国内外典型气流床煤气化技术概述
- 格式:pdf
- 大小:1.76 MB
- 文档页数:4
国内外各种先进煤气化技术一、引言二、煤气化技术概述:2.1 固定层制气工艺(移动床)2.2 流化床气化工艺2.3 气流床气化工艺2.4 其他煤气化技术三、国内主流煤气化技术详解3.1 Lurgi(鲁奇)煤气化技术3.2 Texaco(德士古)煤气化技术3.3 Shell煤气化技术工艺3.4 GSP煤气化技术3.5 Dow煤气化工艺3.6 Texaco、Shell、GSP三种气化技术对比四、其它煤气化技术4.1 第三代煤气化技术4.2 组合气化炉煤气化法五、国内外煤气化的技术现状和发展趋势5.1 国外技术现状和发展趋势5.2 国内的技术现状和发展趋势5.3 国内工业化煤气化装置技术最新成果一、引言我国石油资源相对短缺,仅占化石能源探明储量的51.3%,开采量仅为世界开采量的21.4%,石油供需矛盾日益突出。
由于世界资源日趋减少,中东地区战乱不止,石油价格动荡不稳因此大量依赖石油进口将严重威胁我国国民经济的运行安全。
同时,我国煤炭资源丰富,探明可采储量2040亿t(2002年)。
煤炭在一次能源消费结构中占有主导地位,20世纪80年代以来一直在70%上下。
专家研究认为,在未来相当长时期内,一次能源消费结构中煤炭仍将居主导地位,到2050年将维持在50%以上。
目前国内发展煤气化合成化工产品的势头很旺特别是在产地,一批新的煤化工项目开始起步,老企业正以现代新技术改造传统落后的生产装置,以油为原料的大、中型合成氨厂开始进行煤代油的技术改造。
通过改造可以达到降低生产成本,改善环境状况之目的。
本文针对这一情况综合介绍国内煤气化技术现状,并对目前主流煤气化技术作一横向对比。
煤炭气化,即在一定温度、压力条件下利用气化剂(O2、H2O或CO2)与煤炭反应生成洁净合成气(CO、H2的混合物),是对煤炭进行化学加工的一个重要方法,是实现煤炭洁净利用的关键。
煤炭气化技术,尤其是高压、大容量气流床气化技术,显示了良好的经济和社会效益,代表着发展趋势,是现在最清洁的煤利用技术,是洁净煤技术的龙头和关键。
气流床加压气化工艺介绍一、工艺原理本煤气化技术属气流床加压气化工艺。
浓度60.5%的水煤浆通过煤浆给料泵加压与高压氧气(纯度99.6%)通过四个对称布置在气化炉中上部同一水平面的工艺喷嘴对喷进入气化炉燃烧室。
对喷撞击后形成6个特征各异的流动区,即射流区、撞击区、撞击流股、回流区、折返流区和管流区组成。
利用煤的部分氧化释放出热量,维持在该煤种灰熔点温度以上进行气化反应。
炉内温度约1350℃,反应过程非常迅速,一般在4—10秒内完成。
(1)射流区:流体从喷嘴以较高速度喷出后,由于湍流脉动,射流将逐渐减弱,直至与相邻射流边界相交。
同时受撞击区较高压力的作用,射流速度衰减加快,射流扩张角也随之加大,此后为撞击区。
(2)撞击区:当射流边界交汇后,在中心部位形成相向射流的剧烈碰撞运动,该区域静压较高,且在撞击区中心达到最高。
此点即为驻点,射流轴线速度为零,由于相向流股的撞击作用,射流速度沿径向发生偏转,径向速度(即沿设备轴向速度)逐渐增大。
撞击区内速度脉动剧烈,湍流强大、混合作用好。
(3)撞击流股:四股流体撞击后,流体沿反应器轴向运动,分别在撞击区外的上方和下方形成了流动方向相反,特征相同的两个流股。
在这个区域中,撞击流股具有与射流相同的性质,即流股对周边流体也有卷吸作用,使该区域宽度沿轴向逐渐增大,轴向速度沿径向衰减,直至轴向速度沿径向分布平缓。
(4)回流区:由于射流和撞击流股都具有卷吸周边流体的作用,故在射流区边界和撞击流股边界,出现在回流区。
(5)折返流区:沿反应器轴线向上运动的流股对拱顶形成撞击流,近炉壁沿着轴线折返朝下运动。
(6)管流区:在炉膛下部,射流、射流撞击、撞击流股,射流撞击壁面等特征消失,轴向速度沿径向分布保持不变,形成管流区。
水煤浆、氧气进入气化室后,相继进行雾化、传热、蒸发、脱挥发份、燃烧、气化等六个物理和化学过程,前五个过程速度较快,已基本完成,而气化反应除在上述五区中进行外,主要在管流区中进行。
国内外煤气化技术概述煤气化技术的研发已有200多年的历史,根据气化炉所使用的煤颗粒大小和颗粒在气化炉内的流动状态,气化炉总体上分为三类,即以鲁奇为代表的固定床气化炉、以U—Gas、灰熔聚为代表的流化床气化炉和以德士古、壳牌为代表的气流床气化炉。
1.1 鲁奇固定床气化技术鲁奇固定床气化技术产生于20世纪40年代,由鲁奇公司开发。
鲁奇炉以8~50mm粒度、活性好、不黏结的无烟煤、烟煤或褐煤为原料,煤从气化炉的项部加入,而气化剂从炉子的下部供入,因而气固间为逆向流动,随着反应的进行,煤在气化炉内缓慢移动。
鲁奇固定床气化的压力可达3.0MPa,气化温度为900~1050℃,单炉投煤量一般为1000ffd(最大可达1920ffd),采用固态排渣方式。
典型的鲁奇固定床气化炉对燃料的要求比较高,尤其不宜使用焦结性煤。
由于气化温度较低,产生的煤气中不可避免的含有大量的沥青、焦油,因此需要对粗煤气进行分离净化。
为简化复杂的粗煤气净化流程,提高气化效率,英国煤气公司在固作态排渣鲁奇炉的基础上,进一步提高了气化温度,以强化气化过程,发展成液态排渣鲁奇炉⋯。
鲁奇气化炉起初主要用于生产城市煤气,后发展到生产合成油、氨、甲醇等,以及燃气。
我国云南解化集团等许多单位采用该技术用于合成氨。
由于鲁奇气化炉生产合成气时,气体成分中甲烷含量高(8~10%),且含焦油、酚等物质,气化炉后需要设置废水处理及回收、甲烷分离转化装置,用于生产合成气生产流程长、投资大,因此单纯生产合成气较少采用鲁奇气化炉。
1.2 GSP气流床气化技术GSP工艺技术由前民主德国的德意志燃料研究所开发,始于20世纪70年代末。
GSP气化炉由烧嘴、冷壁气化室和激冷室组成。
烧嘴为内冷多通道的多用途烧嘴,冷却水分别在物料的内中、中外层之间和外层之外,冷却方式比较均匀,可以使烧嘴温度保持在较低水平。
固体气化原料被碾磨为不大于0.5mm的粒度后,经过干燥,通过浓相气流输入系统送至烧嘴。
第六章气流床气化工艺气流床气化法是20世纪50年代初发展起来的新一代煤气化技术,最初代表炉型为K—T炉。
之后随着shell、Texaco等一批新型工艺的开发,气流床气化技术因其出色的生产能力和气化效率,在世界范围内得到了广泛的应用,尤其是在燃气联合循环中。
目前绝大多数IGCC电站所选的是气流床气化炉,主要炉型为Texaco、Shell、E-Gas(原Destec)以及Prenflo 等。
第一节概述表6-2 三种气化技术比较二气流床气化原理1 气化原理(1)粉煤的干燥及裂解与挥发物的燃烧气化•可以认为煤粉中的残余水分瞬间快速蒸发,同时发生快速的热分解脱除挥发分,生成半焦和气体产物(CO 、及其他碳氢化合物)。
•生成的气体产物中的可燃成分在富氧条件下,迅速与氧气发生燃烧反应,并放出大量的热,使粉煤夹带流温度急剧升高,并维持气化反应的进行。
42222CH N S H CO H 、、、、n m H C 22242222222222222222)2/()2/()2/()4/(CO O H O CH OH O H CO O CO H n mCO O m H C O H n mCO O n m H C n m n m +=+=+=++=++=++(6-1)(6-2)(6-3)(6-4)(6-5)二气流床气化原理1 气化原理(2)固体颗粒与气化剂(氧气、水蒸气)间的反应•氧与剩余焦粒发生燃烧和气化反应。
•炽热的半焦与水蒸气进行还原反应,生成CO 和。
2H CO O C CO O C 22222=+=+2222222CO H O H C CO H O H C +=++=+(6-6)(6-7)(6-8)(6-9)二气流床气化原理1 气化原理(3)生成的气体与固体颗粒间的反应•高温的半焦颗粒,除与气化剂水蒸气和氧气进行气化反应外,与反应生成气也存在气化反应。
•煤中的硫,在高温还原性气体存在的条件下,与和CO 反应生成和。
气流床气化工艺
气流床气化工艺是一种高效的能源转化技术,它可以将各种固体燃料转化为可燃气体,如煤、木材、废弃物等。
这种技术的优点在于它可以将废弃物转化为能源,减少了废弃物的数量,同时也减少了对传统能源的依赖。
气流床气化工艺的基本原理是将固体燃料放入气流床中,通过高温气流的作用,将燃料分解成可燃气体。
这种技术的优点在于它可以在不使用氧气的情况下进行气化,从而减少了氧气的消耗,同时也减少了氧气的污染。
气流床气化工艺的应用范围非常广泛,可以用于生产燃气、合成气、液体燃料等。
在燃气生产方面,气流床气化工艺可以将煤、木材等固体燃料转化为燃气,从而减少了对传统燃气的依赖。
在合成气方面,气流床气化工艺可以将煤、木材等固体燃料转化为合成气,从而用于化学工业、石化工业等领域。
在液体燃料方面,气流床气化工艺可以将煤、木材等固体燃料转化为液体燃料,从而用于汽车、船舶等领域。
气流床气化工艺的发展前景非常广阔,它可以为我们提供更加清洁、高效的能源转化技术。
同时,气流床气化工艺也可以为我们解决废弃物处理的问题,从而减少了对环境的污染。
因此,我们应该加强对气流床气化工艺的研究和开发,推广其应用,为我们的经济发展和环境保护做出贡献。
气流床气化工艺摘要:煤炭气化是煤利用的主要内容之一,而气流床气化是煤炭气化的一种重要形式。
本文立足我国煤炭气化现状,对目前国际上比较成熟先进的气化工艺(Texaco气化工艺法、shell煤气化工艺法)做了简单介绍。
同时,也阐明了我国未来煤气化的发展方向。
关键词:气流床;煤气化;气化炉;气化工艺;加压气化;环境;引言随着中国经济的快速增长,对能源的需求在与日俱增。
我国是一个多煤贫油少气的国家,如何充分高效率的利用质量参差不等、数量有限且不可再生的煤炭资源是一个摆在国人面前的世纪问题,这关乎民生,也关系到国家的长足发展。
另外,煤炭的开发利用带来了严重的环境问题,这是亟待解决的。
气流床煤气化工艺为煤的洁净高效利用提供了一种可能的途径,这也是本文着重要讨论的。
1、煤炭气化概述气流床气化是一种并流式气化。
气化剂(氧气与蒸汽)将煤粉(70%以上的煤粉通过200目筛孔)夹带入气化炉,在1600~1800℃高温下将煤进一步转化为CO、H2、CO2等气体,残渣以熔渣形式排出气化炉。
也可以将煤粉制成煤浆,用泵送入气化炉,在气化炉内,煤炭细粉粒与气化剂经特殊喷嘴进入反应室,会在瞬间着火,直接发生火焰反应,同时处于不充分的氧化条件下。
因此,其热解、燃烧以及吸热的气化反应,几乎是同时发生的。
随着气流的运动,未反应的气化剂、热解挥发物及燃烧产物夹裹着煤焦粒子高速运动,运动过程中进行着煤焦颗粒的气化反应。
这种运动形态,相当于流化领域例对固体颗粒的“气流输送”,习惯上称为气流床气化。
1.1 气流床气化技术特点1)煤种适应性强.入炉煤以粉状(或湿式水煤浆状)喷入炉内,各个微粒被高速气流分隔,并单独完成热解、气化及形成熔渣,无相互作用,不会在膨胀软化时造成黏结,即不受煤的黏结性影响.原则上各种煤都可用于气流床气化,但炉内气化温度应高于煤的灰熔点,以利于熔渣的形成.此外,从经济角度来看,应选择褐煤等挥发分高而固定碳少的煤,可大大改善气化条件;人炉的原料煤越细越好,煤粒越小,比表面积越大,气化速度越快,反应时间越短,碳转化率也越高.2)反应物在炉内停留时间短,反应时间约为1s~3 s.随煤气夹带出炉的飞灰中含有未反应完的碳,采取循环回炉的方法可以提高碳转化率;而且由于煤粉在气化炉内停留时间极短,为了完成反应,必须维持很高的反应温度.所以常常采用纯氧作为气化剂,气化温度可高达1 500℃,灰渣以熔融状态排出,熔渣中含碳量低.液体熔渣的排渣结构简单,排渣顺利.但是炉壁衬里受高温熔渣流动侵蚀,易于损坏,影响寿命.3)为了达到1 500℃左右的气化温度,氧气耗量较大,影响经济性.随着高温下蒸汽分解率的提高,蒸汽耗量有所减少.4)出炉煤气温度很高,显热损失大,可用废热锅炉回收热量,提高热效率.为了防止黏性灰渣进入废热锅炉,可先用循环冷煤气将出炉煤气激冷到900℃~1 100℃,并分离出灰渣,再进入废热锅炉.5)出炉煤气的组分以C0,H2,C02和H2O为主,CH4含量很低,热值并不高.产品中不含焦油.煤气产品中有效成分高,不产生含酚废水,烟气净化装置简单.1.2影响气流床气化的主要因素1)高气化温度.气化温度可达1 500℃以上.炉内高温是由煤粉在纯氧下燃烧或部分燃烧释放的热量而保持的,与此同时,碳粒与水蒸气或C02发生吸热的还原反应.提高炉内温度有利于加快反应速度,提高气化强度和生产能力.同时,由于炉内反应速度的提高,炉中的煤粉即使在很短的时间内也能完全气化,获得很高的碳转化率。
(1) 国外煤气化技术概况以煤为原料的气化方法主要有移动床、流化床和气流床等。
a、移动床气化技术移动床气化技术较为先进的有鲁奇(Lurgi)气化技术。
该技术虽然能连续加压气化,但由于气化温度低,生成气中甲烷含量大,同时生成气中含苯、酚、焦油等一系列难处理的物质,净化流程长;尤其是该技术只能用块煤不能用粉煤,因而原料利用率低,大量筛分下来的粉煤要配燃煤锅炉进行处理。
此技术经过英国煤气公司和鲁奇公司于二十世纪七十年代联合开发,开发出一种新炉型(BGL气化炉),将鲁奇炉固态排渣改为熔融排渣,同时提高了气化反应温度,提高了块煤中粉煤的利用率,气化效率和气体成分有了很大改进,废水排放量及组分减少,污染问题也有所改善。
现有一台工业示范炉在德国黑水泵厂运行,用于处理城市垃圾,所用原料为各种城市垃圾、废塑料和烟煤。
BGL气化炉气化压力为2.0~4.0MPa,气化温度约为550℃。
我国云南解放军化肥厂于2004年引进了一台BGL气化炉,气化炉直径约为φ2800mm。
b、流化床气化技术流化床气化技术主要有德国温克勒(Winkler)流化床粉煤气化技术。
该技术压力较低,建有生产燃料气的装置,目前没有生产合成气的装置。
c、气流床气化技术气流床气化技术有美国GE公司水煤浆加压气化(GEGP)技术、荷兰壳牌谢尔(Shell)粉煤加压气化技术、德国未来能源公司GSP粉煤气化技术。
(2) 国内气化工艺技术概况a、固定床气化固定层间歇气化技术,该工艺以无烟煤为原料,采用空气和蒸汽作为气化剂;投资低,技术成熟,目前我国小氮肥、小甲醇厂90%以上采用该工艺生产。
该技术气化效率低,单炉产气量少,常压间歇气化,吹风过程中放空气对环境污染严重,每吨合成氨的吹风放空气量达2800~3100立方米。
该技术在国外已被淘汰。
国内固定床气化还有富氧连续气化技术,虽然该技术连续气化无吹风气排放,污染较少,但只能采用焦炭或无烟煤作原料,原料价格高;且生成气中氮气含量高,不适合作合成甲醇的原料气。
气流床煤气化技术1、Texaco水煤浆加压气化技术Texaco气化工艺最早开发于20世纪40年代后期。
由美国德士古(Fexaco)石油公司开发,该技术现属美国GE公司所拥有,又称为GE气化技术,国外已于20世纪80年代成功用于商业运行,1983年美国EASTMAN生产甲醇、醋酸酐,1984年日本UBE生产氨;1984年、1996年美国在Coo l‐water和Tampa建成IGCC装置;我国鲁南化肥厂于1993年建成首套德士古气化装置用于生产氨。
兖矿鲁南化肥厂的德士古气化装置,是我国从国外引进的第一套德士古煤炭气化装置,采用水煤浆进料在加压下来生产合成氨的原料气体。
目前Texaco气化装置在第二代气流床技术中,建设装置最多、商业运行时间最长、用于化工生产技术成熟可靠。
德士古气化是第二代气流床水煤浆气化技术的代表,以水煤浆单烧嘴顶喷进料,耐火砖热壁炉,激冷流程为主。
(1)Texaco水煤浆气化工艺原理Texaco水煤浆气化属气流床气化工艺技术,即水煤浆与气化剂(纯氧)在气化炉内特殊喷嘴中混合,高速进入气化炉反应室,遇灼热的耐火砖瞬间燃烧,直接发生火焰反应。
微小的煤粒与气化剂在火焰中作并流流动,煤粒在火焰中来不及相互熔结而急剧发生部分氧化反应,反应在数秒内完成。
在上述反应时间内,放热反应和吸热反应几乎是同时进行的,因此产生的煤气在离开气化炉之前,碳几乎全部参与了反应。
在高温下所有干馏产物都迅速分解转变为均相水煤气的组分,因而生成的煤气中只含有极少量的CH4。
Texaco水煤浆气化炉所得煤气中含有CO、H2、CO2和H2O四种主要组分,它们存在平衡关系:CO+H2O⇋ CO2+H2。
在气化炉的高温条件下,上述反应很快达到平衡,因此气化炉出口的煤气组成相当于该温度下一氧化碳水蒸气转化反应的平衡组成。
(2)Texaco水煤浆气化主要设备①Texaco气化炉气化炉为一直立圆筒形钢制耐压容器,内壁衬以高质量的耐火材料,可以防止热渣和粗煤气的侵蚀。
国内外煤气化技术调研摘要:介绍了煤气化技术的种类和各种气化炉的特点、气化技术工艺流程、进料方式和气化后工艺等。
关键词:煤气化,气化炉,工艺煤气化是洁净、高效利用煤炭的主要途径之一,被誉为煤化工产业的龙头技术。
实践证明:在将煤炭转化为更便利的能源和产品形式的各种技术中,煤气化是最应优先考虑的一种加工方法。
1 煤气化的种类及特点煤气化技术可归纳为固定床、流化床和气流床三大类。
1.1 固定床煤气化技术固定床煤气化技术的气化炉主要包括间隙固定床气化炉UGI、鲁奇(Lurgi) 气化炉、BGL (鲁奇改进)气化炉,其技术参数见表1。
表1 几种固定床气化炉的技术参数注:*以标态下生产1 000 m3(CO+H2)为基准,下同。
(1) UGI常压固定床气化技术的优点是操作简单、投资少,但技术落后、能力和效率低、污染严重。
以常压中Φ2650 mm气化炉为例,单台炉投煤量仅60 t/d,且要求原料为25mm~80 mm的无烟块煤或焦炭。
(2) 鲁奇(Lurgi)气化炉工艺成熟可靠,气化温度900℃~1250℃,包括焦油在内的气化效率、碳转化率、气化热效率都较高,氧耗是各类气化工艺中最低的,原料制备、排渣处理成熟。
煤气热值是各类气化工艺中最高的,最适合生产城市煤气。
若选择制合成气,该工艺存在以下问题:①煤气成分复杂,合成气中含甲烷体积分数在7%~10%,如将这些甲烷转化为H2和CO,投资大、成本高;②冷凝污水量大,污水中含有大量的焦油、酚、氨、脂肪酸、氰化物等,因此需建焦油回收装置以及酚、氨回收和生化处理装置,增加了投资和原材料消耗;③气化原料为15mm~50 mm的块煤,块煤价格高,增加了生产成本。
(3) BGL气化炉是在鲁奇(Lurgi)炉基础上,由固态排渣改为液态排渣,可直接气化含水质量分数大于20%的各种煤;在1400℃~1600℃高温气化条件下,蒸汽用量大幅下降,90%~95%的蒸汽在气化过程中分解,不仅提高了气化效率,而且使气化废水量减少80%以上,减小了酚和氨回收装置的规模;气化炉炉体结构简单,采用常规压力容器材料和常规耐高温炉衬及循环冷却水夹套即可满足要求。
煤气化综述(大型煤气化技术的研究与发展)已工业化的煤气化技术可分为3 类:〃以Lurgi技术为代表的固定床气化技术〃以HTW 技术为代表的流化床气化技术〃以Texaco、Shell、多喷嘴对臵气化技术为代表的气流床气化技术。
气流床气化炉气化温度与压力高、负荷大,煤种适应范围广,是目前煤气化技术发展的主流。
国外已工业化的煤气化气流床煤气化技术主要有以水煤浆为原料的GE(Texaco)气化技术、Global E-Gas 气化技术,以干粉煤为原料的Shell 气化技术、Prenflo气化技术、GSP 气化技术等。
1.1 GE(Texaco)气化技术Texaco 气流床气化技术的开发始于20 世纪40年代,1950 年首先在天然气非催化部分氧化上取得成功,1956 年又应用于渣油气化。
在50 年代Texaco公司就有将其技术应用于煤气化的计划,并进行了部分研究工作。
70 年代的石油危机促使Texcao 公司将目光再一次投向煤气化技术。
70 年代末建设了2 套示范装臵,分别为德国的RAG 和美国加州的Cool Water,1983~1985 年分别在日本的UBE 公司和美国的Eastman 公司建设了3 套商业化装臵。
90年代Texaco 煤气化技术共有9 套装臵投入运转,其中5 套在中国,4 套在美国。
目前,在建和运转的Texaco 气化炉约有80 多台。
1.2 Global E-Gas 气化技术E-Gas 气化技术最早由Destec 公司开发,采用水煤浆原料,两段气化,后被Dow 公司收购。
E-Gas气化技术的开发始于1978 年,在美国路易斯安娜州的Plaguemine 建立了日处理15 t 煤的中试装臵,其后于1983 年建立了单炉550 t/d 煤的示范装臵,于1987 年建设了单炉1600 d/t 煤气化装臵,配套165MW IGCC 电站,这两套装臵均位于Plaguemine。
基于这两套装臵的经验,在路易斯安娜州的 TerraHaute 建立了单炉2500 t/d 的气化装臵,配套WabashRiver 的260 MW 的IGCC 电站,该电站于1996 年投入运行,发电效率40%。
气流床气化工艺气流床气化工艺是一种先进的生物质能源转化技术,通过在高温气流中将固体生物质转化为可燃气体,同时产生热能。
这一技术在能源利用和环保方面有着重要的应用前景,对于推动清洁能源发展、减少化石能源消耗具有重要意义。
气流床气化工艺的原理是利用高温气流对生物质进行气化反应,将生物质中的碳、氢、氧等元素转化为可燃气体,主要成分包括一氧化碳、氢气、甲烷等。
这些可燃气体可以用作燃料供给发电机组发电,也可以用于工业生产中的燃烧或化学反应。
在气流床气化工艺中,生物质被送入气化炉中,通过控制气化温度、气化压力和气流速度等参数,实现生物质的快速热解和气化过程。
在高温气流的作用下,生物质中的大分子有机物被分解成小分子气体,并释放出热能。
同时,气化炉中的气氛是还原性的,有利于生成一氧化碳等可燃气体。
气流床气化工艺与传统燃煤发电相比具有诸多优势。
首先,生物质是可再生资源,气化过程不会增加二氧化碳等温室气体的排放量,有利于减少对环境的污染。
其次,气流床气化技术可以实现生物质资源的高效利用,提高能源利用效率。
再者,气化产生的可燃气体可以替代天然气、煤炭等传统燃料,降低能源成本,减少对非可再生资源的依赖。
气流床气化技术在生物质能源、城市垃圾处理、工业废物处理等领域得到了广泛应用。
在生物质能源领域,气流床气化技术可以处理各类生物质原料,如秸秆、木屑、废弃木材等,实现生物质能源的高效利用。
在城市垃圾处理领域,气流床气化技术可以将垃圾转化为可燃气体和灰渣,实现垃圾资源化利用。
在工业废物处理领域,气流床气化可以处理各类有机废物,减少废物排放对环境的影响。
总的来说,气流床气化工艺是一种具有广阔应用前景的生物质能源转化技术。
通过将生物质转化为可燃气体,实现能源利用和环保的双重目标,有助于推动清洁能源发展,减少对化石能源的依赖。
随着技术的不断进步和应用领域的拓展,气流床气化技术将在未来发挥更加重要的作用,为可持续发展做出贡献。
气流床煤气化技术的现状及发展摘要:煤炭资源是我国应用非常广泛的一种资源类型,目前国内的工业发展依然以煤炭能源结构为主,而气流床煤气化作为碳转化率较高的一种工业生产方式,其重要性不言而喻,该工艺技术也是笔者将要同大家进行分享和探究的主要内容。
关键词:气流床煤气化技术;应用现状;发展趋势引言:煤气化技术是我国现阶段煤化工生产中所使用到的关键技术,而气流床煤气化作为具备适用性强、气化时间短等应用优势的工艺技术,其在实践应用中也得到了相关人员的广泛认可。
接下来,笔者将围绕气流床煤气化这一工业生产技术,从基本概述、应用现状以及发展趋势等角度对其展开论述。
一、气流床煤气化气流床气化是工业生产中一种非常常见的煤气化方法,其气化原理是将粉煤与气化剂一同喷入气化炉内,在点火装置或者高温辐射的作用下通过热解、氧化还原等反应后生成熔渣和煤气,煤气以氢气和一氧化碳等气体为主。
该气化方式的应用优点在于适用性强、碳转化率高等等,在工业生产领域有着非常广泛的应用。
二、应用现状(一)技术特征1.适用性强该技术的原理是将粉末状的煤炭投入汽化炉内,同时保持汽化炉的内部温度在1500摄氏度以上,此时炉内空气的流通速度会处于非常快的状态,在这种环境下,粉煤颗粒之间的相互作用力会被消除,分别聚集成熔渣和煤气[1]。
从气化原理的层面上来看,气流床技术对煤炭种类并无特别的限制,因此其适用性相对较强。
但从经济性上来看,工作人员应尽可能地可选择颗粒小或反应短的煤炭进行气化,这样可以有效地提高煤气转化效率。
2.气化时间短由于气化炉的温度非常高,因粉煤在气化炉内的实际反应时间也非常短暂,一般在3秒内便完成整个气化反应,对于一些未反应完全的粉煤,工作人员可通过循环回炉的方式对其进行二次反应,以此来提高气流床气化效率。
(二)影响因素1.温度气化炉内的温度一般可达1500摄氏度以上,气化炉内的热量大多是由煤所放出的热量,在整个气化过程中,蒸汽和煤炭颗粒需要依靠在高温环境中吸收热量来完成吸热还原反应,因此温度对于气流床气化效果有着非常重要的影响。
气流床气化技术的现状及对比1 技术简介气流床煤气化就是煤浆或煤粉和气化剂(或氧化剂)以射流的形式喷入气流床气化炉内,在均匀高温下,快速转化为有效气体的过程,炉内的高温使煤中的灰熔解,作为熔渣排出。
现代气流床气化的共同点是加压(3.0~6.5MPa)、高温、细煤粒,但在煤处理、进料形态与方式、实现混合、炉壳内衬、排渣、余热回收等技术单元存在不同,从而形成了不同风格的技术流派。
气流床对煤种(烟煤、褐煤)、粒度、含硫、含灰都具有较大的兼容性,其清洁、高效代表着当今煤气化技术的发展潮流。
目前最具代表性的气流床气化技术有美国的Texaco 水煤浆加压气化技术和荷兰的Shell 干煤粉加压气化技术;另外,还有与上述气流床气化技术相似的Destec 水煤浆加压两段式气化技术及Prenflo 干煤粉气化技术。
1.1 Texaco 煤气化工艺Texaco 气化炉有两种结构,一种是直接激冷式气化炉,一种为装有煤气冷却器的气化炉。
美国Texaco 公司开发的水煤浆气化工艺是将煤加水磨成浓度为60 %~65 %的水煤浆,用纯氧作气化剂,水煤浆和纯度为95 %的氧气从安装在炉顶的燃烧喷嘴喷入气化室,在高温、高压下进行气化反应,气化压力在3.0~8.5 MPa ,气化温度1 400 ℃左右,液态排渣,煤气中CO +H2 占80 %左右,不含焦油、酚等有机物质,对环境无污染,碳转化率为96 %~99 % ,气化强度大,炉子结构简单,能耗低,运转率高,而且煤种适应范围较宽,是目前较为先进的煤气化技术之一。
烧嘴是Texaco 气化工艺的关键部件,其寿命和运行状况直接决定着装置能否长周期经济运行。
烧嘴多为三通道结构,中间走煤浆,外层和内层走氧气,内层氧气通过量占总氧量的8 %~20 %。
气化炉内镶嵌耐火砖,使用寿命一般在6~18 个月,煤中灰分、烧嘴运行质量、炉内温度、开停车频度等都对耐火砖有较大的影响。
Texaco 水煤浆气化炉与1952 年开发成功的渣油气化炉相似。