16.1.2 (2)分式的基本性质通分
- 格式:ppt
- 大小:682.50 KB
- 文档页数:9
“三部五环”教学模式设计《16.1.2分式的基本性质(2)》教学设计
活动三变式训练,巩固新知 题组一:选择题
1、下列说法错误的是( ) A .
a 21与24a b
通分后分别为242a a 与2
4a
b B .
z xy 231与y
x 2
31
通分后分别为z y x x 223与z
y x yz
2
23 C .
n m +1与m
n -1
的最简公分母为2
2
n m - D .
)(1n m a -与m
n -1
最简公分
母为))((m n n m a -- 2、下列约分正确的是( ) A .
33
=+m
m B.
022=--y x y x C.
b
a
b x a x =++ D.
1-=-+-y x y x 题组二:快速解答 1、约分
2、通分 (1)
2
261
21xy
y x -与 (2)
6
4312---+x x x
x 与 题组三:挑战自我
【师生活动】
教师相机出示题组,其中题组一口答,题组二、三纸笔演练
(题组二的1题分组练习,交叉评价),生思考并独立完成,
教师巡视指导,相机提名板演,重点关注学困生的表现,
及时辅导、补救。
【设计意图】
培养学生自主学习的思想,观察其成效
板书设计
16.1.2分式的约分和通分(2)。
班级: 组别: 姓名: 钢屯中学八年级导学案(2011-2012学年度第二学期) 学科:数学 编号: 4 个性天地课题 16.1.2分式的基本性质(3)(通分) 课型 自学课 总课时 4 主创人 刘国利 教研组长签字 领导签字 个性天地学习目标:1、了解分式通分的步骤和依据。
2、掌握分式通分的方法。
学习重点:分式的通分。
学习难点:准确找出不同分母的分式的最简公分母。
学法指导: 1、学生独立阅读课本P 8,探究课本基础知识,提升自己的阅读理解 能力。
2、完成导学案设置的问题,由组长组织对学与群学,进行知识汇报,展示讨论。
3、教师巡视,及时指导、帮助学生解决疑难问题。
导学流程: 一、旧知回顾 1、分式的基本性质的内容是 用式子表示 2、计算:3121+ ,运算中应用了什么方法?这个方法的依据是什么? 二、基础知识探究 1.猜想:利用分式的基本性质能对不同分母的分式进行通分吗? 自主探究:p 7的“思考”。
归纳:分式的通分: 三、综合应用探究 1. 例4 通分: (1)b a 223 与c ab b a 2- (2)52-x x 与53+x x 归纳:最简公分母:1. 2. 通分的关键是准确找出各分式的 2.分式22(1)x x --,323(1)x x --,51x -的最简公分母( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )3 3.求分式b a -1、22b a a -、b a b +的最简公分母 ,并通分。
四、反馈检测: 1、通分:(1)bc a y ab x 229,6、 (2)16,12122-++-a a a a 、(3)x x x x 32,1,1+ 2、通分:(1)a a a --11,1 (2)2,422+-x x x (3)bc a b ab a 215,32- 3、 分式121,11,121222++-+-a a a a a 的最简公分母是( ) A.22)1(-a B.)1)(1(22+-a a C.)1(2+a D.4)1(-a 反思与评价:。
16.1.2 分式的基本性质(二)学习目标:1. 理解并掌握分式的基本性质,并能类比分数的通分,运用分式的基本性质进行分式的通分。
.2. 通过分式的通分提高学生的运算能力.学习过程:一. 情景创设,课题引入:1.判断下列约分是否正确:(1)c b c a ++=b a (2)22y x y x --=yx +1 (3)n m n m ++=0 2.计算:把12与23通分,其方法是什么?二. 导入新课:与分数的通分类似,如何把分式 a b ab+ 与 22a b a - 化成分母相同的分式? 分析:我们可以将上述两个分式都变成分母是_____的分式.即: a b ab+=__________________;22a b a -=__________________. 与分数的通分一样,利用_____________________,使分子和分母同乘适当的整式,不改变分式的值,把a b ab + 与 22a b a -化成分母相同的形式,这样的分式变形叫做分式的_______. 例1 通分(1)232a b 和2a b ab c - (2)25x x -和35x x + 分析:分数的通分要找出________________,同样分式的通分要先确定各分式的公分母,一般取各分母的所有因式的最____次幂的积做公分母,它叫做最简公分母.比如上面的(1)中,22a b 的因式有2、2a 、b ;2ab c 的因式有_____、_____、_____. 两式中所有因式的最高次幂的积是__________.解:(1)最简公分母为________ 232a b =______________________;2a b ab c-=______________________.(2)最简公分母为__________________25x x -=_________________________________;35x x +=_____________________________. 巩固练习:(1)321ab 和cb a 2252 (2)xy a 2和23x b(3)223ab c 和28bc a-(4)11-y 和11+y(5)26ca b 和23cab(6)22x y x y -+和2()xy x y +三. 拓展应用:通分:(1)2(1)xx +和21x x -(2)232a a a ++、221a a a ++和136a -+.。