辐射剂量学知识点总结
- 格式:ppt
- 大小:488.50 KB
- 文档页数:42
放射剂量科普知识放射剂量是用来衡量人体或物体接受到的辐射量的单位,它可以分为有效剂量和等效剂量两种。
了解放射剂量的概念和相关知识对于我们正确评估和管理与辐射相关的风险至关重要。
以下是关于放射剂量的科普知识。
1. 放射剂量的定义:放射剂量是用来衡量辐射对人体或物体造成的伤害的量度。
通常用基本单位格雷(Gy)来表示,1格雷等于吸收1焦耳能量/千克。
2. 有效剂量(Effective Dose):有效剂量是用来评估人体受到辐射后患某种放射性疾病的风险的量度,单位为西弗(Sv)。
有效剂量不仅考虑辐射量,还考虑不同部位对辐射的敏感度。
3. 等效剂量(Equivalent Dose):等效剂量是用来衡量不同类型辐射对人体造成伤害的量度,它把各种辐射的相对生物效应与其辐射量结合起来,单位也是西弗(Sv)。
4. 辐射单位转换:不同类型的辐射有不同的生物效应,因此需要进行辐射单位的转换。
常见的辐射单位包括伦琴(Roentgen)、希沃特(Sievert)、老文特(Rem)等等。
5. 本底辐射和人造辐射:本底辐射是自然界存在的辐射源,包括来自地壳、太阳等自然辐射。
人造辐射则是人类活动产生的辐射源,如医疗、核电厂等。
6. 常见的放射剂量来源:医学影像检查、核电厂、航空航天、地下水、土壤和建筑材料、食物等都是我们日常生活中常见的放射剂量来源。
7. 辐射与健康:辐射对人体健康的影响取决于剂量和时间。
高剂量和长期暴露于辐射下可能导致急性放射病,如癌症、遗传突变和组织损伤等。
但低剂量辐射下的风险仍有争议,一般认为低剂量辐射的风险较低。
8. 辐射防护措施:对于与辐射相关的职业或环境,需要采取一系列防护措施进行辐射剂量的控制,包括时间控制、距离控制和屏蔽措施。
9. 监测辐射剂量的方法:监测辐射剂量的方法主要有被动监测和主动监测两种。
被动监测是指使用个人剂量仪、衣物、食物等来测量个人或环境中的辐射剂量。
主动监测则是指使用电离室等仪器精确测量辐射剂量。
辐射剂量学什么是辐射剂量学?辐射剂量学是研究辐射对生物体和环境的影响的科学。
它涉及测量辐射剂量、评估与辐射剂量相关的风险,并制定保护和控制策略。
辐射剂量学是核能、医学辐射、放射性废物管理以及任何可能损害人体健康的辐射源的管理和监控的基础。
辐射剂量的测量辐射剂量是指辐射能量传递给物质的程度。
辐射剂量的测量可以通过多种方法进行。
常用的方法包括使用辐射探测器进行直接测量,或者通过间接方法测量放射性同位素在物体中引起的化学、生物效应。
辐射剂量通常用单位「Gy」(戈瑞)来表示,1 Gy等于每千克物质所吸收的1焦耳辐射能量。
辐射剂量计辐射剂量计是用于测量辐射剂量的设备。
它可以用于监测辐射暴露水平,保护工作人员免受辐射的伤害。
常见的辐射剂量计包括:•个人剂量计:这是佩戴在个人身上的辐射剂量测量仪器,它用于监测工人在辐射环境中的辐射暴露水平。
•墙面剂量计:这是固定在工作场所墙上的辐射剂量测量仪器,用于评估工作场所的辐射水平。
•环境剂量计:这是监测周围环境的辐射剂量测量仪器,用于评估居住环境或自然环境的辐射水平。
使用辐射剂量计可以帮助我们了解辐射剂量的分布情况,并做出相应的保护措施。
辐射剂量的风险评估辐射剂量与生物体的风险之间存在一定的关系。
高剂量的辐射暴露会导致严重的伤害甚至死亡,而低剂量的辐射暴露可能引起长期的慢性健康问题。
辐射剂量的风险评估是评估与辐射剂量相关的潜在风险,如癌症、遗传突变等。
辐射风险评估是一个复杂的过程,涉及辐射剂量的测量和估算、生物效应的评估等。
根据不同的辐射源和不同的暴露情况,评估方法也会有所不同。
然而,无论何种评估方法,其目标都是为了保护人类和环境免受辐射的危害。
辐射剂量的保护与控制为了保护人类和环境免受辐射的危害,辐射剂量的保护与控制是必不可少的。
这包括以下几个方面:1.国际标准和准则:制定和遵守国际标准和准则,确保辐射活动的安全性,并保护人类和环境的利益。
2.辐射安全设施:建设和维护辐射安全设施,确保辐射活动在受控的环境中进行,减少对周围环境的影响。
辐射与防护主讲:张玲玲土木与环境工程学院课堂回顾概述辐射的分类辐射的特点我国辐射环境及监控技术现状辐射的用途第二章辐射计量学主讲: 张玲玲土木与环境工程学院第一节辐射剂量学的基本量和单位一、辐射剂量学的基本量和单位1、放射性活度(A)定义:表示在单位时间内放射性原子核所产生的核转变数。
国际单位:贝可(Bq)曾用单位:居里(Ci)1Ci=3.7 ×1010Bq1Bq表示每秒钟发生一次核转变典型成年受检者在各种核医学诊断中的活度指导水平检查项目放射性核素每次检查常用的最大活度/MBq甲状腺甲状腺显像甲状腺癌转移灶(癌切除后)甲状旁腺显像131I99mTc131I201Tl99mTc20200400807402、照射量(X)定义:表示γ射线或X射线在空气中产生电离能力大小的辐射量。
国际单位:C/kg曾用单位:琴伦(R)1R=2.58×10-4 C/kg应用条件:X、γ射线;介质为空气有些文献提到介质的照射量时,是指在介质中放置少量空气后测得的照射量值。
照射量是在X 、γ射线,在空气中,单位体积元内产生的全部电子均被阻留在空气中时,形成的总电荷除以该体积元空气质量。
其定义式为:式中,X - 照射量,C/Kg;dQ - 射线在质量为dm 的空气中释放出来的全部电子(正电子和负电子)被空气完全阻止时,在空气中产生的一种符号离子的总电荷的绝对值,C ;dm - 受照空气的质量,kg 。
照射量率是单位时间内的照射量。
定义式为式中, - 照射量率,C/(kg ·s);dX - 时间间隔dt 照射量的增量,C/kg ; dt - 时间间隔,s 。
某些常见辐射源(X 或γ)的辐射水平dmdQ X =dtdX X =∙∙X3、比释动能 (K )定义: X 或γ光子等非电离辐射粒子在与物质相互作用时,物质中原子核外电子接受能量形成次级粒子射线,在单位质量的物质中,不带电粒子转移给带电粒子的全部初始动能之和叫作比释动能。
四、.,c a m K x D 和的关系 ..m c m k c a D K f K == m x D f X =()/()k en m en a f μρμρ=()()/()()k a en m en a k a w W f f e e μρμρ==习题:11、12、16第四讲 辐射防护学量(Quantities used in Radiological Protection ) 一. 剂量学量描述的内容及特点1. 电离辐射与物质发生相互作用a. 能量转移多少,作用的强弱,x κ。
b. 作用介质接受能量大小D 。
2. 特点:.没有跟生物效应相关联。
.没有考虑辐射类型和能量对生物效应的影响。
.没有考虑对于辐射的相对敏感性。
二. 当量剂量H r1. 器官剂量D T (Organ dose )TT TD m ε=--T ε授与组织或器官的总能量,T m 组织或器官的质量(<10g —>70kg for the whole bady ) 2. 品质因数(Quatity factor )Q•随机性效应发生的概率跟辐射的类型和能量以及电离辐射授予物质的能量在微观空间分布上的那些特征(辐射品质)有关的。
引入品质因数Q 来描述之。
•Q-L 关系Q 是L 的函数,Q (L ),但是在实际应用中简化R •ICRP 在1990年60号报告中指出:由于辐射生物信息的不确定性.用Q(L)修正的吸收剂量来反应受到高LET 辐射照射导致较高的损伤概率的详细而精确的内在联系是不合理的推断. •W R 代替Qbased on: a. Review of the biological information. b. A variety of exposure circumstance.c. Inspection of the results of traditional.d. Calculations of the ambient dose equival out. •辐射类型和能量 W A 光子(所有能量) 1电子和μ子1中子 < 10kev 10kev to 100kev > 100kev to 2Mev > 2Mev to 20Mev > 20Mev 5 1020 10 5质子(不包括反冲质子)>2Mev 5α粒子、裂变碎片、重核20 •辐射权重因子同辐射种类和能量有关,但与器官或组织无关。
一、填空、简答所涉及的重点:1、注量(尤其注意各向同性场)2、立体角的辐射度3、各个量的谱分布4、注量与径迹长度关系(注意推导)5、带电粒子与物质作用方式、沉积方式、能量损失因素6、高能中子损失能量方式7、分清哪些量是表征带电粒子或不带电粒子8、不带电粒子与物质作用的三个重要效应(八字)9、比释动能概念知道其与注量关系、点源的比释动能计算、不同介质比释动能的表达式10、照射量定义及单能光子场的表达式P54、X、r射线的理解、点源照射量率的计算11、吸收剂量的概念12、自由空气电离室(设计、条件)13、吸收剂量与比释动能的区别和联系(注意什么情况下吸收剂量表示比释动能)14、腔室理论中B-G腔室成立条件、腔室理论中介质吸收剂量与室壁吸收剂量的关系(厚壁与薄壁)、照射量关系P11115、腔室中带电粒子描述16、刻度因子只需要了解大概是什么个情况(估计不考)17、中子与r辐射场如何测量18、剂量计主要指标19、量热计的类型及量热计在计量计中的地位(对于基准传递做大致了解就好啦)20、化学剂量计中要掌握伏里克剂量计(组成与配置)及三价铁、二价铁产额关系式、辐射化学产额21、吸收剂量计算(这个不考)22、热释光剂量计超限性解释(估计会考成简答题的概率很大)23、固体核计量计(SSD)能探测什么,不能探测什么24、外照射中体模概念机RCRU球(大小、指标)(它的推导不用看)25、体模中剂量、参考点(绝对)测量(这个两颗星重点推荐)26、百分深度剂量(两颗星重点推荐)及组织空气比(可与吸收剂量联系)27、外照射中射野中某一深度计算(P212例题,此类型必考但不是原题)28、内辐射中衍生辐射场概念、内辐射计量学中滞留函数及参考人、确定性效应与随机性效应、待积当量与有效剂量29、工作环境居留因子分布情况30、ICRP模型计算、照射分为哪三类、人工辐射源分类、开放性辐射区分类及中国是如何划分的、外辐射防护三要素、内辐射防护原则(八字原则)、辐射防护限值、放射性污度的定义31、互异定理解释、放射性核素的分组及常见核素32、天然辐射源、环境监测使用量、X、r对人体的影响33、窄束衰减规律、宽束对积累因子的影响、积累因子的选取、不同辐照下不同屏蔽材料的选择34、不确定性效应与受照的关系35、天然辐射(2.4msv)36、控制区橙区的环境剂量率(2-100msv/h)37、中子与人体组织有哪几种作用类型(一颗星重点推荐)38、知道哪种剂量计不需刻度39、内照射防护基本原则(5条)及各原则意义与相应条件40、核事故的分类(5种)41、库室模型二、计算(可能涉及到的重点计算)1、化合物中组织本领计算2、比释动能计算3、点源计算4、当量剂量与有效剂量的计算、5、半价层厚度及屏蔽层厚度的计算6、空腔电离室、介质、室壁吸收剂量的计算7、线源的计算8、照射率计算9、库室模型(估计必考)P251、子孙衰变P25410、X射线机的发光常数。
辐射剂量学基本知识以及热释光检测技术辐射剂量学是用理论或实践的方法研究电离辐射与物质相互作用过程中能量传递的规律,并用来预言、估计和控制有关的辐射效应的学科。
辐射剂量学的研究和应用,早期仅限于医疗方面,今天,它已成为一个专门的技术领域,广泛应用于辐射防护、医疗、生产和科研等各个方面。
辐射剂量学研究的主要内容包括:电离辐射能量在物质中的转移、吸收规律;受照物质内的剂量分布及其与辐射场的关系;辐射剂量与有关的辐射效应的响应关系以及剂量的测量、屏蔽计算方法等。
从而为研究辐射效应的作用机理、实施辐射防护的剂量监测和评价、进行放射治疗与辐射损伤的医学诊断和治疗提供可靠的科学依据。
常用辐射剂量估算及测量方法中主要分为两大类,一类是直接测量,另一类是采用回顾模拟(或估算)方法进行事故剂量重建。
在直接测量方法中,用的较多的是热释光测读仪器(TLD),它主要有两部分,测读器和TLD剂量元件。
TLD剂量元件的基本材料是LiF(Mg,Cu,P)等热释光材料。
这类材料能将辐射沉积在它上面的能量较长时期稳定的储存起来,当用测读器加热测读时,这些能量就以光的形式释放出来,通过对这些光的测量来进行剂量测量。
这种方法最突出的两个优点是:①只要适当选择,可以选择到人体组织等效性特别好的热释光材料,例如,LiF(Mg,Cu,P);②测量范围很宽(0.01mGy – 10Gy),这几乎含盖了我们比较关心的整个领域。
我们所讨论的热释光是指物质受到电离辐射作用后,在加热过程中释放出光的现象。
这是一种早已经发现的现象,在3000余种天然矿物中大约有四分之三具有这种特性。
不仅是无机晶体和玻璃,而且在很多有机化合物中也存在这种现象。
而LiF成为热释光探测器的历史课追溯到上世纪四十年代,美国威斯康星大学化学部Daniels教授的研究。
但1956年后停滞。
1960年由Cameron参与指导,威斯康星大学又恢复LiF热释光研究工作。
六十年代后期,对热释光研究更加普遍,并出现商品性热释光探测元件。
第二章辐射计量学主讲:张玲玲土木与环境工程学院课堂回顾一、辐射剂量学的基本量和单位放射性活度;照射量;照射量率;比释动能;吸收剂量;吸收剂量率;剂量当量;有效剂量当量;待积剂量当量;集体剂量当量;集体有效剂量;剂量当量负担和集体剂量当量负担二、与辐射防护有关的量与概念关键人群组;关键照射途径;关键核素;危险度;危害随机性效应;非随机性效应(确定性效应);四、剂量限制体系辐射防护原则;基本限值;导出限值;管理限值导出限值定义:根据基本限值,通过一定的模式导出一个供辐射监测结果比较用的限值,这种限值称为导出限值。
引出导出限值的原因:辐射防护监测中,测量结果很少能直接用剂量当量来表示。
为了管理目的,主管部门或企业负责人可以根据最优化原则,对辐射防护有关的任何量制定管理限值。
必须严于基本限值或导出限值。
第二节电磁辐射的量度单位电磁辐射定义回顾电磁辐射是由同相振荡且相互垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。
电场强度E磁场强度H一、电场强度E定义:是用来表示电场中各点电场的强弱和方向的物理量。
匀强电场中,场强公式是:E=U/d式中,U是电场中某点的电势d是沿电场线方向上的距离。
一般单位:V/m(伏/米)、mV/m(毫伏/米)、μV/m(微伏/米)。
表示电场干扰大小时:dB(分贝)微波领域,电磁场的强弱常用功率密度表示:W/cm2(瓦/厘米2)、mW/cm2(毫瓦/厘米2)、μW/cm2(微瓦/厘米2)二、磁场强度H定义:在任何磁介质中,磁场中某点的磁感应强度B与同一点上的磁导率u 的比值,称为该点的磁场强度。
定义式:H=B/u式中,B-磁感应强度u-磁导率单位:A/m(安/米)、mA/m(安毫/米)、μA/m(微安/米)三、射频电磁场高频与甚高频的电场强度单位:▪ V/m (伏/米)、mV/m (毫伏/米)、μV/m (微伏/米)、dB (分贝) 特高频单位:▪ W/cm 2(瓦/厘米2)、mW/cm 2(毫瓦/厘米2)、μW/cm 2(微瓦/厘米2) 四、其他常用的表示电磁辐射强度大小的单位1、功率 辐射功率越大,辐射出来的电、磁场强度越高,反之则小。
辐 射 剂 量 与 防 护 (精简版)1. 内照射与外照射的不同之处?答:内照射:体内放射性核素产生的照射。
开放源,持续照射,直至核素衰变完或排出体外。
外照射:体外放射性核素产生的照射。
封闭源,间断照射。
内、外照射的特点2. 内照射防护基本原则?答:制定各种规章制度,采取各种有效措施,阻断放射性物质进入人体的各种途径,在最优化原则的范围内,使摄入量减少到尽可能低的水平。
3. 待积有效剂量评价方法?答:利用ICRP78号出版物及其他资料提供的图表,可以方便地由生物分析数据和全身测量结果求得摄入量,进而计算出待积有效剂量。
4. 写出下列库室模型的动力学方程。
解:分析题意,得如下: 1121()r dq dt i q λλ=-+21212425232()r dq dt q q λλλλλ=-+++3232353()r dq dt q q λλλ=-+4242454()r dq dt q q λλλ=-+52524543535r dq dt q q q q λλλλ=++- 5.解:分析题意,得如下: ()11311q i dt dq λλγ+-=()225242322q i dt dq λλλλγ+++-= ()3342231133q q q dt dq λλλλγ+-+=()4462243344q q q dt dq λλλλγ+-+= ()5562255q q dt dq λλλγ+-=64465566q q q dt dq γλλλ-+= 6. 简述吸收剂量,比释动能和照射量的区别联系?答:适用范围:D 任何不带点与带电粒子和任何物质;K 不带电粒子如X 和γ光子等和任何物质;X 仅X 和γ射线,且仅限于空气介质。
计量学含义:D 表征辐射在所关心的体积内沉积的能量,可以来自体积内或外,K ,表征不带电粒子在所关心的体积内交给带电粒子的能量,不必注意这些能量在何处,以何种方式损失,X 表征X 或γ射线在所关心的体积内交给次级电子用于电离,激发的那部分能量。
辐射剂量学基础一、照射量:X射线或r射线在质量为dm的空气中释放出的全部正、负电子,完全被空气所阻止时形成的同种符号离子的总电荷绝对值dQ与空气质量dm之比(图22),称为照射量(exposure)。
即:X=dQ/dm照射量是直接度量X射线或r射线对空气电离能力的量。
照射量的国际制单位:C • kg-1(库仑•千克-1)旧的专用单位:R(伦)、mR或µR1 C • kg-1 = 3.876×103 RX或γ 射线-------------单位质量的空气---------产生的电荷值图22. 照射量单位时间内的照射量称为照射量率(exposure rate)(),= dX/dt照射量率的国际制单位:C • kg-1 • s(库仑•千克-1 •秒);旧的专用单位:R • s(伦•秒)、mR • s或 R • s二、吸收剂量电离辐射授予单位质量物质的平均能量dε与该单位物质的质量dm之比,称为吸收剂量(absorbed dose)即:D= dε/dm 吸收剂量是反映被照射物质吸收电离辐射能量大小的物理量。
吸收剂量的国际制单位:Gy(戈瑞),1Gy即1kg被照射物质吸收1J的辐射能量(1Gy=1J • kg-1)旧的专用单位:rad(拉德) 1 Gy =100 rad射线-----------单位质量物质------所吸收的平均能量图23. 吸收剂量单位时间内的吸收剂量称为吸收剂量率(absorbed dose rate)(),= dD/dt吸收剂量率的国际制单位:Gy • s(戈瑞• 秒);旧的专用单位:rad • s(拉德• 秒)三、当量剂量当量剂量(equivalent dose)是反映各种射线或粒子被吸收后引起的生物效应强弱的电离辐射量。
它不仅与吸收剂量有关,而且与射线种类、能量有关,当量剂量是在吸收剂量的基础上引入一与辐射类型及能量有关的权重因子(ωR)得到:HT,R=ωR∙DT,R 。