A =U ,求实数a 的取值范围.16.已知a ,b 为正实数,且满足216ab a b ++=. (1)求ab 的最大值; (2)求a b +的最小值; (3)写出1112+++a b 的最小值(直接写出结果即可). 17.(1)已知[]0,2a ∀∈时,不等式()231102ax a x a +++-<恒成立,求x 的取值范围.(2)已知存在[]2,2x ∈-,使不等式2320x mx m ++-≤成立,求m 的取值范围. 18.若实数x 、y 、m 满足x m y m -<-,则称x 比y 接近m , (1)2x 比0接近1,求x 的取值范围;(2)判断:“x 比y 接近0”是“22x yy x+>-”的什么条件(充分不必要条件,必要不充分条件,充要条件,既不充分又不必要条件),并加以证明.19.已知函数()222,R y ax a x a =-++∈(1)求不等式0y ≥的解集;(2)若存在0m >使关于x 的方程()21221ax a x m m-++=++有4个不同的实根,求实数a 的取值范围。
J12共同体联盟校学业质量检测2024(初一上)数学试题卷亲爱的同学:欢迎参加考试!答题时,请注意以下几点:1.全卷共4页,有三大题,24小题,满分120分。
考试时间120分钟。
2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效。
3.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
祝你成功!一、选择题(本题有10小题,每小题3分,共30分。
每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.在实数-1,0,√3,12中,属于无理数的是( ) A.-1 B.0 C .√3 D .12 2.2024年法国巴黎奥运会最大场馆是巴黎圣母院体育场,该场馆可容纳约77600人,其中77600用科学记数法表示为( )A.0.776×105B.7.76×104C.77.6×103D.776×1023.某日杭州市最高气温为11℃,最低气温为-2℃,则该日杭州市的最大温差为( )A.13℃B.11℃C.9℃D.7℃4.9的平方根是( )A.9B.±9C.3D.±35.下列计算正确的是( )A.3(a+b )=3a+bB.-a 2b+b 2a =0C.x 2+2x 2=3x 2D.2a+3b =5ab6.下列说法:① 若两个数乘积为1,则这两个数必互为倒数;② 任何正数都有两个互为相反数的平方根;③ 立方根等于本身的数有1,0,-1;④ 一个数的算术平方根一定比原数小.其中错误的是( )A.①B.②C.③D.④7.一条数轴上有两点A 与B ,已知点A 到原点O 的距离为3个单位,点B 在点A 的右侧且到点A 的距离为5个单位,则点B 所表示的数可能是( )A.8B.2C.-8或2D.8或28.某辆新能源车每次充电都会把电充满,下表记录了该车相邻两次充电时的情况。
(注:“累计里程“指汽车从出厂开始累计行驶的路程)在这段时间内,该车每100千米平均耗电量为( )A .403度 B.12.5度 C.8度 D.7.5度 充电时间 充电量(度) 充电时的累计里程(千米) 2024年9月30日 10 35000 2024年10月2日25 352009.如图,数轴上从左到右的三个点A,B,C把数轴分成了I,II,II,IV四个部分,点A,B,C对应的数分别是a,b,c。
重庆市第一中学2024-2025学年八年级上学期开学考试数学试题一、单选题1.下列各数中,是无理数的是( )A .75 B C .0 D .3-2.第33届夏季奥运会将于2024年7月26日至8月11日在法国巴黎举行,下列巴黎奥运会的项目图标中,是轴对称图形的是( )A .B .C .D .3.下列运算正确的是( )A .64a a a ÷=B .()32624a a =C .236a a a ⋅=D .22243a a a -= 4.下列事件是必然事件的是( )A .黄河入海流B .白发三千丈C .鱼戏莲叶间D .千山鸟飞绝 5.一个正方形的面积是27,估计这个正方形的边长在( )A .3到4之间B .4到5之间C .5到6之间D .6到7之间 6.小南准备观察液体中的扩散现象,他先用水管匀速在空脸盆内注满水,然后将墨水滴在水面上,观察到墨水慢慢散开.为了验证墨水扩散速度与水的运动有关,小南在脸盆底部扎了一个口匀速放水.在整个过程中,能大致表示脸盆内水面高度与时间的关系图象是( ) A . B .C .D .7.下列说法正确的是( )A .等腰三角形一边上的中线也是这条边上的高B .面积相等的两个三角形全等C .三角形三条角平分线的交点一定在三角形的内部D .两直线平行,内错角互补8.如图,某段河流的两岸是平行的,小开想出了一个不用涉水过河就能测得河的宽度的方案,首先在岸边点B 处,选对岸正对的一棵树A ,然后沿河岸直行20m 到达树C ,继续前行20m 到达点D 处,再从点D 处沿河岸垂直的方向行走.当到达树A 正好被树C 遮挡住的点E 处时,停止行走,此时DE 的长度即为河岸AB 的宽度.小开这样判断的依据是( )A .SSSB .SASC .AASD .ASA9.如图1,90ACB ∠=︒,4AC =,3BC =,以这个直角三角形两直角边为边作正方形.图2由图1的两个小正方形向外分别作直角边之比为4:3的直角三角形,再分别以所得到的直角三角形的直角边为边长作正方形,…,按此规律,则图6中所有正方形的面积和为( )A .200B .175C .150D .12510.如图,在Rt ABC △中,90ABC ∠=︒,BD 平分ABC ∠交AC 于点D ,点E 为BC 边上靠近点C 的三等分点,且AB BE =,若阴影部分面积为4,则ABC V 的面积为( )A .6B .8C .10D .1211.如图,已知AB CD ∥,BAC ∠的角平分线与CD 交于点E ,F 为射线AB 上的一个动点,连接EF ,过点C 作CG EF ⊥,且FG EG =.若AEF α∠=,则ECG ∠的度数为( )A .452α︒- B .30α︒+ C .45α︒- D .2α12.在整式()231a -,()254a a -+,()28419a a -+前添加“+”或“-”,先求和,再求和的绝对值的操作,称为“优绝对值”操作,将操作后的化简结果记为M .例如:()()()22222231548419618618618a a a a a a a a ----+--+=--=+=+,则2618M a =+,当1a =时,M 的化简求值结果为:2611824M =⨯+=.下列说法正确的个数为( ) ①至少存在一种“优绝对值”操作,使得操作后的化简结果为常数;②把所有可能的“优绝对值”操作后的式子化简,共有8种不同的结果;③在所有可能的“优绝对值”操作中,若操作后的化简求值的结果为17,则满足条件的a 有且只有一个,此时14a =-. A .0 B .1 C .2 D .3二、填空题13.世界上最小的鱼是生活在澳大利亚东海岸的胖婴鱼,它的质量约为0.0000012千克,将数据0.0000012用科学记数法表示为.14x 的取值范围为15.已知ABC V 两边长分别为4与5,第三边的长为奇数,则第三边的长的最大值为.16.若3a ,小数部分为b ,则代数式()2b ⋅的值是.17.如图,将长方形ABCD 沿AE 折叠,点D 恰好落在BC 边的F 点上,已知4CF =,8AB =,则AD =.18.如图,在等边ABC V 中,点D 为线段AB 上一点,4BD AD =,连接CD ,点E 为线段AC下方一点,连接CE ,且C D C E =,BDC ACE ∠=∠,连接BE 交AC 于点M ,点F 为线段AC延长线上一点,AD CF =,连接EF .已知2AD =,则CM 的长为.19.如图,90A C ∠=∠=︒,且4AB AC ==,D ,E 分别为射线AC 和射线CF 上两动点,且=AD CE ,当BD BE +有最小值时,则BDE ∆的面积为.20.对于任意一个三位自然数M ,若它的各数位上的数字均不为0,且满足十位数字与百位数字之差等于个位数字与十位数字之差的2倍,则称M 为“2阶等差中项数”,将这个三位自然数M 的百位数字和个位数字互换位置,得到M ',规定()99M M F M '-=.已知A 、B 均为“2阶等差中项数”,其中31010A x y =++,10070B m n =++(18x ≤≤,1y ≤,m ,9n ≤,且x ,y ,m ,n 均为正整数).令()()F A k F B =则 k 用 y 和n 表示为 ; 当()()303F A F B -- 为完全平方数时,则满足条件的所有 k 之和为 .三、解答题21.计算:(1)2202401(1)1)3-⎛⎫-+-- ⎪⎝⎭; (2)()3263272372a a a a a a ⋅-⋅÷+;(3)22(25)(25)m n m n --+;(4)(2122.先化简,再求值:()()()()24332253a b a b a b a b b a ⎡⎤-+--++÷⎣⎦,其中4a =,23b =-.23.如图,已知在ABC V 中,90BAC ∠=︒,AD BC ⊥于点D .(1)尺规作图:作ABC ∠的平分线交AC 于点E ,交AD 于点F ;(要求:保留作图痕迹, 不写作法,不写结论)(2)在(1)的条件下,求证: AFE AEF ∠=∠.AD BC ⊥Q90ADB ∴∠=︒∴①90BFD +∠=︒又 BFD ∠=Q ②FBD ∴∠+③90=︒90BAC ∠=︒QABF ∴∠+④90=︒BF Q 平分ABC ∠ABF FBD ∴∠=∠(⑤)∴AFE AEF ∠=∠24.“五月五是端阳,插艾叶戴香囊,吃粽子撒白糖,龙船下水喜洋洋.”端午是我国传统节日,也是集拜神祭祖,祈福辟邪,欢庆娱乐和饮食为一体的民俗大节.某校为了更好地调动学生参与端午活动的积极性,采取抽样调查的方法,调查了学生感兴趣的四项端午习俗项目:插艾叶,戴香囊,吃粽子,赛龙舟,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了______名学生,扇形统计图中m 的值为______;(2)补全条形统计图;(3)若该校共有3000名学生,请估计该校对插艾叶项目感兴趣的学生有多少人?25.某花店分别以22元/盆和30元/盆的价格两次购进甲、乙两种绿植.花店第一次购进两种绿植共花费4600元,其中甲种绿植盆数的2倍比乙种绿植盆数的3倍少40盆.(1)请计算该花店第一次分别购进甲、乙两种绿植各多少盆.(2)该花店将第一次购进的甲、乙两种绿植分别以28元/盆和40元/盆的价格全部售出,则卖出后一共可获得利润________元.(3)该花店第二次购买这两种绿植时进价不变,其中甲种绿植盆数是第一次的2倍,乙种绿植盆数不变.甲种绿植仍按原售价销售,乙种绿植打折销售.第二次甲、乙两种绿植销售完以后获得的利润比第一次获得的利润多280元,则第二次乙种绿植是按原售价打几折销售的?26.在等腰Rt ABC △中,90ACB ∠=︒,AC BC =,点D 是BC 上的任意一点,连接AD ,过点C 作CE AD ⊥交AD 于点E .(1)如图1,若15BAD ∠=︒,CE 2CD =,求ACD V 的面积;(2)如图2,过C 作CF BF ⊥,且C F C E =,连接FE 并延长FE 交AB 于M ,连接BF ,求证:AM BM =.27.如图1,已知八边形ABCDEFGH 相邻的两边互相垂直,且AB AH =,DC DE =,动点P 从八边形顶点A 出发,沿着八边形的边以每秒cm a 的速度逆时针运动,当P 运动到点E 时调头,以原来的速度原路返回,到A 点处停止运动.PAH V 的面积为()2cm S ,运动时间为t (秒),S 与t 的图象如图2所示,请回答以下问题:(1)AB =______cm ,DE =______cm ,a =______cm/s ;(2)当点P 第一次在边CD 上运动时,求S 与t 的关系式;(3)点P 在返回过程中,当时间t 为何值时,AHP △为等腰三角形?请直接写出t 的值. 28.已知ABC V 中,AB AC =,120BAC ∠=︒,E 为AC 边上的中点,取平面上一点D ,连接CD ,使得ACD BAC ∠=∠.连接AD 交BE 于点F ,60AFB ∠=︒.(1)如图 1,求证:CD CE =;(2)如图 2,延长BE 至点G ,使得EG FD =,连接CG ,CF ,求证:3BF AF =;(3)如图 3,若P 为直线BE 上一点,连接AP ,在AP 左侧作等边APQ △,连接BQ ,若4AB =,请直接写出BQ 的最小值.。
2024-2025学年八年级数学上学期期中测试卷(一)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:(北师版)八年级上册第一章~第四章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.实数16的平方根是( )A.4B.-4C.±4D.16【答案】C【详解】分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.详解:∵(±4)2=16,∴实数16的平方根是±4.故选C.点睛:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.下列4个数中,3.1415926,22,π7C.πDA.3.1415926B.227故选:C .【点睛】本题主要考查了无理数的实数的分类,熟练地掌握无理数的定义是解题的关键.常见的无理数有:含π的数、开不尽方的数、有规律但是不循环的数.3.下列运算中正确的是( )A B .2+C .2=12D =−24.下列各组数据中的三个数,可以作为直角三角形三边长的是( )A .1,2,3B .2,4,7C .6,8,10D .13,14,155.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为()A.2m B.3m C.3.5m D.4m6.在平面直角坐标系中,点5,−2所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【分析】根据各象限内的点的坐标符号规律即可得.【详解】解:因为点5,−2的横坐标为5>0,纵坐标为−2<0,所以点5,−2所在的象限是第四象限,故选:D.【点睛】本题考查了点所在的象限,熟练掌握各象限内的点的坐标符号规律是解题关键.7.关于直线l:y=−2x+4,下列说法不正确的是()A.函数的图象经过第一、二、四象限B.y随x的增大而减小C.函数的图象是由y=−2x的图象向上平移4个单位长度得到的D.若A(x1,y1),B(x2,y2)两点在该函数图象上,且x1<x2,则y1<y2【答案】D【分析】由k=−2<0,b=4>0,可得图象经过一、二、四象限,y随x的增大而减小,再分别求解一次函数与坐标轴的交点坐标,从而可得答案.【详解】解:∵y =−2x +4,k =−2<0,b =4>0,∴图象经过一、二、四象限,y 随x 的增大而减小,故A ,B 不符合题意;∵y =−2x +4函数的图象是由y =−2x 的图象向上平移4个单位长度得到的,故C 不符合题意;当x =0时,y =4,∴A(x 1,y 1),B(x 2,y 2)两点在该函数图象上,且x 1<x 2,则y 1>y 2,故D 符合题意;故选:D .【点睛】本题考查的是一次函数的图象与增减性,一次函数与坐标轴的交点坐标,熟记一次函数的性质是解本题的关键.8.一次函数y =kx +b 与y =x−2的图象如图所示,则关于x ,y 的方程组y =kx +b y =x−2 的解是( )A .x =4y =2B .x =4y =−2C .x =2y =1D .x =2y =−1【答案】A 【分析】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.先利用y =x−2确定交点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:对于y =x−2,当x =4时,y =4−2=2,∴两直线交点坐标为(4,2),∴方程组y =kx +b y =x−2 的解x =4y =2 ,故选:A .9.若kb >0,则正比例函数y =kx 与一次函数y =bx +k 在同一坐标系中的图象可能是( )A .B .C .D .【答案】A 【分析】本题考查一次函数的图象,解答本题的关键是明确一次函数的性质,由kb >0,得k 、b 同号,再分k >0,b >0及k <0,b <0,两种情况讨论即可得答案.【详解】解:∵kb >0,∴k 、b 同号,若k >0,b >0,y =kx 图象经过第一、三象限,y =bx +k 经过第一、二、三象限,若k <0,b <0,y =kx 图象经过第二、四象限,y =bx +k 经过第二、三、四象限,只有选项A 符合,故选:A .10.如图,一次函数交x 轴于点A (4,0),交y 轴于点B (0,3),过点A 作AC ⊥AB ,且AC =AB .连接BC ,当点C在第一象限时,直线BC 的解析式为( )A .y =17x +3B .y =16x +3C .y =15x−3D .y =14x +3【答案】A【分析】根据点A 和B 的坐标求出线段OA 和OB 的长,过点C 作CD ⊥x 轴于D ,由全等三角形的判定可得出△ABO≌△CAD ,由全等三角形的性质可得AD =OB =3,CD =OA =4,从而求出点C 的坐标,继而可求出直线BC 的解析式.【详解】过点C 作CD ⊥x 轴于D ,二、填空题(本题共6小题,每小题3分,共18分.)11.若电影院的5排3号记为(5,3),则4排7号记为.【答案】(4,7)【分析】根据题意明确对应关系,排在前,号在后,然后进行分析解答.【详解】解:电影院中的5排3号记为(5,3),则4排7号记为(4,7).故答案为:(4,7).【点睛】本题主要考查坐标确定位置,掌握在平面中确定一个点的位置需要知道纵坐标和横坐标两个条件.12.如图,已知RtΔABC中,∠C=90°,BC=20,AC=15,CD是斜边AB上的高,求AD的长度为.13.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式.【答案】y=﹣x+3【分析】将点(1,2)代入一次函数解析式为y=kx+b,得到k+b=2,又因为y随x的增大而减小,可得出k小于0,取k=-1,可得出b=3,确定出满足题意的一次函数解析式,本题答案不唯一.【详解】解:设一次函数的解析式为y=kx+b,将x=1,y=2代入得:k+b=2,又此一次函数y随x的增大而减小,∴k<0,若k=-1,可得出b=3,则一次函数为y=-x+3.故答案为y=-x+3【点睛】此题考查了一次函数的性质,一次函数y=kx+b(k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.此外本题的答案不唯一,只要满足k为负数,且k+b=2即可.14.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞m.15.如图,矩形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则DF=.16.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为.【答案】(21008,21009)【分析】根据一次函数图象上点的坐标特征可得出点A1、A2、A3、A4、A5、A6、A7、A8等的坐标,根据坐标的变化即可找出变化规律“A4n+1(22n,22n+1),A4n+2(−22n+1,22n+1),A4n+3(−22n+1,−22n+2),A4n+4(22n+2,−22n+2)(n为自然数)”,依此规律结合2017=1008×2+1即可找出点A2017的坐标.【详解】由图可知:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∵2017=504×4+1,∴点A2017在第一象限,∵2017=1008×2+1,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案是:(21008,21009)【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及规律型中点的坐标,根据坐标的变化找出变化规律是解题的关键.三.解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(8分)求下列各式中的x:(1)1(x−1)3=−4;2(2)(2x+1)2=9.题的关键.18.(8分)计算(2)(3+÷19.(8分)平面直角坐标系中,△ABC各顶点坐标分别为A0,1、B2,0、C4,3.(1)若△A′B′C′与△ABC关于y轴对称,请在平面直角坐标系中画△A′B′C′;(2)△A′B′C′的面积是________;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.【答案】(1)见解析(2)4(3)P10,0或−6,0【分析】本题考查了作轴对称图形、三角形的面积、坐标与图形,熟练掌握以上知识点并灵活运用,采用数形结合的思想是解此题的关键.(1)根据轴对称的性质得出点A、B、C的对应点A′、B′、C′,再顺次连接即可;(2)利用割补法求三角形面积即可;(3)根据三角形的面积求出BP=8,进而即可得出点P的坐标.【详解】(1)解:△A′B′C′如图所示:;20.(8分)如图,直线y=−3x+6交x轴和y轴于点A和点B,点C(0,−3)在y轴上,连接AC.(1)求点A和点B的坐标;(2)若点P是直线AB上一点,若△BCP的面积为18,求点P的坐标;【答案】(1)点A坐标为(2,0),点B坐标为(0,6)(2)点P的坐标为(4,−6)或(−4,18)【分析】本题考查一次函数图像上点的坐标特征,熟知一次函数的图像和性质是解题的关键.(1)根据坐标轴上的点的坐标特征即可解决问题.(2)由△BCP的面积为18可求出点P的横坐标,据此可解决问题.【详解】(1)将y=0代入y=−3x+6得,−3x+6=0,解得x=2,∴点A坐标为(2,0).将x=0代入y=−3x+6得,21.(8分)如图,在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H,(A,H,B在一条直线上),并修一条路CH.测得CB=2千米,CH=1.6千米,HB=1.2千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求原来的路线AC的长.22.(10分)2022年春节,某地连续14天进行了3次全员核酸检测.某次,甲乙两家医院对A、B两个小区居民进行检测,在整个检测过程中,检测的人数y(人)与检测时间x(分)的对应关系如图所示:(1)两家医院共检测______人,甲乙两家医院检测的速度差是______.(2)求出两家医院的y与x的函数关系式;(3)甲医院开始检测多长时间两家医院检测人数相差200人?【答案】(1)6000,8人/分(2)y甲=20x−1000;y乙=12x(3)甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【分析】(1)由图象直接可得答案;(2)在图象上找两点或一点,利用待定系数法可得答案;(3)有甲检测人数比乙多200和乙检测人数比甲多200两种情况,列出含绝对值的方程即可解得答案.【详解】(1)解:两家医院共检测3000+3000=6000(人),甲医院速度是3000÷(200−50)=20(人/分),乙医院速度是3000÷250=12(人/分),∴甲乙两家医院检测的速度差是8(人/分),故答案为:6000,8人/分;(2)解:设y 甲=kx +b ,将(50,0),(200,3000)代入得:50k +b =0200k +b =3000 ,解得k =20b =−1000,∴y 甲=20x−1000;设y 乙=k′x ,将(250,3000)代入得:250k ′=3000,解得k ′=12,∴y 乙=12x ;所以甲医院的y 与x 的函数关系式为:y =20x−1000;乙医院的y 与x 的函数关系式为:y =12x ;(3)解:根据题意得:|20x−1000−12x |=200,解得x =100或x =150,∴x−50=50或x−50=100,答:甲医院开始检查后50分钟或100分钟,两家医院检测人数相差200人.【点睛】本题考查一次函数的应用,解题的关键是正确识图,熟练应用待定系数法列出函数关系式.23.(10简:2−12=以上这种化简的步骤叫做分母有理化.也可以用如下方法化简.(1)请化简:2;(2)选择合适的方法化简1(n 为正整数);(3)++++⋯+24.(12分)如图,在平面直角坐标系中,直线l1:y=kx+b(k≠0)与直线l2:y=x交于点A(a,2),与y轴交于点B(0,5),与x轴交于点C.(1)求直线l1的函数表达式;(2)在y轴上存在一点P,使得S△AOP=S△AOC,求出点P的坐标;(3)点E为直线l1上的动点,过点E作x轴的垂线,交于l2点F,点H为y轴上一动点,且△EFH为等腰直角三角形,求满足条件的点E的坐标.。