八下 分式 第2课时 分式的基本性质(1) 含答案
- 格式:doc
- 大小:124.00 KB
- 文档页数:3
分式的概念和性质(提高)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0 的条件. 2.掌握分式的基本性质,并能利用分式的基本性质将分式恒等变形,进而进行条件计算.【要点梳理】【高清课堂403986 分式的概念和性质知识要点】要点一、分式的概念A 一般地,如果A、B 表示两个整式,并且B 中含有字母,那么式子A叫做分式. 其中AB叫做分子,B 叫做分母.要点诠释:(1)分式的形式和分数类似,但它们是有区别的. 分数是整式,不是分式,分式是两个整式相除的商式. 分式的分母中含有字母;分数的分子、分母中都不含字母.(2)分式与分数是相互联系的:由于分式中的字母可以表示不同的数,所以分式比分数更具有一般性;分数是分式中字母取特定值后的特殊情况.(3)分母中的“字母”是表示不同数的“字母” ,但π表示圆周率,是一个常数,不是字母,如a是整式而不能当作分式.(4)分母中含有字母是分式的一个重要标志,判断一个代数式是否是分式2不能先化简,如x y是分式,与xy 有区别,xy 是整式,即只看形式,x不能看化简的结果.要点二、分式有意义,无意义或等于零的条件1. 分式有意义的条件:分母不等于零.2. 分式无意义的条件:分母等于零.3. 分式的值为零的条件:分子等于零且分母不等于零.要点诠释:(1)分式有无意义与分母有关但与分子无关,分式要明确其是否有意义,就必须分析、讨论分母中所含字母不能取哪些值,以避免分母的值为零.(2)本章中如果没有特殊说明,所遇到的分式都是有意义的,也就是说分式中分母的值不等于零.(3)必须在分式有意义的前提下,才能讨论分式的值.要点三、分式的基本性质分式的分子与分母同乘(或除以)一个不等于0 的整式,分式的值不变,这个性质叫做A A M A A M分式的基本性质,用式子表示是: A A M,A A M(其中M是不等于零的整式).B B M B B M要点诠释:(1)基本性质中的A、B、M表示的是整式. 其中B≠0 是已知条件中隐含着的条件,一般在解题过程中不另强调;M≠ 0 是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M≠0 这个前提条件.(2)在应用分式的基本性质进行分式变形时,虽然分式的值不变,但分式中字母的取值范围有可能发生变化. 例如:,在变形后,字母x 的取值范围变大了.要点四、分式的变号法则对于分式中的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变;改变2 4解:整式有:23,2y 2, 2y 2;其中任何一个或三个,分式成为原分式的相反数 要点诠释: 根据分式的基本性质有 b a b bb. 分式a与 a 互为相反数a a ab b重要的作用 .要点五、分式的约分,最简分式 与分数的约分类似,利用分式的基本性质,约去分子和分母的公因式,不改变分式的 值,这样的分式变形叫做分式的约分 . 如果一个分式的分子与分母没有相同的因式 (1 除外), 那么这个分式叫做最简分式 .要点诠释: (1)约分的实质是将一个分式化成最简分式,即约分后,分式的分子与分 母再没有公因式 .( 2)约分的关键是确定分式的分子与分母的公因式. 分子、分母的公因式是分子、分母的系数的最大公约数与相同因式最低次幂的积;当分式 的分子、分母中含有多项式时,要先将其分解因式,使之转化为分子 与分母是不能再分解的因式积的形式,然后再进行约分 .要点六、分式的通分与分数的通分类似, 利用分式的基本性质, 使分式的分子和分母同乘适当的整式, 不改 变分式的值,把分母不同的分式化成相同分母的分式,这样的分式变形叫做分式的通分 .要点诠释:(1)通分的关键是确定各分式的最简公分母: 一般取各分母所有因式的最高 次幂的积作为公分母 .2)如果各分母都是单项式, 那么最简公分母就是各系数的最小公倍数与相 同字母的最高次幂的乘积; 如果各分母都是多项式, 就要先把它们分解 因式,然后再找最简公分母 .3)约分和通分恰好是相反的两种变形, 约分是对一个分式而言, 而通分则 是针对多个分式而言 .典型例题】 类型一、分式的概念高清课堂 403986 分式的概念和性质 例 1】. 根据有理数除法的符号法则有分式的符号法则在以后关于分式的运算中起着1、指出下列各式中的整式与分式:1 ,1 ,a b ,x , 3 ,, , , ,2 ,x x y 2 x 12y 2,2 x ,思路点拨】 判断分式的依据是看分母中是否含有字母, 如果含有字母则是分式, 如果不含有字母则不是分式. 【答案与解析】∵ x 2 为非负数,不可能等于- 1, ∴ 对于任意实数 x ,分式都有意义; 当 x 0 时,分式的值为零.(2)当 x 2 0即 x 0时,分式有意义; 当 x 0, 即 x 5 时,分式的值为零x 5 0,(3)当 x 5 0,即 x 5 时,分式有意义; 当 x 5 0, ①时,分式的值为零,2x 10 0 ②由①得 x 5时,由②得 x 5 ,互相矛盾.2x 10∴ 不论 x 取什么值,分式 2x 10 的值都不等于零.x5【总结升华】 分母不为零时,分式有意义;分子的值为零,而分母的值不为零时,分式的值 为零. 举一反三:【变式 1】若分式的值为 0,则的值为 _________________________ . 【答案】 - 2;|x| 2 0 |x| 2 0 提示:由题意 2, ,所以 x 2.x 2 5x 6 0 x 3 x 2 0分式有:1,1 , 3 , x2 x x y x 2 1 x总结升华】 判断分式的依据是看分母中是否含有字母.此题判断容易出错的地方有两处: 一个是把 π 也看作字母来判断, 没有弄清 π 是一个常数; 另一个就是将分式化简成整式后2再判断,如 x 和 x x,前一个是整式,后一个是分式,它们表示的意义和取值范围是不相同的.类型二、分式有意义, 分式值为 0 高清课堂 403986当 x 取什么数时,下列分式有意义?当2、 分式的概念和性质 例 2】x 取什么数时,下列分式的值为零?( 1) 2x x 2 答案与解析】2)x52;x3) 2x 10 x5解:( 1)当 x 20,即 x21时,分式有意义.x2变式 2】当 x 取何值时,分式 的值恒为负数? 2x 6 答案】 x 2 0, 或 x 2 0, 2x 6 0, 2x 6 0. 解不等式组x 2 0,该不等式组无解.2x 6 0,解不等式组x 2 0,得 3 x 2. 2x 6 0.所以当 3x 2 时,分式x 2的值恒为负数. 2x 6类型三、分式的基本性质高清课堂 403986 分式的概念和性质 例 4】 3、不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数(1) ; (2) ; (3) . 答案与解析】解:(1) ;(3).【总结升华】 (1) 、根据分式的意义, 分数线代表除号, 又起括号的作用; (2) 、添括号法则: 当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号 举一反三:解: 由题意可知(2)a1 a 2 2a 1 ;2;a 22变式】 列分式变形正确的是(A .2 x2ymn(m n)2 (m n)(m n)(m n)2答案】C .x 21x 2x 11 x1ab 2 aD ;提示:条件.将分式变形时,注意将分子、分母同乘(或除以)同一个不为 其中A 项分子、分母乘的不是同一整式,B 项中 m n 0 的整式这一0这一条件不知是1x 否成立,故 A 、B 两项均是错的. C 项左边可化为: 1 x 2(1 x)21 1x11,故 C x1项亦错,只有 D 项的变形是正确的.类型四、分式的约分、通分如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,也就是分子、分母系数的最大公约数与相同字母的最低次幂. 通分的关键是确定几个分式的最简公分 母,若分母是多项式, 则要因式分解, 要防止遗漏只在一个分母中出现的字母以及符号的变 化情况. 类型五、分式条件求值225、若 x 2,求 x 22 2xy 3y 22 的值.y x 2 6xy 7 y 2【思路点拨】 本题可利用分式的基本性质, 采用整体代入法, 或把分式的分子与分母化成只 含同一字母的因式,使问题得到解决. 【答案与解析】x 解法一:因为 2 ,可知 y 0 ,y222(x 22xy3y 2) g12x2x g3所以x 22xy3y 2yyy所以2x 26xy7y 2(x 26xy 7y 2)g12 y2x6 x g7yy4、约分:(1)2;(2) 2n 2 m 3 ;2mn 4n通分:3)3 2a 2ba b ;ab 2c4)x 24x42 x2答案与解析】解:(1) a 2 2a 1a 21(a1)2 ( a 1)(a 1)1;a12) 2 n 2 m2mn 4n 32n 2 m2n (m 2n 2)(m2n 2) 2n (m 2n 2 )1 2n ;3)最简公分母是 222a 2b 2c . 3 g bc222a 2b 2a 2b g bc3bc22 2a b cb ab 2c(a b) g 2a ab 2c g 2a22a 22ab2a 2b 2c4)最简公分母是(x 2)(x 2) ,1 x2x2 (x 2)( x 2)x 2 ,4 xx 2 4 x 2 44x x 2 42(x 2)x 2 (x 2)( x 2)2x 4 x 2 4总结升华】( 2)2 2 ( 2) 3 5 ( 2)2 6 ( 2) 7 9解法二:因为 x 2 , y所以 x 2y ,且 y 0 ,22x 2 2xy 3y 2 (x 3y)(x y) x 3y x 2 6xy 7y 2 (x 7y)(x y) x 7y【总结升华】 本题的整体代入思想是数学中一种十分重要的思想. 一般情况下, 在条件中含 有不定量时,不需求其具体值,只需将其作为一个“整体”代入进行运算,就可以达到化简 的目的. 举一反三: 【变式】已知x 3 y4z(xyz 0) ,求xy 26x 2yz 2 y zx 2的值.z 2【答案】x解: 设yz k(k 0) ,则 x 3k,y4k , z 6k3 46∴xyyz zx3k g4k 4k g6k 6k g3k54k 2 54 ∴2x2 y2z22(3k)2 (4k)2(6k) 261k 2 61【巩固练习】 一. 选择题a 2 91.若分式 2a 9 的值为 0,则 a 的值为( )a 2 a 6A .3B .-3C .±3D . a ≠- 2中的 x 、y 都扩大 m 倍( m ≠ 0),则分式的值()2.把分式 2x2y 3y 5 2y 7y 9xy14. 已知 13. A .扩大 m 倍 5a b若分式 5a b 有意义,则 a 、 3a 2b B .缩小 m 倍C .不变 b 满足的关系是( 4. 5. 6.D .不能确定A . 3a 2b 1b 若分式 12 b 2b 2 A . b < 0 面四个等式: ④xy 2 0个 A . 化简B . a 15bC . b D.23b的值是负数,则 1 b 满足( B .b ≥1 C . b <1 D. b >1 ① x 2 y x 2y ;② xy 2 x 2y ;③ xy 2x y;2xy 2 b 22a a 2 2ab b 2 ab ab 二. 填空题 A .7. 使分式 (x 2x 其中正确的有( B . 1 个 的正确结果是( B . a a b b 2 有意义的条件为 3)2 C . 2个 D . 3个C .1 2abD .2a 1b8. 分式 (x 2x 51)2有意义的条件为 2 分式 |x| 4 x4 m n ( mn 11.填入适当的代数式,使等式成立.9.当 时, 的值为零.10.填空: (1) ) n m m n ;(2) mn 2a 2b2a)2b1) a 2 ab 2b 2 a 2 b 2 ( ) ( 2) ab1a1a b ( ba 2 m 12. 分式 2m 2 1 约分的结果是 m 2 三. 解答题 2 x 13. 若 2 x 23x1的值为零,求 2 的值.2 (x 1)21 x 2,求 3x 7xy 3y 的值.2x 3xy 2y7. 8.15. (1)阅读下面解题过程:已知 2,求 524x的值.x 4 11. 解:∵ 2xx 21 ∴1∴1xx2 5,2,即 5,即 2x 4x1 21 x2 x1 (x 1x )2 2 x2)请借鉴( 已知2 x 2 答案与解析】 . 选择题 答案】 B ; 解析】 由题意 2. 答案】 C ; 解析】 3. 答案】 解析】 4. 答案】 解析】 5. 6. 9. 1)x 3x 2mxmx my D;中的方法解答下面的题目: 2, 求 4 x 0且am 2x m(x y)由题意, 3a D;因为 2b 2 1 答案】 解析】①④正确 . 答案】 解析】. 填空题【答案】【答案】【解析】【答案】2b 0 , C;B; 22ab 22 a 2ab b2x 2x2x xy所以的值.0,所以 1 b aba2abx 3.x 为任意实数;x 为任意实数,分母都大于零x 4 ;1 (52)2 2 170 ,解得 a 3.23b .0,即 b >1.ab ab2,| x| 4 0 解析】 ,所以 x 4 . x40x 2 x 0 ,即 x(x 1) 0 x 2 3x 2 0 (x 1)(x 2) 0x 0 或 x 1 0x 1 0且 x 2 0 x 0或 x 1, x 1且 x 2, x 0 ,14. 【解析】 解:方法一:∵ 1 1 y x 2 ,x y xy等式两边同乘以 xy ,得 2xy y x .x y 2xy .3x 7xy 3y 3(x y) 7 xy 2x 3xy 2y 2( x y) 3xy11 xy【解析】2a ab 2b 2a b a 2b ;1 b ba 2b 2abab1 a bab b12. 【答案】 11m;;m【解析】2m 2m 1 2m 1 1 m10. 【答案】(1)-;(2)+;11. 【答案】(1) a 2b ;(2) b a ;a ab 21 m 1 m 1 m 1 m三. 解答题13. 【解析】ab ba解:由已知得: 将 x 0 代入得:1 ( x 1)2 1 (0 1)2 1 (0 1)21.3 2 xy 7xy xy 2 2 xy 3xy 7xy方法15. 【解析】解:∵ 2xx23x 1 ∴1x13x2x42x x 1121x 2 1x12 x1 21x3x7xy3y3 y72x3xy2y23y 3 x31x1 y73271 2x21 x1 y322372,2 ,∴ x1 4.72 45.12。
分式的基本性质(一)(北师版)(基础)一、单选题(共11道,每道9分)1.根据分式的基本性质,分式可变形为( )A. B.C. D.答案:C解题思路:依据分式的基本性质可知:故选C试题难度:三颗星知识点:略2.下列分式:①;②;③;④,从左到右的变形,错误的有( )A.1个B.2个C.3个D.4个答案:D解题思路:根据分式的基本性质对各个选项进行判断:①,分子中的y没有乘2,变形错误;②,不符合分式的基本性质,变形错误;③,分母中的b没有乘-1,变形错误;④,分子分母不是乘的同一个整式,变形错误;所以四个都是错误的.故选D试题难度:三颗星知识点:略3.下列选项错误的是( )A. B.C. D.答案:C解题思路:,故选项A正确;,故选项B正确;,故选项C错误;分子分母同时扩大10倍,得,故选项D正确.故选C.试题难度:三颗星知识点:略4.若分式(,均为正数)中每个字母的值都扩大为原来的3倍,则分式的值( )A.扩大为原来3倍B.缩小为原来的C.不变D.缩小为原来的答案:B解题思路:,所以分式的值缩小为原来的.故选B.试题难度:三颗星知识点:略5.若的值均扩大到原来的2倍,则下列分式的值保持不变的是( )A. B.C. D.答案:D解题思路:A:,不符合题意;B:,不符合题意;C:,不符合题意;D:,符合题意.故选D.试题难度:三颗星知识点:略6.不改变分式的值,如果把其分子和分母中的各项系数都化为整数,那么所得的正确结果为( )A. B.C. D.答案:A解题思路:不改变分式的值,如果把其分子和分母中的各项系数都化为整数,则分子分母需要同时扩大10倍,即.故选A.试题难度:三颗星知识点:略7.南京至上海的铁路长300km,原来某列车的行驶速度是60km/h,为了适应经济的发展,该列车的行驶速度每小时比原来增加了2akm,现在由南京到上海所用时间为( )小时.A. B.C. D.答案:A解题思路:∵该列车的行驶速度每小时比原来增加了2akm∴该列车的行驶速度为(60+2a)km/h∴现在本次列车由南京到上海所用的时间为小时故选A试题难度:三颗星知识点:略8.走一段长10千米的路,步行用4x小时,骑自行车所用时间比步行所用时间的一半少0.2小时,则骑自行车的平均速度为( )千米/小时.A. B.C. D.答案:C解题思路:∵骑自行车所用时间比步行所用时间的一半少0.2小时∴骑自行车所用时间为(2x-0.2)小时∴骑自行车的平均速度为千米/小时故选C试题难度:三颗星知识点:略9.一辆汽车以60千米/时的速度行驶,从A城到B城需要t小时,如果该车的行驶速度增加3v(千米/时),那么从A城到B城需要( )小时.A. B.C. D.答案:B解题思路:由题意可得,A城到B城的距离为60t如果该车的行驶速度增加3v,那么增加后的速度为(60+3v)所以增速后从A城到B城需要小时故选B试题难度:三颗星知识点:略10.果园里一共栽了1000颗树,其中有10行桃树,每行4a颗,梨树比桃树每行多栽8颗,则梨树栽的行数是( )A. B.C. D.答案:A解题思路:由题意可得,果园里栽的桃树的数量为,∴果园里栽的梨树的数量为,∵梨树比桃树每行多栽8颗∴果园里栽的梨树的行数为;故选A试题难度:三颗星知识点:略11.小红要打一份20000字的文件,第一天她打字100min,打字速度为a字/min,第二天她打字速度是第一天打字速度的2倍还多10字,若两天打完全部文件,则第二天她打字用了( )min.A. B.C. D.答案:A解题思路:由题意可得,第一天她打了100a字,∴第二天她需要打20000-100a,∵第二天她打字速度是第一天打字速度的2倍还多10字,∴第二天她打字速度为2a+10,∴第二天她打字用了;故选A试题难度:三颗星知识点:略。
第2课时 分式的基本性质(1)
1.下列分式与a m n
--相等的是 ( ) A .a m n - B .a m n -+ C .a m n + D .-a m n
+ 2.如果把5x x y
+的x 与y 都扩大10倍,那么这个代数式的值 A .不变
B .扩大50倍
C .扩大10倍
D .缩小为原来的110 3.填空:
(1)()2 2a b ab a b +=
(2)()22 2x xy x x -= (3)()
2 33y xy xy =
(4)()()210 2a a a a b ++=≠ 4.不改变分式的值,使分式的分子与分母都不含负号:
(1)32x y --=_______; (2)23a b
--=-_______. 5.当()23
221212x k x x x y --=时,k 代表的代数式是_______. 6.下列等式的右边是怎样从左边得到的?
(1)2212a b a b a ab b +=+++ (2)21644
x x x -=-+
7.使等式27722x x x x
=++自左到右变形成立的条件是 ( ) A .x <0 B .x>0 C .x ≠0 D .x ≠0且x ≠7
8.(2013.淄博)下列运算错误的是 ( )
A .()()
221a b b a -=- B .1a b a b --=-+ C .0.55100.20.323a b a b a b a b ++=-- D .a b b a a b b a
--=++ 9.把分式2
x x y
-中的x 和y 都扩大为原来的2倍,那么这个分式的值 ( ) A .扩大为原来的2倍
B .不变
C .缩小到原来的12
D .扩大为原来的12倍 10.已知034
x
y =≠,则22x y x y +-的值是_______. 11.当x_______时,2121
x x ----为正数. 12.不改变分式的值,把下列式子的分子和分母中各项的系数都化为整数:
(1)0.30.21x x +- (2)12251223
x y x y +-
13.不改变分式的值,使分式的分子、分母中的首项的系数都不含“-”号. (1)211x x --+ (2)2212x x x -+-- (3)2131
x x x ----+
14.已知x 2-3x -1=0,求: (1)1x x -的值;
(2)221x x +的值.
参考答案
1.B 2.A 3.(1)2a 2+2ab (2)x -2y (3)1 (4)2ab 4.(1)
32x y (2)23a b - 5.3
2xy 2 6.(1)分子、分母同乘(a +b) (2)分子、分母同除(x +4)
7.C 8.D 9.A 10.-115
11.x>-12 12.(1)原式=103210x x +- (2)原式=15121520x y x y +- 13.(1)211x x --- (2)2212x x x -+-- (3)2131
x x x ++- 14.(1)3 (2)11。