正反比例的比较
- 格式:ppt
- 大小:107.00 KB
- 文档页数:8
1、正比例的意义是:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
2、用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用关系式表示:x÷y=k (一定)还可表示为:x=ky以上各种商都是一定的,那么被除数和除数.所表示的两种相关联的量,成正比例关系.注意:在判断两种相关联的量是否成正比例时,应注意已知的两种量必须是两种相关联的量(也就是有关系的两种量),有些量,虽然也是一种量随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例.例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系.行驶的路程和时间是成比例的量。
“正反比例”归纳:相同点:①正比例和反比例都含有三个数量,在这三个数量中,均有一个定量、两个变量。
②在正、反比例的两个变量中,均是一个量变化,另一个量也随之变化。
正比例中相关联的两种量的变化方向是一致的,即:同时扩大或同时缩小,关键是:相对应的两个数的“比值一定,也就是商一定”;反比例中两种量的变化方向是相反的,即:一个量扩大,则另一个量缩小,一个缩小,另一个量则扩大,关键是:相对应的两个数的“积一定”。
不同点:正比例的定量(即不变的量)是两个变量中相对应的两个数的比值。
反比例的定量(即不变的量)是两个变量中相对应的两个数的积。
②正比例的图像时上升直线;反比例是曲线。
③公式不同:正比例是(x y=k(一定)),反比例是(xy=k(一定))。
④规律不同:正比例是一个数缩小,另一个数也缩小,一个数扩大,另一个数也扩大;反比例是一个数缩小,另一个数就扩大,一个数扩大另一个数就缩小。
门诊医院:举例:当路程一定时,已行路程与未行路程成比例吗?为什么?分析:虽然这里的已行路程和未行路程也是相关联的两个量,但是它们的变化规律是增加或减少的数,换句话说已行路程与未行路程不是一个量随另一个量的扩大而扩大或缩小而缩小,也就是它们之间不能相乘,也不能相除,得不到一个积或一个商,所以它们不成比例。
正反比例比较知识点总结正反比例是数学中常见的一种比例关系,表现为一种正向的变化和一种反向的变化之间的对应关系。
在现实生活中,正反比例关系也经常出现,比如物体的体积和压力、时间和速度、成本和产量等之间都存在着正反比例关系。
在数学中,我们通常用两个变量x和y表示正反比例关系,其中x表示自变量,y表示因变量。
在正比例关系中,当x增大时,y也随之增大;而在反比例关系中,当x增大时,y却相应地减小。
正反比例关系可以用等式y=kx表示,其中k称为比例常数。
当k>0时,表示正比例关系;当k<0时,表示反比例关系。
正反比例关系在数学中有着重要的应用,特别是在解决实际问题中,比如物理、经济、工程等领域。
在这些领域中,正反比例关系可以帮助我们更好地理解和分析问题,为实际应用提供便利。
下面我们将从数学、物理、经济和工程等方面来具体分析正反比例关系的应用。
一、在数学中的应用1.1 正反比例关系的解题方法在数学中,我们经常会遇到一些与正反比例关系有关的题目,如物体的价钱和重量成正比,时间和距离成反比等。
这些问题可以通过建立方程来求解。
例如,一个物体的重量和价格成正比,如果物体的重量是3kg,价格是45元,求每kg的价格是多少。
设每kg的价格为x元,则可以建立等式45=3x,解得x=15。
因此,每kg的价格是15元。
1.2 正反比例关系的图像和性质在数学中,我们可以利用图像来描述正反比例关系。
对于正比例关系来说,图像是一条通过原点的直线,斜率就是比例常数k;而对于反比例关系来说,图像是一条不通过原点的曲线。
正反比例关系还有一个重要的性质,就是两个变量的乘积是一个常数,即y=kx,所以称为正反比例关系。
1.3 正反比例的相关定理在数学中,还有一些与正反比例关系相关的定理,如等距离定理、平行定理等。
这些定理在解决用正反比例关系求解的问题是非常有用的。
二、在物理中的应用2.1 压力和体积的关系在物理中,压力和体积的关系是一个常见的正反比例关系。
正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系.正方形的周长与边长圆的周长与直径路程比时间等于速度(一定)反比例:两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。
这两种量叫做成反比例的量。
它们的关系叫做反比例关系。
用x×y=k(一定)来表示。
1.百米赛跑,路程100米不变,速度和时间是反比例;2.排队做操,总人数不变,排队的行数和每行的人数是反比例;3.做纸盒子,总个数一定,每人做的个数和人数成反比例;4.买东西(实际就用文具用品),总钱数一定,它的单价和数量是反比例;5.长方形的面积一定,长和宽是反比例;6.长方体的体积一定,底面积和高是反比例。
7.等分一块蛋糕,每人分到的蛋糕与人数成反比例。
8.总价一定,单价与数量成反比例.9.长方体体积一定,底面积与高成反比例10.总纸盒一定,每人做的个数与人数成反比例反比例的意义形如y=k;x*y=k乘1/x(k不等于0)的函数叫做反比例函数,k叫做反比例系数。
y*x=k(一定),这是求反比例的公式。
编辑本段反比例的实质两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。
这两种量叫做成反比例的量。
它们的关系叫做反比例关系。
用xy=k(一定)k不等于0来表示。
简单点来说,就是如果一样事物增加了,另一样事物减少,它减少了,另一样事物增加,这两个事物的关系就叫做反比例关系。
编辑本段正比例和反比例之间的相互转化当正比例中的x值(自变量的值),转化为它的倒数时,由正比例转化为反比例;当反比例中的x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例。
编辑本段生活中的反比例1.百米赛跑,路程100米不变,速度和时间成反比例(即路程一定,速度和时间成反比例);2.排队做操,总人数不变,排队的行数和每行的人数成反比例;3.做纸盒子,总个数一定,每人做的个数和人数成反比例;4.买东西(实际就用文具用品),总价一定,它的单价和数量是反比例;5.长方形的面积一定,长和宽是反比例(提示:但是长方形的周长与长宽不成比例【既不成正比例也不成反比例】);6.长方体的体积一定,底面积和高是反比例。
正反比例的相同点和不同点说到正比例和反比例,大家可能觉得这俩词听起来有点学术,但其实它们在生活中无处不在,就像吃饭时的米饭和菜一样,缺一不可。
正比例,就像是你和朋友一起去吃烧烤,吃得越多,付的账就越多,简单明了。
反比例呢,就是那种你吃得多,服务员却得多加一份酒水,哈哈,是不是感觉有点不对劲?这就像一个人在做数学题,越是喜欢的题目,越是能做出好成绩,反之则相反。
正比例和反比例这两种关系,虽然看上去截然不同,但它们都有一个共同点,就是在某种条件下,数值是相互依赖的。
正比例的魅力在于它的直观,简直就像是在阳光下闪闪发光的金色玉米,大家一看就明白。
想想看,生活中有多少事情都是成正比例的,比如说,工作时间越长,工资就越高,真的是一目了然。
有些人就是喜欢这种确定性,喜欢一切都按部就班的感觉。
就像做饭,米和水的比例得掌握好,太多了就成了稀饭,太少了又不熟,真是让人操碎了心。
而在反比例中,事情就变得复杂多了。
就像你开车,油门踩得越狠,油耗就越高,感觉就是在跟自己的钱包做斗争。
这种关系充满了戏剧性,时而让人笑逐颜开,时而又让人心头一紧。
反比例的变化让人充满惊喜,仿佛是在玩一场刺激的过山车,刺激得让人无法自拔。
两者在生活中的表现也是各有千秋。
正比例就像是一条笔直的道路,开车过去一路顺风,简单明了。
每当你走到终点时,心里都会想着:哎呀,这一路真是平坦啊!而反比例呢,就像是一条曲折的山路,时而高耸入云,时而跌入谷底。
开车的过程中,心里难免会想着:这条路真是让人心累,风景再美,也抵不过颠簸的心情。
其实正比例就像是一个老朋友,总能让你感到舒适。
而反比例则像个调皮的小孩子,时常给你带来意外的惊喜和挑战,真的是让人哭笑不得。
不过,正反比例的相同点在于它们都能帮助我们理解世界的运作。
就像你在超市买水果,苹果的价格是固定的,越买越多,花的钱自然也就越多。
这就是正比例。
而当你看见那些打折的商品,买得越多,折扣也会越多,似乎越买越划算。
比较正比例和反比例的异同点
一、知识要点
相同:
都是两个相关联的量,一个量变化,另一个量也随着变化。
区别:
①、反比例是一个量扩大,另一个量缩小;一个量缩小,另一个量扩大;
②、正比例是一个量扩大,另一个量也扩大;一个量缩小,也一个量也缩小;
③、正比例是两者的比值(商)一定,反比例则是两者的乘积一定。
二、随堂检测
一、填空
1、在圆柱体积、底面积和高这三个量中,当圆柱体积一定是,底面积和高成()比例;当()一定时,()和()成()比例。
2、全班的人数一定,每组的人数和组数成()比例。
3、小麦每公顷产量一定,小麦的公顷数和总产量成()比例。
4、圆柱的侧面积一定,底面周长和高成()比例。
5、小星跳高的高度和它的身高()比例。
6、步测一段距离,每部的平均长度和步数成()比例。
二、判断
1、被减数一定,差和减数成反比例。
()
2、加工时间一定,做一个零件所用的时间和零件总个数成正比例。
()
3、如果a和b成正比例,b和c成正比例,那么a和c也成正比例。
()
4、同时同地的竿长与影长成正比例。
()
三、选择
1、()式中的x与y成反比例。
2、下列说法中,正确的是()。
A,图上距离和实际距离成正比例。
B.三角形的面积一定,底和高成正比例。
C.正方体的棱长和与棱长成正比例
附参考答案:
一、1、反底面积圆柱体积高正(或高圆柱体积底面积正) 2、反3、正4、反5、不成6、反
二、1、×2、×3、√4、√
三、1、A 2、C。