桥式整流滤波电路实验
- 格式:doc
- 大小:80.50 KB
- 文档页数:3
桥式整流、滤波及稳压电路一、实验目的1.学会半导体二极管和稳压管极性的简单测试,了解其工作性能和作用;2.掌握单相桥式整流、滤波、稳压电路的工作原理和对应电压波形及测试方法;3.掌握输入交流电压与输出直流电压之间的关系;4.了解倍压整流的原理与方法。
二、实验原理整流电路是将交流电变为直流电以供负载使用。
直流稳压电源先通过整流电路把交流电变为脉动的直流电,再经各种滤波电路、稳压电路,使输出直流电压维持稳定。
由整流、滤波、稳压环节构成的简单稳压电路如图1所示图1 桥式整流、滤波、稳压电路三、实验仪器设备表1 实验器材名称规格与型号数量电位器10kΩ1个电阻330Ω或者200Ω,60Ω或者100Ω各1个电容220μF / 50V、470μF / 50V 各1个二极管IN4007 4个稳压管2CW17 1个示波器GOS-620 1台直流毫安表C65-mA,0-150-300mA 1台注意事项:切勿用毫安表测电压。
注意万用表的交直流电压挡、欧姆挡的转换及量程的选择;防止误操作,避免电源短路、烧损二极管和电容;四、实验内容与要求根据实验室提供的实验设备完成以下实验内容的设计:1.用万用表测量二极管,学会用万用表检查二极管极性和性能的好坏。
2.设计并连接单相桥式整流电路,调节负载电阻,使负载电流分别为2mA和8mA,测量并记录输入交流电压、整流电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述3.设计并连接具有滤波的单相桥式整流电路,调节负载电阻,使负载电流分别为2mA和8mA 时,测量并记录输入交流电压,整流滤波电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述电压的波形。
4. 在上一个电路(单相桥式整流、滤波电路)中,若改变滤波电容的容量,输出波形会发生什么样的变化?若改变负载电阻,输出波形会发生怎样的变化?5.6.设计并连接具有滤波、稳压的单相桥式整流电路,在下列两种情况下,测量并记录输入交流电压、整流滤波电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述电压的波形。
三相桥式全控整流电路实验结论一、电路结构与工作原理三相桥式全控整流电路由三相交流电源、三相全控桥、负载电阻以及触发脉冲源等部分组成。
其工作原理基于三相全控桥的工作原理,通过控制触发脉冲的相位来控制整流输出的电压大小和方向。
二、触发脉冲与控制方式本实验采用脉冲变压器触发方式,通过调节触发脉冲的相位来控制整流输出的电压大小和方向。
控制方式采用移相控制方式,通过调节控制电压的大小和极性来控制触发脉冲的相位。
三、输出电压与负载特性实验结果表明,随着控制电压的增大,整流输出电压增大,当控制电压达到一定值时,整流输出电压达到最大值。
当负载电阻增大时,整流输出电压减小,当负载电阻达到无穷大时,整流输出电压达到最小值。
四、功率因数与谐波分析实验结果表明,采用三相桥式全控整流电路可以有效地提高功率因数,减小谐波对电网的影响。
但是,当整流输出电压增大时,谐波电流也会相应增大,因此需要对谐波进行抑制。
五、电路参数设计与优化为了提高三相桥式全控整流电路的性能,需要对电路参数进行设计与优化。
实验结果表明,触发脉冲的频率和移相角是影响整流输出电压大小和稳定性的关键因素。
因此,在参数设计时需要重点考虑这些因素。
同时,为了减小谐波对电网的影响,需要选择合适的滤波器参数。
六、实验结果对比与分析通过对不同控制方式下的实验结果进行对比与分析,可以发现采用移相控制方式可以有效提高整流输出电压的稳定性和调节速度。
同时,采用脉冲变压器触发方式可以有效减小整流输出电压的脉动和噪声。
七、电路性能评估与改进建议根据实验结果,可以对三相桥式全控整流电路的性能进行评估。
本实验中,采用了以下指标进行评估:整流输出电压的大小和稳定性、功率因数、谐波含量以及调节速度等。
通过对这些指标进行分析,可以发现该电路具有以下优点:可以实现对交流电源的整流作用;可以提高功率因数;可以实现对整流输出电压的快速调节等。
但是也存在一些不足之处,例如触发脉冲的脉动和噪声较大等问题。
整流滤波电路实验报告姓名:XXX 学号:5702112116 座号:11 时间:第六周星期4一、实验目的1、研究半波整流电路、全波桥式整流电路。
2、电容滤波电路,观察滤波器在半波和全波整流电路中的滤波效果。
3、整流滤波电路输出脉动电压的峰值。
4、初步掌握示波器显示与测量的技能。
二、实验仪器示波器、6v交流电源、面包板、电容(10μF*1,470μF*1)、变阻箱、二极管*4、导线若干。
三、实验原理1、利用二极管的单向导电作用,可将交流电变为直流电。
常用的二极管整流电路有单相半波整流电路和桥式整流电路等。
2、在桥式整流电路输出端与负载电阻RL并联一个较大电容C,构成电容滤波电路。
整流电路接入滤波电容后,不仅使输出电压变得平滑、纹波显著成小,同时输出电压的平均值也增大了。
四、实验步骤1、连接好示波器,将信号输入线与6V交流电源连接,校准图形基准线。
2、如图,在面包板上连接好半波整流电路,将信号连接线与电阻并联。
3、如图,在面包板上连接好全波整流电路,将信号输入线与电阻连接。
4、在全波整流电路中将电阻换成470μF的电容,将信号接入线与电容并联。
5、如图,选择470μF的电容,连接好整流滤波电路,将信号接入线与电阻并联。
改变电阻大小(200Ω、100Ω、50Ω、25Ω)200Ω100Ω50Ω25Ω6、更换10μF的电容,改变电阻(200Ω、100Ω、50Ω、25Ω)200Ω100Ω50Ω 25Ω 五、数据处理1、当C 不变时,输出电压与电阻的关系。
输出电压与输入交流电压、纹波电压的关系如下:avg)r m V V V (输+=又有i avg R C V ••=输89.2V )(r 所以当C 一定时,R 越大就越小)(r V avg越大输V2、当R 不变时,输出电压与电容的关系。
由上面的公式可知当R 一定时,C 越大就越小)(r V avg 就越大输V 3、桥式整流的优越性。
1、输出电压波动小。
2、电源利用率高,每个半周期内都有电流经过。
单相桥式半控整流电路实验报告单相桥式半控整流电路实验报告引言:在电力系统中,整流电路是一种常见的电力转换器,用于将交流电转换为直流电。
单相桥式半控整流电路是一种常用的整流电路,具有简单、高效、可靠等特点。
本实验旨在通过搭建和测试单相桥式半控整流电路,深入了解其原理和性能。
实验装置和原理:实验中使用的装置包括变压器、整流电路、电阻、电感、电容、开关管等。
变压器用于将交流电源的电压变换为适合整流电路的电压。
整流电路由四个二极管和一个可控硅组成,其中二极管用于实现整流功能,可控硅用于实现半控功能。
电阻、电感和电容用于实现电路的滤波功能,使输出电压更加稳定。
实验步骤和结果:1. 搭建电路:按照实验指导书的要求,将变压器、整流电路、电阻、电容等元件连接起来,并接上交流电源。
确保电路连接正确无误。
2. 测试输出电压:将示波器连接到输出端,调节可控硅触发角度,观察输出电压的变化。
记录不同触发角度下的输出电压值。
3. 测试输出电流:将电流表连接到输出端,调节可控硅触发角度,观察输出电流的变化。
记录不同触发角度下的输出电流值。
4. 测试电路的滤波效果:将示波器连接到滤波电容的两端,观察输出电压的波形变化。
记录不同滤波电容下的输出电压波形。
根据实验结果,我们可以得到以下结论:1. 随着可控硅触发角度的增大,输出电压呈线性增长。
这是因为可控硅的导通时间增加,导致整流电路的导通时间增加,从而输出电压增大。
2. 随着可控硅触发角度的增大,输出电流呈非线性增长。
这是因为可控硅的导通时间增加,导致整流电路的导通时间增加,从而输出电流增大。
但当可控硅触发角度接近90度时,输出电流基本保持不变,因为此时整流电路的导通时间接近整个交流周期,无法进一步增大。
3. 增加滤波电容可以有效减小输出电压的波动,提高输出电压的稳定性。
这是因为滤波电容能够储存电荷,在整流电路导通时间短暂中释放电荷,从而平滑输出电压。
实验总结:通过本次实验,我们深入了解了单相桥式半控整流电路的原理和性能。
余姚市职成教中心学校
陈雅萍
滤波的作用:
交流电
整流电路脉动直流电如何变得平滑呢?
滤波电路
电容滤波、电感滤波、复式滤波
桥式整流电容滤波电路——电路组成
当S 打开时,为桥式整流电路
当S 闭合时,为桥式整流电容滤波电路
C 为容量较大的电解电容!
桥式整流电容滤波电路原理图
输出电压脉动成分减小
利用电容两端电压不能突变,在电容充、放电过程中使输出电压趋于平滑。
c u u >2c
u
u <2C
L u u =桥式整流电容滤波电路
——工作过程
桥式整流电容滤波电路——输出直流电压的估算
例1:
桥式整流电容滤波电路
1.电路组成与功能
2.工作过程
3.输出直流电压的估算
变得相对平滑。
单相桥式整流与滤波电路的安装和测试教案第一章:教学目标与内容简介1.1 教学目标1. 了解单相桥式整流电路的原理与特点;2. 学会桥式整流电路的安装与测试方法;3. 掌握单相桥式整流与滤波电路的应用场景。
1.2 教学内容1. 单相桥式整流电路的基本原理;2. 桥式整流电路的元件与连接方式;3. 单相桥式整流与滤波电路的安装步骤;4. 电路测试与故障排查方法。
第二章:单相桥式整流电路原理与特点2.1 电路原理1. 桥式整流电路的电路图;2. 桥式整流电路的工作原理;3. 桥式整流电路的输出电压与电流。
2.2 电路特点1. 桥式整流电路的优点;2. 桥式整流电路的缺点。
第三章:桥式整流电路的安装与连接3.1 元件准备1. 元器件清单与参数;2. 元器件的识别与检测。
3.2 电路安装1. 印刷电路板的设计与制作;2. 元器件的焊接与布线;3. 电路的调试与修改。
第四章:单相桥式整流与滤波电路的测试与故障排查4.1 电路测试1. 测试仪器与设备;2. 测试方法与步骤;3. 测试结果的分析与处理。
4.2 故障排查1. 故障现象的观察与描述;2. 故障原因的分析与判断;3. 故障的排除与修复。
第五章:单相桥式整流与滤波电路的应用实例5.1 应用场景介绍1. 桥式整流电路在家用电器中的应用;2. 桥式整流电路在工业设备中的应用。
5.2 实例分析1. 实例电路图与工作原理;2. 实例电路的安装与调试;3. 实例电路的性能分析与优化。
第六章:安全操作与维护6.1 安全操作1. 电路测试与实验操作规范;2. 焊接操作的安全注意事项;3. 故障排查时的安全防护措施。
6.2 电路维护1. 电路的日常检查与保养;2. 电路故障的预防与处理;3. 电路升级与改造的方法。
第七章:桥式整流电路的性能优化7.1 电路性能指标1. 整流电路的效率与输出电压;2. 滤波电路的滤波效果与频率响应。
7.2 性能优化方法1. 提高整流电路的效率;2. 改善滤波电路的性能;3. 电路参数的优化与调整。
整流滤波电路桥式整流滤波电路一:[整流滤波电路]几种滤波整流电路的介绍总结(一)一、有源滤波电路为了提高滤波效果,解决π型RC滤波电路中交、直流分量对R的要求相互矛盾的问题,在RC电路中增加了有源器件-晶体管,形成了RC有源滤波电路。
常见的RC有源滤波电路如图Z0716所示,它实质上是由C1、Rb、C2组成的π型RC滤波电路与晶体管T组成的射极输出器联接而成的电路。
该电路的优点是:1.滤波电阻Rb 接于晶体管的基极回路,兼作偏置电阻,由于流过Rb 的电流入很小,为输出电流Ie的1/(1+β),故Rb可取较大的值(一般为几十k Ω),既使纹波得以较大的降落,又不使直流损失太大。
2.滤波电容C2接于晶体管的基极回路,便可以选取较小的电容,达到较大电容的滤波效果,也减小了电容的体积,便于小型化。
如图中接于基极的电容C2 折合到发射极回路就相当于(1+β)C2的电容的滤波效果(因ie = (1+ β )ib之故)。
3.由于负载凡接于晶体管的射极,故RL上的直流输出电压UE≈UB,即基本上同RC无源滤波输出直流电压相等。
这种滤波电路滤波特性较好,广泛地用于一些小型电子设备之中。
二、复式滤波电路复式滤波电路常用的有LCГ型、LCπ型和RCπ 型3种形式,如图Z0715所示。
它们的电路组成原则是,把对交流阻抗大的元件(如电感、电阻)与负载串联,以降落较大的纹波电压,而把对交流阻抗小的元件(如电容)与负载并联,以旁路较大的纹波电流。
其滤波原理与电容、电感滤波类似,这里仅介绍RCπ型滤波。
图Z0715(c)为RCπ型滤波电路,它实质上是在电容滤波的基础上再加一级RC滤波电路组成的。
其滤波原理可以这样解释:经过电容C1滤波之后,C1两端的电压包含一个直流分量与交流分量,作为RC2滤波的输入电压。
对直流分量而言,C2 可视为开路,RL上的输出直流电压为:对于交流分量而言,其输出交流电压为:若满足条件则有由式可见,R愈小,输出的直流分量愈大;由式可见,RC2愈大,输出的交流分量愈小。
1. 让学生了解并掌握单相桥式整流滤波电路的原理及应用。
2. 培养学生对电路图的阅读和分析能力。
3. 培养学生运用电路知识解决实际问题的能力。
二、教学内容1. 单相桥式整流滤波电路的基本原理2. 单相桥式整流滤波电路的电路图及元器件功能3. 单相桥式整流滤波电路的工作过程4. 单相桥式整流滤波电路的应用实例5. 单相桥式整流滤波电路的优缺点三、教学重点与难点1. 重点:单相桥式整流滤波电路的工作原理及应用。
2. 难点:单相桥式整流滤波电路的电路图分析及元器件功能。
四、教学方法1. 采用讲授法,讲解单相桥式整流滤波电路的基本原理、工作过程及应用实例。
2. 采用案例分析法,分析单相桥式整流滤波电路的电路图及元器件功能。
3. 采用提问法,引导学生思考并解决实际问题。
五、教学准备1. 教案、教材、课件等教学资源。
2. 教学多媒体设备。
3. 电路图及相关元器件。
4. 实验器材(如电源、灯泡、电阻等)。
1. 引入新课:通过讲解日常生活实例,引导学生了解单相桥式整流滤波电路的应用。
2. 讲解基本原理:介绍单相桥式整流滤波电路的基本原理,解释其工作过程。
3. 分析电路图:讲解单相桥式整流滤波电路的电路图,阐述各元器件的功能。
4. 演示实验:进行实验演示,让学生观察并理解单相桥式整流滤波电路的工作过程。
5. 应用实例:介绍单相桥式整流滤波电路在实际应用中的案例,让学生了解其应用领域。
6. 优缺点分析:讨论单相桥式整流滤波电路的优缺点,让学生了解其在实际应用中的限制。
七、课堂互动1. 提问:让学生回答关于单相桥式整流滤波电路的问题,检查学生对知识点的掌握。
2. 小组讨论:让学生分组讨论单相桥式整流滤波电路的应用实例,分享各自的见解。
3. 解答疑问:针对学生提出的问题,进行解答,帮助学生克服学习难点。
八、课堂练习1. 让学生根据电路图,分析单相桥式整流滤波电路的工作过程。
2. 让学生设计一个简单的单相桥式整流滤波电路,并分析其优缺点。
整流滤波电路设计实验前言:交流电(英语:Alternating CurrentAlternating CurrentAlternating CurrentAlternating Current,简写ACACACAC)是指大小和方向都发生周期性变化的电流,因为周期电流在一个周期内的运行平均值为零(不含直流成分),称为交变电流或简称交流电。
不同于方向不随时间发生改变的直流电。
通常波形为正弦曲线。
但实际上还有应用其他的波形,例如三角形波、正方形波。
生活中使用的市电就是具有正弦波形的交流电。
交流电升降压容易的特点正好适合实现高压输电,从而使电线上的电力损失极少,被广泛运用于电力的传输。
传输的电流在导线上的耗散功率可用P = I2R(功率=电流的平方×电阻)求得,显然要降低能量损耗需要降低传输的电流或电线的电阻。
由于成本和技术所限,很难降低目前使用的输电线路(如铜线)的电阻,所以降低传输的电流是唯一而且有效的方法。
根据P=IV(功率=电流×电压,实际上有效功率P = IVcosφ),提高电网的电压即可降低导线中的电流,以达到节约能源的目的。
近年来直流变压及输电技术取得了长足的发展,而高压直流输电的浪费会比较小;因此未来有望取代交流电以解决交流电的安全性和交直流转换问题。
在城市内一般使用降压变压器将电压降至几万至几千伏以保证安全,在进户之前再次降低至市电电压(中国、香港220V)或者适用的电压供用电器使用。
一般使用的交流电为三相交流电,其电缆有三条火线和一条公共地线,三条火线上的正弦波各有120°之相位差。
对于一般用户只使用其中的一或两条相线(一条时需要零线)。
实际在我们日常生活中,交流电入户之后进入电器,电器里面都会有电源模块将交流电转化为直流电供电器使用。
在有些工业上如电解和电镀等,也可利用整流设备,将交流电转化为直流电。
摘要:随着科技的进步,生活中的电器是我们的生活变的更加的方便快捷,但是很多电器的使用要求是直流电,而我们的家用电是220V交流电,这就要求电器内部拥有能将交流电转换为直流电的装置,在这里我们就讨论一种能够实现需求的电路——整流滤波电路,学习了解其工作原理对于以后的更加深度的学习有着重要的意义。
课程设计任务书目录1 课程设计的目的与作用 (1)1.1 课程设计的目的 (1)1.2 课程设计的方法 (1)2 设计任务、及所用multisim软件环境介绍 (1)2.1 设计任务 (1)2.1.1单相桥式整流电容滤波电路 (1)2.1.2矩形波发生器 (1)2.1.3音调发生电路 (1)2.1.4微变积分电路 (1)2.2 Multisim软件环境简介 (1)2.2.1 Multistim 10简介 (1)2.2.2 Multistim 10主页面 (2)2.2.3 Multistim 10元器件库 (2)2.2.4 Multistim 10虚拟仪器 (3)2.2.5 Multistim 10分析工具 (3)3 电路模型的建立 (4)3.1单相桥式整流电容滤波电路 (4)3.2矩形波发生器 (4)3.3音调发生电路 (5)3.4微变积分电路 (5)4 理论分析及计算 (6)4.1理论分析 (6)4.1.1单相桥式整流电容滤波电路 (6)4.1.2矩形波发生器 (6)4.1.3音调发生电路 (6)4.1.4微变积分电路 (6)4.2工作原理 (6)1 课程设计的目的与作用1.1 课程设计的目的(1)了解并掌握Multisim软件,并能熟练的使用其进行仿真;(2)加深理解单相桥式整流电容滤波电路的组成及性能;(3)进一步学习整流电路基本参数的测试方法。
1.2 课程设计的方法通过自己动手亲自设计和用Multistim软件来仿真电路,不仅能使我们队书上说涉及到的程序软件有着更进一步的了解和掌握,而且通过计算机仿真,避免了实际动手操作时机器带来的误差,使我们对上课所学到的知识也有更深刻的了解。
2 设计任务、及所用multisim软件环境介2.1设计任务2.1.1单相桥式整流电容滤波电路设计单相桥式整流电容滤波电路,使输出电压成为比较平滑的直流电压,电路由自己独自设计完成,在实验中通过自己动手调试电路,能够真正掌握实验原理,即静态分析和动态分析,并在试验后总结出心得体会。
《EDA电子设计》实验报告实验名称Muitisim仿真学院自动化学院专业班级c-oc I ■*一、实验目的1、把握Multisim 电子电路仿真软件的利用,并能进行电路分析和仿真。
2、把握组合逻辑电路的设计方式和多路选择器集成电路的利用,利用其实现逻辑电路的设计。
3、熟悉单相半波、全波、桥式整流电路。
4、观看了解电容滤波作用,并了解并联稳压电路。
二、步骤图1测试138译码器2、保留电路后,对电路进行调试和仿真:启动仿真开关,按1,2,3对J3,J1,J2进行开关调试,二进制对应的十进制指示灯会亮暗。
实验结果保留为测试138译码器.msm3、画出半波整流电路、桥式整流电路,如图2,、图3,用示波器观看输入、输出的波形,如以下图4,图5,并测的VA=30V,VB=30V..XSL :-1ABJ..1图2半波整流电路TSAUDIO10Tu1D2i.OkohmD41N4004G=图3桥式整流电路创建如下电容滤波实验电路:R1先不接,别离用不同的电容接入电路,用示波器观看波形,如图,并测得VB ;接上R1,先用R1=1KQ,重复上述实验并记录;将R1换为150Q ,重复上述实验。
三、参数设置1、半波整流电路、桥式整流电路均是交流输入、直流输出,因此示波器的A 通道选择AC ,B 通道选择DC 方式输出。
按暂停后,对Timebase 进行调整,便于观看波形为宜;对A 通道幅值进行调整,选择20V/Div 时有利于观看;对1匸匚4、B通道同理,最后选择10V/Div2、电容有平波作用,因此示波器的A通道选择AC,B通道选择DC方式输出四、结果1、半波整流电路(图4)2、桥式整流电路(图5)3、电容滤波电路⑴R1不接,接C1:R1不接,接C2:⑵接R1=1KQ,Cl:Oscilloscope-XSClGround10ms-'TiiviovyDi-...-10V :''DivLI.D YpositionDCBChannelB YpositionD.D[A£~ojDC ]Iul-tis_eter--TlmebaseChannelATrigger Edge _Ll LevelXposition|Y/TAddT2-T1VW2-VA1 WZVB122.519VA |pT G |dR |接Rl=lKQ,C2:10WDiv LI.D DCILI.D LI.U LI.DScale Yposition[A C -_D_!DVyDivOscilloscope —XSC1T EE baseScale10ms/Div Xposition10.0 I'TTr.AddGroundChannelA 7.9s 11.uU28.3VT2-T1 28.163VA |G |dB |ReverseTriggerRgeLyirelLI Sing,|Nor.[A-ito[ChannelB ScaleYposition10-0 AC|DDC~-|F(3)Rl=150Q,接Cl:Rl=150Q,C2:。
《模拟电子技术》演示实验库实验11:桥式整流电容滤波电路一、教学目的1. 演示桥式整流输出电压的波形并与变压器次级波形作比较。
2. 演示加有电容滤波的输出电压的波形,负载变化后对输出电压波形的影响。
3. 测试各种情况下的输出电压,演示当一支二极管开路、短路后输出电压的变化,加深理解桥式整流电路的应用。
二、演示内容1. 创建单相桥式整流、电容滤波实验电路(1)启动Multisim进入Multisim工作界面。
(2)按图11.1在电路工作区连接电路图11.1 单相全波整流电容滤波实验电路◆安放元器件(或仪器)单击打开相应元器件库(或仪器库),将所需元器件(或仪器)拖拽至相应位置。
利用工具栏的旋转、水平翻转、垂直翻转等按钮使元器件符合电路的安放要求。
◆连接电路(3)按图11.1所示,给元器件标识、赋值(或选择模型)双击元器件打开元件特性对话框,进行相应设置。
全波整流波形电源电压波形(示波器面板波形显示框)图11.2 电源与全波整流波形◆信号源u s单击Label,键入单相交流电源Us。
单击Value,设置Vo1tage:200V,Frequency:50Hz,Phase:0。
◆变压器Tr单击“Label”,键入Tr 10:1。
单击Mode1s,选中Library 中的default和Model中的ideal,单击“Edit”按钮打参数设置对话框,在“primary to Secondary tums ratio”框键入“10”,单击“确定”。
◆整流桥堆D×4单击Labe1,键入D×4,单击Models,选中Library中的general1和Model中的BYM10.100,单击“确定”。
◆电容C单击Labe1,键入滤波电容C。
单击V alue,将“Capacitance”设置为20μF,单击“确定”。
◆开关K单击Label,键入K,单击确定。
由于只有一个开关,故控制键可采用其缺省设置的“Space”(空格键)。
提问导入: 什么电子 设备需要 用到直流 电?激发 兴趣手机数码相机基础知识整流和滤波电路NOKIA^ At* X?¥艰E|J ■中US 筑二用口置5 E^SKSFOLFIMIW EC MCI ShGflr. □KUiX LH# gGHdlS 旧8M ADE 周UF 川提问:如何 得到直流 电曜rm:党口叶 PftOPf ?LV M^EMFuXEF 导入:1、什么电子设备需要用到直流电?㈠单相桥式整流电路将交流电变换为直流电(脉动)的过程称为整流,利用二极管的单向导 电性可以实现整流整流电路单相整流电路三相整流电路,根据整流电路的形式还可分为半 波、全波和桥式整流电路。
1 .电路结构单相桥式整流电路如图1-7所示。
在电路中,4只整流二极管连接成电 桥形式,称为桥式整流电路。
常有如图1-7所示的几种形式的画法,其中图(c )为单相桥式整流电 路最常用的简单画法。
数码相机锂电手机充电器电脑电源 直流稳压电源结合演示 讲解⑻电路面法1 0)电路画法2 (c)匍化国法图1-7单相桥式整流电路2.工作原理在交流电压u2的正半周(即0〜2「时,整流二极管VD1、VD3正偏导通,VD2、VD4反偏截止,产生电流i L通过负载电阻R L,并在负载电阻R L 上形成输出电压u L,如图1-8(a)所示。
在交流电压u2的负半周(即t1~t2)时,整流二极管VD2、VD4正偏导通,VD1、VD3反偏截止,产生电流i L同样通过负载电阻R L,并在负载电阻R L上形成输出电压u L,如图1-10(b)所示。
输出信号的波形如图1-10(c)所示。
结合演示讲解VEH]如老、VD1-VD4图1-8单相桥式整流电路工作原理在交流电压u9的一个周期(正、负各半周),都有相同一方向的电流流2过RL,4只整流二极管中,两只导通时另两只截止,轮流导通工作,并以周期性地重复工作过程。
在负载R L上得到大小随时间看改变但方向不变的全波脉动直流输出电流i L和输出电压u L,所以这种整流电路属于全波整流类型。
桥式整流、滤波及稳压电路
一、实验目的
1.学会半导体二极管和稳压管极性的简单测试,了解其工作性能和作用;
2.掌握单相桥式整流、滤波、稳压电路的工作原理和对应电压波形及测试方法;
3.掌握输入交流电压与输出直流电压之间的关系;
4.了解倍压整流的原理与方法。
二、实验原理
整流电路是将交流电变为直流电以供负载使用。
直流稳压电源先通过整流电路把交流电变为脉动的直流电,再经各种滤波电路、稳压电路,使输出直流电压维持稳定。
由整流、滤波、稳压环节构成的简单稳压电路如图1所示
图1 桥式整流、滤波、稳压电路
三、实验仪器设备
注意事项:切勿用毫安表测电压。
注意万用表的交直流电压挡、欧姆挡的转换及量程的选择;防止误操作,避免电源短路、烧损二极管和电容;
四、实验内容与要求根据实验室提供的实验设备完成以下实验内容的设计:
1.用万用表测量二极管,学会用万用表检查二极管极性和性能的好坏。
2.设计并连接单相桥式整流电路,调节负载电阻,使负载电流分别为2mA和8mA,测量并记录输入交流电压、整流电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述
3.设计并连接具有滤波的单相桥式整流电路,调节负载电阻,使负载电流分别为2mA和8mA 时,测量并记录输入交流电压,整流滤波电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述电压的波形。
4. 在上一个电路(单相桥式整流、滤波电路)中,若改变滤波电容的容量,输出波形会发生什么样的变化?若改变负载电阻,输出波形会发生怎样的变化?
5.
6.设计并连接具有滤波、稳压的单相桥式整流电路,在下列两种情况下,测量并记录输入交流电压、整流滤波电路的输出直流电压和负载两端的电压的大小,用示波器观察并画出上述电压的波形。
(2) 当负载电流保持5mA不变时,使电源电压波动,即使输入的交流电压有效值在15V左右变。