国内外煤气化技术介绍
- 格式:ppt
- 大小:2.14 MB
- 文档页数:49
煤气化技术介绍一、起源煤气化技术是指把经过适当处理的煤送入反应器如气化炉内,在一定煤气化技术工艺流程的温度和压力下,通过氧化剂(空气或氧气和蒸气)以一定的流动方式(移动床、硫化床或携带床)转化成气体,得到粗制水煤汽,通过后续脱硫脱碳等工艺可以得到精制一氧化碳气。
1857年,德国的Siemens兄弟最早开发出用块煤生产煤气的炉子称为德士古气化炉。
这项工艺引进中国后在二十世纪九十年代由山东省鲁南化肥厂经过广大工程技术人员的努力,发明了自主知识产权的对置式四喷嘴气化炉,目前已经在国内得到广泛推广应用,特别是兖矿集团煤化工项目在多处使用次技术,取得了显著的经济效益。
还有经过其他许多开发商的开发,到1883年应用于生产氨气。
煤气化技术是清洁利用煤炭资源的重要途径和手段。
二、原理煤干馏过程,主要经历如下变化:当煤料的温度高于100℃时,煤中的水分蒸发出;温度升高到200℃以上时,煤中结合水释出;高达350℃以上时,粘结性煤开始软化,并进一步形成粘稠的胶质体(泥煤、褐煤等不发生此现象);至400~500℃大部分煤气和焦油析出,称一次热分解产物;在450~550℃,热分解继续进行,残留物逐渐变稠并固化形成半焦;高于550℃,半焦继续分解,析出余下的挥发物(主要成分是氢气),半焦失重同时进行收缩,形成裂纹;温度高于800℃,半焦体积缩小变硬形成多孔焦炭。
当干馏在室式干馏炉内进行时,一次热分解产物与赤热焦炭及高温炉壁相接触,发生二次热分解,形成二次热分解产物(焦炉煤气和其他炼焦化学产品)。
煤干馏的产物是煤炭、煤焦油和煤气。
煤干馏产物的产率和组成取决于原料煤质、炉结构和加工条件(主要是温度和时间)。
随着干馏终温的不同,煤干馏产品也不同。
低温干馏固体产物为结构疏松的黑色半焦,煤气产率低,焦油产率高;高温干馏固体产物则为结构致密的银灰色焦炭,煤气产率高而焦油产率低。
中温干馏产物的收率,则介于低温干馏和高温干馏之间。
煤干馏过程中生成的煤气主要成分为氢气和甲烷,可作为燃料或化工原料。
国内外各种先进煤气化技术一、引言二、煤气化技术概述:2.1 固定层制气工艺(移动床)2.2 流化床气化工艺2.3 气流床气化工艺2.4 其他煤气化技术三、国内主流煤气化技术详解3.1 Lurgi(鲁奇)煤气化技术3.2 Texaco(德士古)煤气化技术3.3 Shell煤气化技术工艺3.4 GSP煤气化技术3.5 Dow煤气化工艺3.6 Texaco、Shell、GSP三种气化技术对比四、其它煤气化技术4.1 第三代煤气化技术4.2 组合气化炉煤气化法五、国内外煤气化的技术现状和发展趋势5.1 国外技术现状和发展趋势5.2 国内的技术现状和发展趋势5.3 国内工业化煤气化装置技术最新成果一、引言我国石油资源相对短缺,仅占化石能源探明储量的51.3%,开采量仅为世界开采量的21.4%,石油供需矛盾日益突出。
由于世界资源日趋减少,中东地区战乱不止,石油价格动荡不稳因此大量依赖石油进口将严重威胁我国国民经济的运行安全。
同时,我国煤炭资源丰富,探明可采储量2040亿t(2002年)。
煤炭在一次能源消费结构中占有主导地位,20世纪80年代以来一直在70%上下。
专家研究认为,在未来相当长时期内,一次能源消费结构中煤炭仍将居主导地位,到2050年将维持在50%以上。
目前国内发展煤气化合成化工产品的势头很旺特别是在产地,一批新的煤化工项目开始起步,老企业正以现代新技术改造传统落后的生产装置,以油为原料的大、中型合成氨厂开始进行煤代油的技术改造。
通过改造可以达到降低生产成本,改善环境状况之目的。
本文针对这一情况综合介绍国内煤气化技术现状,并对目前主流煤气化技术作一横向对比。
煤炭气化,即在一定温度、压力条件下利用气化剂(O2、H2O或CO2)与煤炭反应生成洁净合成气(CO、H2的混合物),是对煤炭进行化学加工的一个重要方法,是实现煤炭洁净利用的关键。
煤炭气化技术,尤其是高压、大容量气流床气化技术,显示了良好的经济和社会效益,代表着发展趋势,是现在最清洁的煤利用技术,是洁净煤技术的龙头和关键。
几种煤气化技术介绍煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。
一 Texaco水煤浆加压气化技术德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。
Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石(助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。
其优点如下:(1)适用于加压下(中、高压)气化,成功的工业化气化压力一般在4.0MPa 和6.5Mpa。
在较高气化压力下,可以降低合成气压缩能耗。
(2)气化炉进料稳定,由于气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。
便于气化炉的负荷调节,使装置具有较大的操作弹性。
(3)工艺技术成熟可靠,设备国产化率高。
同等生产规模,装置投资少。
该技术的缺点是:(1)由于气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。
对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。
而且,煤种的选择面也受到了限制,不能实现原料采购本地化。
(2)烧嘴的使用寿命短,停车更换烧嘴频繁(一般45~60天更换一次),为稳定后工序生产必须设置备用炉。
无形中就增加了建设投资。
煤气化技术煤气化技术是清洁利用煤炭资源的重要途径和手段。
目前,国内自行开发和引进的煤气化技术种类很多,但总体上可以分为以下三大类:一、移动床气化技术以鲁奇为代表的加压块煤气化技术。
鲁奇加压气化技术是由联邦德国鲁奇公司于1930年开发的,属第一代煤气化技术,技术成熟可靠,曾是世界上建厂最多的煤气化技术。
鲁奇气化技术是制取城市煤气和合成气装置中的心脏设备。
它适应的煤种广﹑气化强度较大﹑气化效率高。
鲁奇气化技术的特点为:采用碎煤加压式供料方式,即连接在炉体上部的煤锁将煤块升压,加入气化炉的预热层,然后,下移至反应层,煤在反应层气化,反应热量取自于气化剂与燃烧形成的燃烧层。
产生的粗煤气从出口排出。
炉篦上方的灰渣从底部出口排到下方连接的灰锁中,所以气化炉与煤锁﹑灰锁构成了一体的气化装置。
鲁奇炉的代表炉型即第三代MARK-IV型Ф3800mm加压气化炉, 炉体由内外壳组成,其间形成50mm的环形水冷夹套,用作保护炉的过热和产生蒸汽,结构更为合理的炉型。
鲁奇公司为河南义马、大唐克旗等制做了多台鲁奇式气化炉。
图1 鲁奇加压块煤气化装置二、流化床气化技术以恩德炉、灰熔聚为代表的气化技术。
恩德炉粉煤流化床气化技术是朝鲜恩德“七.七”联合企业在温克勒粉煤流化床气化炉的基础上,经长期的生产实践,逐步改进和完善的一种煤气化工艺。
灰融聚流化床粉煤气化技术根据射流原理,在流化床底部设计了灰团聚分离装置,形成床内局部高温区,使灰渣团聚成球,借助重量的差异达到灰团与半焦的分离,在非结渣情况下,连续有选择地排出低碳量的灰渣。
目前,中科院山西煤化所山西省粉煤气化工程研究中心开发的加压灰熔聚气化工业装置已经成功应用于晋煤集团天溪煤制油分公司1 0万吨/年煤基MTG合成油示范工程项目,该项目配备了6台灰熔聚气化炉(5开1备),气化炉操作压力0.6MPa,日处理晋城无烟煤1600吨,干煤气产量125000Nm3/h(配套30万吨/年合成甲醇)。
国内外煤气化技术概述煤气化技术的研发已有200多年的历史,根据气化炉所使用的煤颗粒大小和颗粒在气化炉内的流动状态,气化炉总体上分为三类,即以鲁奇为代表的固定床气化炉、以U—Gas、灰熔聚为代表的流化床气化炉和以德士古、壳牌为代表的气流床气化炉。
1.1 鲁奇固定床气化技术鲁奇固定床气化技术产生于20世纪40年代,由鲁奇公司开发。
鲁奇炉以8~50mm粒度、活性好、不黏结的无烟煤、烟煤或褐煤为原料,煤从气化炉的项部加入,而气化剂从炉子的下部供入,因而气固间为逆向流动,随着反应的进行,煤在气化炉内缓慢移动。
鲁奇固定床气化的压力可达3.0MPa,气化温度为900~1050℃,单炉投煤量一般为1000ffd(最大可达1920ffd),采用固态排渣方式。
典型的鲁奇固定床气化炉对燃料的要求比较高,尤其不宜使用焦结性煤。
由于气化温度较低,产生的煤气中不可避免的含有大量的沥青、焦油,因此需要对粗煤气进行分离净化。
为简化复杂的粗煤气净化流程,提高气化效率,英国煤气公司在固作态排渣鲁奇炉的基础上,进一步提高了气化温度,以强化气化过程,发展成液态排渣鲁奇炉⋯。
鲁奇气化炉起初主要用于生产城市煤气,后发展到生产合成油、氨、甲醇等,以及燃气。
我国云南解化集团等许多单位采用该技术用于合成氨。
由于鲁奇气化炉生产合成气时,气体成分中甲烷含量高(8~10%),且含焦油、酚等物质,气化炉后需要设置废水处理及回收、甲烷分离转化装置,用于生产合成气生产流程长、投资大,因此单纯生产合成气较少采用鲁奇气化炉。
1.2 GSP气流床气化技术GSP工艺技术由前民主德国的德意志燃料研究所开发,始于20世纪70年代末。
GSP气化炉由烧嘴、冷壁气化室和激冷室组成。
烧嘴为内冷多通道的多用途烧嘴,冷却水分别在物料的内中、中外层之间和外层之外,冷却方式比较均匀,可以使烧嘴温度保持在较低水平。
固体气化原料被碾磨为不大于0.5mm的粒度后,经过干燥,通过浓相气流输入系统送至烧嘴。
国内外煤气化技术新进展华陆工程科技有限责任公司刘艳军一、煤炭的综合利用我国具有丰富的煤炭资源,煤炭保有储量高达1万亿吨以上,全国煤炭产量2002年近14亿吨,2003年为16亿吨,2009年为29.6亿吨,平均每年以大于5%的速度递增。
目前,我国已经成为世界上最大的煤炭生产国和消费国。
我国是富煤少油国家,当前每年进口的原油和石油制品已达到国内需求的30%以上,全球范围内新一轮的石油竞争将会愈演愈烈,大力发展煤化工作为保证国家能源安全的战略已凸显重要而紧迫。
未来,我国能源以煤为主的状况,在相当长的一段时间内不会有大的改变,预测2010年将占60%左右,2050年不会低于50%,煤炭在我国的能源消费中仍然占有基础性地位。
随着科学技术的发展和人民生活水平的提高,对煤和以煤为原料的相关产品的技术要求也越来越高。
然而,由于煤的结构和组成的复杂性,给人们利用煤带来诸多环境问题。
例如,煤中含有硫、氯、氮、灰等有害物质在煤炭直接燃烧后被排放到环境中,引起严重的环境污染问题。
有关调查统计结果表明:目前我国能源消费总量中约68%为煤炭,其中有85%采用效率低、污染严重的直接燃烧技术。
燃煤产生的二氧化硫排放量占全国总排放量的74%,氮氧化物排放量占总排放量的60%,总悬浮颗粒(TSP)排放量占总排放量的70%,二氧化碳排放量占总排放量的85%。
目前,我国已成为世界上环境污染严重的国家之一,这不仅严重地威胁到生态环境和人类健康,而且每年由于燃煤而引发的SO2污染和酸雨造成的经济损失已超过1000亿元。
因此大量直接燃烧煤炭将受到国家政策限制。
从发展的长远观点来看,我国以煤为主的能源消费结构正面临着严峻挑战,如何解决燃煤引起的环境污染问题已迫在眉睫。
我国政府对此高度重视,对环境保护的政策越来越严格,并把煤炭的清洁转化和高效利用列入《中国21世纪议程》,实行“节能优先、结构优化、环境友好”的可持续能源发展战略。
二、煤气化技术煤气化技术是煤利用技术中的关键技术,而气化炉又是煤气化技术的核心。
国内外煤气化发展现状及趋势要谈论煤气化,首先我们应当明白什么是煤的气化。
煤气化是一个热化学过程。
以煤或煤焦为原料,以氧气(空气、富氧或纯氧)、水蒸气或氢气等作气化剂,在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为气体燃料的过程。
煤的气化类型可归纳为五种基本类型:自热式的水蒸气气化、外热式水蒸气气化、煤的加氢气化、煤的水蒸气气化和加氢气化结合制造代用天然气、煤的水蒸气气化和甲烷化相结合制造代用天然气。
一、中国国内外煤气化发展现状及趋势煤气化技术在中国已有近百年的历史,但仍然较落后和发展缓慢,国内煤气化以传统技术为主,工艺落后,环保设施不健全,煤炭利用效率低,污染严重。
如不改变现状,将影响经济、能源和环境的协调发展。
近40年来,在国家的支持下,中国在研究与开发、消化引进技术方面进行了大量工作,有代表性的是:50年代末到80年代的仿K-T气化技术研究与开发,曾于60年代中期和70年代末期在新疆芦草沟和山东黄县建设中试装置,为以后国内引进Texaco水煤浆气化技术提供了丰富的经验;80年代在灰熔聚流化床煤气化领域中进行了大量工作并取得了专利;“九五”期间立项开发新型(多喷嘴对置)气流床气化炉,已经通过中试装置(22-24t煤/d)考核运行,中试数据表明其比氧耗、比煤耗、碳转化率、有效气化成分等指标均优于Texaco技术,已经获得了专利;“九五”期间还就“整体煤气联合循环(IGCC)关键技术(含高温净化)”立项,有10余个单位参加攻关;近20年来中国共引进数10台Texaco气化炉和Lurgui气化炉,国内配套完成了部分设计、安装与操作,积累了丰富的经验;此外,在流化床(含循环)、煤及煤浆燃烧、两相流动与混合、传热、传质、煤化学、气化反应、煤岩形态、磨煤与干燥、高温脱硫与除尘等科学领域与工程应用等方面还进行了大量的研究工作。
目前已经过国家鉴定的多喷嘴对置式气流床气化炉,有水煤浆进料形态拓展到干煤粉,建设日处理100t煤中试装置(相当于3万t/a规模),为商业规模(2000-3000t/d)奠定技术基础。
(1) 国外煤气化技术概况以煤为原料的气化方法主要有移动床、流化床和气流床等。
a、移动床气化技术移动床气化技术较为先进的有鲁奇(Lurgi)气化技术。
该技术虽然能连续加压气化,但由于气化温度低,生成气中甲烷含量大,同时生成气中含苯、酚、焦油等一系列难处理的物质,净化流程长;尤其是该技术只能用块煤不能用粉煤,因而原料利用率低,大量筛分下来的粉煤要配燃煤锅炉进行处理。
此技术经过英国煤气公司和鲁奇公司于二十世纪七十年代联合开发,开发出一种新炉型(BGL气化炉),将鲁奇炉固态排渣改为熔融排渣,同时提高了气化反应温度,提高了块煤中粉煤的利用率,气化效率和气体成分有了很大改进,废水排放量及组分减少,污染问题也有所改善。
现有一台工业示范炉在德国黑水泵厂运行,用于处理城市垃圾,所用原料为各种城市垃圾、废塑料和烟煤。
BGL气化炉气化压力为2.0~4.0MPa,气化温度约为550℃。
我国云南解放军化肥厂于2004年引进了一台BGL气化炉,气化炉直径约为φ2800mm。
b、流化床气化技术流化床气化技术主要有德国温克勒(Winkler)流化床粉煤气化技术。
该技术压力较低,建有生产燃料气的装置,目前没有生产合成气的装置。
c、气流床气化技术气流床气化技术有美国GE公司水煤浆加压气化(GEGP)技术、荷兰壳牌谢尔(Shell)粉煤加压气化技术、德国未来能源公司GSP粉煤气化技术。
(2) 国内气化工艺技术概况a、固定床气化固定层间歇气化技术,该工艺以无烟煤为原料,采用空气和蒸汽作为气化剂;投资低,技术成熟,目前我国小氮肥、小甲醇厂90%以上采用该工艺生产。
该技术气化效率低,单炉产气量少,常压间歇气化,吹风过程中放空气对环境污染严重,每吨合成氨的吹风放空气量达2800~3100立方米。
该技术在国外已被淘汰。
国内固定床气化还有富氧连续气化技术,虽然该技术连续气化无吹风气排放,污染较少,但只能采用焦炭或无烟煤作原料,原料价格高;且生成气中氮气含量高,不适合作合成甲醇的原料气。
国内外煤气化技术比较随着煤炭资源的日益短缺,煤的高效利用已成为世界各国关注的重点。
煤气化技术,将煤转化为可燃气体并用于热能、电力和化学前驱体等领域,是当前实现煤高效清洁利用的重要技术之一。
本文将比较国内外煤气化技术的发展现状、技术路线和应用前景。
一、发展现状国内煤气化技术大多起步较晚,主要集中在购买国外设备和技术转化方面。
目前,中国已拥有天然气化工、华能大庆气化、山东诸城气化等多家成熟的煤炭气化企业。
其中,天然气化工主要生产合成气、氢气、苯乙烯等高附加值产物,煤气化率可达到92%以上。
华能大庆气化项目,煤气化率达到了80%以上,年生产合成气、苯乙烯、丙烯、氢气等150万吨。
山东诸城气化项目可生产甲醇、甲醛、乙醇、合成天然气和合成油等。
同时,国内目前正在进行的煤气化项目还有多个,如鄂尔多斯兴隆煤气化、华电集团新能源与煤制氢等。
而国外煤气化技术研究与应用较早,煤气化率和产物种类也较为丰富。
美国、德国、日本、澳大利亚等国家的煤气化技术都十分成熟,其中美国的煤气化产业发展历史最久,技术和产业规模也最大。
美国能源部现有10多个煤气化项目,年产能均在100万吨以上,产物种类包括合成天然气、液体燃料、合成酒精、硫酸、氮肥、尿素、润滑油和化肥等。
二、技术路线国内煤气化技术路线主要有三种:固定床煤气化技术、流化床煤气化技术和煤浆气化技术。
其中,固定床煤气化技术为中国比较成熟的技术路线,常用于生产油制气。
流化床煤气化技术则常用于生产合成气和聚烯烃等化工产品,煤浆气化技术则更适用于城市垃圾热解和冶金煤气化等领域。
目前,煤浆气化技术在国内尚处于探索阶段,需要进一步进行实验研究和工程应用。
而国外煤气化技术路线更为多样化,包括了上文提到的固定床、流化床、煤浆气化以及自动旋转床、堆积流化床、内循环流化床、熔融盘煤气化等。
三、应用前景煤气化技术的应用前景广阔。
其一是消费后果,煤气化技术生产的氢气、合成气、甲醇等化学中间体和化学品可以替代天然气和石油制品,进而推进煤的多元化消费。
国内外煤气化技术现状按煤在气化炉内的运动方式,气化方法可划分为三类,即固定床气化法、流化床气化法和气流床气化法。
(1)固定床气化:在气化过程中,煤由气化炉顶部加入,气化剂从气化炉底部加入,煤与气化剂逆流接触,相对于气体的上升速度而言,煤下降速度很慢,甚至可视为固定不动,因此称之为固定床气化;而实际上,煤在气化过程中是以很慢的速度向下移动的,比较准确的应称其为移动床气化。
(2)流化床气化:它是以粒度为0~10 mm的小颗粒煤为气化原料,在气化炉内使其悬浮分散在垂直上升的气流中,煤粒在沸腾状态进行气化反应,从而使得煤层内温度均一,易于控制,提高气化效率。
(3)气流床气化:它是一种并流气化,用气化剂将粒度为100 um以下的煤粉带入气化炉内,也可将煤粉先制成水煤浆,然后用泵打入气化炉内。
煤在高于其灰熔点的温度下与气化剂发生燃烧反应和气化反应,灰渣以液态形式排出气化炉。
煤气化技术包括备煤技术、气化炉技术、气化后工艺技术三部分,核心是气化炉。
1.2目前国内外主要气化炉(1)德士古气化炉美国德士古2002年初成为雪佛龙公司一部分,2004年5月被通用电气公司收购开发的水煤浆气化工艺是将煤加水磨成浓度为60%-65%的水煤浆,用纯氧作气化剂,在高温高压下进行气化反应,气化压力在3.0~8.5 MPa之间,气化温度1 400℃,液态排渣,煤气成份CO+H2为80%左右,不含焦油、酚等有机物质,对环境无污染,碳转化率96%-99%,气化强度大,炉子结构简单,能耗低,运转率高,且煤适应范围较宽。
目前雪佛龙德士古最大商业装置是Tampa电站,属于DOE 的CCT-3,1989年立项,1996年7月投运,12月宣布进入验证运行。
该装置为单炉,日处理煤2 000-2 400 t,气化压力为2.8 MPa,氧纯度为95%,煤浆浓度68%,冷煤气效率76%,净功率250 MW。
德士古气化炉由喷嘴、气化室、激冷室(或废热锅炉)组成。
煤化工龙头:煤气化技术各流派一览¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。
作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。
目前国内外气化技术众多,各种技术都有其特点和特定的适用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。
工业上以煤为原料生产合成气的历史已有百余年。
根据发展进程分析,煤气化技术可分为三代。
第一代气化技术为固定床、移动床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床和气流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。
本文综述了近年来国内外煤气化技术开发及应用的进展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。
1 国内外煤气化技术的发展现状在世界能源储量中,煤炭约占79%,石油与天然气约占12%。
煤炭利用技术的研究和开发是能源战略的重要内容之一。
世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。
20世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。
7种煤气化工艺介绍目前国内可供选择的成熟或相对成熟的煤加压气化工艺很多,各种煤气化工艺的综合比较也有较多的文献、资料可供查阅,这里只简要叙述几种主要煤气化工艺的特点及现阶段存在的主要问题。
1、TEXACO水煤浆气化TEXACO水煤浆气化采用水煤浆进料、液态排渣、在气流床中加压气化,水煤浆与纯氧在高温高压下反应生成煤气。
气化炉主要结构是水煤浆单喷嘴下喷式,大部分是采用水激冷工艺流程,单炉容量目前最大可达日投煤量3000吨,操作压力大多采4MPa、6.5MPa,少数项目也已达到8.4MPa。
我国引进该技术最早的是山东鲁南化肥厂,于1993年投产,后来又有若干厂使用。
由于国内已经完全掌握了TEXACO气化工艺,积累了大量的经验,因此设备制造、安装和工程实施周期短,开车运行经验丰富,达标达产时间也相对较短,主要问题是对使用煤质有一定的选择性,同时存在气化效率相对较低、氧耗相对较高及耐火砖寿命短等问题,但随着在国内投运时间的延长部分问题已得到有效解决。
2、多喷嘴对置水煤浆气化本项技术是“九五”期间由华东理工大学、兖矿鲁南化肥厂、中国天辰化学工程公司合作开发的。
2000年10月通过原国家石油和化学工业局组织的鉴定和验收。
示范装置为兖矿国泰化工有限公司,建成两套日投煤1150吨的气化炉,操作压力4.0MPa,生产24万吨/年甲醇,联产71.8MW发电,装置已于2005年10月投入运行。
该工艺仍属于水煤浆气化的范畴,与TEXACO的主要区别是由TEXACO单喷嘴改为对置式多喷嘴,强化了热质传递,气化效果较好,但多喷嘴需要设置多路控制系统,增加了设备投资和维修工作量。
由于是国内技术,工艺包及专有技术使用费较引进技术有较大幅度的降低。
3、SHELL粉煤气化气化炉主要结构是干煤粉多喷嘴上行废锅气化并采用冷炉壁,冷煤气回炉激冷热煤气,煤气冷却采用废锅流程。
由于壳牌气化技术上具有突出的优点,吸引了国内一些企业纷纷引进。
本工艺的最大缺点是投资高,设备造价过高;合成气换热采用废锅形式增加了投资,对需要水蒸汽成分的化工生产来看直接用水激冷更合理;干燥、磨煤、高压氮气及回炉激冷用合成气的加压所需的功耗较大等。
煤的气化技术1. 介绍煤是一种常见的化石燃料,在世界范围内广泛使用。
然而,煤的燃烧产生大量的二氧化碳等温室气体,对环境造成严重影响。
为了减少对环境的污染并提高能源利用效率,煤的气化技术应运而生。
煤的气化技术是将煤转化为合成气(syngas)的过程,合成气主要由一氧化碳(CO)、氢气(H2)和少量的二氧化碳(CO2)、氮气(N2)等组成。
合成气可以用作燃料,也可以作为化学原料,用于制造化学品、肥料和液体燃料等。
2. 煤的气化过程煤的气化主要通过以下两个步骤完成:2.1. 干燥和预气化在气化反应器中,煤被加热至高温。
在这个过程中,煤中的水分被蒸发出来,并与空气中的氧气反应生成二氧化碳和水蒸气。
这一步骤主要起到预热作用,为下一步的反应做准备。
2.2. 煤的部分氧化在气化反应器中,预热的煤与氧气反应,生成一氧化碳和水蒸气。
主要的反应方程式如下所示:C + O2 -> CO2 C + CO2 -> 2CO通过控制反应温度和氧气供应量,可以调节合成气中一氧化碳和氢气的比例。
高温和富氧条件下可以生成较多的一氧化碳,而低温和贫氧条件下可以生成较多的氢气。
3. 煤的气化技术分类煤的气化技术可以分为以下几种类型:3.1. 固定床气化固定床气化是最早开发的气化技术之一,也是最常用的气化技术之一。
在这种气化方式下,煤被放置在气化反应器中的固定床上,并通过气化剂(如空气或蒸汽)流过床层。
随着气化反应的进行,煤逐渐转化为合成气,反应产物从顶部排出。
固定床气化适用于各种类型的煤,具有反应稳定、设备简单的优点,但存在反应温度不均匀、产物中存在固体颗粒等问题。
3.2. 流化床气化流化床气化是一种将煤颗粒悬浮在气化剂中进行气化的技术。
在气化反应器中,通过气化剂(通常为空气或蒸汽)的上升流动,使煤颗粒保持悬浮状态。
在高温和富氧条件下,煤颗粒发生气化反应,生成合成气。
流化床气化技术具有高反应效率、适应多种煤种和煤质的优点,但也存在气固分离和热传递问题。
关于气化技术、煤质分析的建议一、关于气化技术以煤为原料采用洁净煤气化技术,生产粗合成气已商业化的主要有:1.水煤浆气化技术该技术为美国德士古公司开发后转为美国GE公司所有,它是根据油气化技术的思路开发成功的。
在煤中加入添加剂、助熔剂和水,用磨煤机磨成水煤浆,加压后和氧气一同喷入气化炉进行部分氧化燃烧反应,气化温度1300-1450℃,高温的热气体,用水激冷,除尘后送出。
气化压力4.0-8.7Mpa,液态渣激冷破碎后排出。
它的主要特点是:简单,可靠,投资低,在有备用炉的情况下,年开工率可达95-98%,有效气(CO+H2)≈80-82%,缺点是氧耗较高。
由于它的可靠性,国内大多数煤气化装置均采用此法生产合成气,特别是煤制烯烃的装置大多采用此法生产合成气取得成功的先例,如神华煤制烯烃装置。
2.荷兰壳牌(SHELL)气化技术气化炉为立式圆筒形,炉膛周围安装有沸水冷却管组成的膜式水冷壁,内壁衬有耐热涂层。
气化熔渣在水冷壁涂层上形成液膜,沿壁顺流而下进行分离采用以渣抗渣的防腐办法。
炉体内设有四组粉煤烧嘴,使用寿命一年以上。
气化温度1400-1560℃,碳转化率高达99%,CO+H2可达90%。
该气化技术是干粉和氧,蒸汽在气化炉内进行部分燃烧反应,由于采用干粉气化,氧耗较少,但干粉加压输送用高压N2气或CO2气流输送。
气化后的粗合成气,含尘量大,要用50%冷气激冷,特殊的过滤器过滤灰尘,再用水洗涤。
流程复杂,特别是开车时用特殊的开工烧嘴。
采用对流和辐射废锅回收热量产生蒸汽,因而设备特别复杂,国产化率低,生产过程比较难于掌握。
国内已建的20几台气化炉运行状况不理想,开工率低,比如大唐多伦180万吨甲醇/60万吨MTP装置,建成两年,开车极不顺利,经济效益差。
3.德国未来能源GSP气化技术该技术同SHELL气化技术一样是干粉气化,氧和蒸汽煤粉加压用载气(N2、CO2)送入炉内进行部分氧化反应。
炉体为水冷壁,内壁衬有耐热涂层,使用寿命较长。