物理大地测量概论
- 格式:ppt
- 大小:658.00 KB
- 文档页数:27
物理大地测量学
物理大地测量学是应用物理学原理,利用现代测量技术和仪器设备对地球形状、重力场、地球自转和变形进行测量和研究的学科。
该学科包括研究地球形状和物理场的测量方法、地球重力场的测定和应用、地球自转参数的确定、地壳运动和变形的监测等内容。
在物理大地测量学中,主要涉及到的技术和方法包括测量仪器的设计和使用、测量观测数据的处理和分析、大地水准网和重力基准的建立与维护、地球形状和重力场的模型构建等。
通过这些技术和方法,物理大地测量学能够提供准确的地球形状、重力场等物理参数,为地质研究、地震监测、海洋研究等领域提供有力的数据支持。
物理大地测量学的研究内容还包括地壳运动和变形的监测。
利用卫星测量技术,可以实时监测地球表面的形变、地壳断裂和地震活动等现象,为地震预警、地质灾害风险评估等提供依据。
物理大地测量学还应用于导航定位、地图制图、石油勘探等领域,提高了测量精度和数据的可靠性。
大地测量概论第一篇大地测量§1.1 大地测量的任务与作用1.1.1大地测量的任务大地测量是为研究地球的形状及表面特性进行的实际测量工作。
其主要任务是建立国家或大范围的精密控制测量网,内容有三角测量、导线测量、水准测量、天文测量、重力测量、惯性测量、卫星大地测量以及各种大地测量数据处理等。
1.1.2现代大地测量的特点(重点):(1)长距离、大范围。
量测的范围和间距,不再受天气及“视线”长度的制约,能提供协调一致的全球性大地测量数据。
(2)高精度。
量测精度相对于传统大地测量而言,已提高了1~2个数量级。
(3)实时、快速。
外业观测和内业数据处理几乎可以在同一时间段内完成,即实时或准实时地完成。
(4)“四维”。
能提供在合理复测周期内有时间序列的(时间或历元)、高于10-7相对精度的大地测量数据。
(5)地心。
测得的位置、高程、影像等成果,是以维系卫星运动的地球质心为坐标原点的三维测量数据。
(6)学科融合。
现代大地测量除对大气科学贡献外,由于它能获得精确、大量、在空间和时间方面有很高分辨率的对地观测数据,因此对地球科学、海洋学、地质学、地震学等地球科学的作用也越来越大。
它与地球科学多个分支相互交叉,已成为推动地球科学的前沿科学之一。
1.1.3大地测量的作用:大地测量是组织、管理、融合和分析地球海量时空信息的一个数理基础,也是描述、构建和认知地球,进而解决地球科学问题的一个时空平台。
任何与地理位置有关的测绘都必须以法定的或协议的大地测量基准为基础。
§1.2 大地测量系统与参考框架§1.2 大地测量系统与参考框架大地测量系统规定了大地测量的起算基准、尺度标准及其实现方式。
大地测量系统包括坐标系统、高程系统、深度基准和重力参考系统。
与大地测量系统相对应,大地参考框架有坐标(参考)框架、高程(参考)框架和重力测量(参考)框架三种。
1.2.1大地测量坐标系统和大地测量常数大地测量坐标系统是一种固定在地球上,随地球一起转动的非惯性坐标系统。
物理大地测量学复习提纲(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章概论1、物理大地测量学的主要任务是什么物理大地测量学也称理论大地测量学,根据几何大地测量和重力测量结果研究地球形状的重力学的一个分支学科。
主要任务:用物理方法研究和测定地球形体、地球重力场及各自随时间的变化,又称地球(大地)重力学。
2、为什么要研究和确定地球重力场?从哲学的观点来看,地球重力场与其它物理场一样,是不以人的意志为转移的客观存在,是物质的一种存在形式。
从自然科学的观点来看,重力场是地球最重要的物理特性,制约着在该行星上及其邻近空间发生的一切物理事件,引力是宇宙一切物质存在的最普遍属性,制约着宇宙的演化和发展。
地球重力场反映地球物质的空间分布、运动和变化,确定地球重力场的精细结构及其时间相依变化将为现代地球科学解决人类面临的资源、环境和灾害等紧迫课题提供基础地学信息。
第二章重力测量1、重力的定义狭义定义:地球所有质量对任一质点所产生的引力与该点随地球相对于惯性中心运动而引起的的离心力之合力。
广义定义:宇宙间全部物质对任一质点所产生的引力与该点随地球相对于惯性中心运动而引起的离心力之合力。
2、重力基准点、重力基准网世界重力基点:世界公认的一个重力起始点维也纳系统(1900年-IAG) g=981290±10mGal波茨坦系统(1909年-IAG:1894-1904) g=±3mGal国际重力基准网1956年IAG决定建立世界一等重力网(FOWGN)1967年IAG决定在波茨坦绝对重力值中加上-14mGal作为新的国际重力基准1971年IUGG决定采用IGSN71代替波茨坦国际重力基准,新的波茨坦国际重力基点的值为:g=±国家重力基本网:在全国范围内提供各种目的重力测量的基准和最高一级控制国家曾在1957年建成第一个国家57重力基本网,它的平均联测精度为±×10-5ms-21985年中国又新建了国家85重力基本网,其平均联测精度较之“57网”提高一个数量级,达到±×10-6ms-2 的精度,该网改正了波茨坦系统的系统误差,增测了绝对重力基准点,加大了基本点的密度。
物理大地测量学的基本概念及其任务物理大地测量学是大地测量学的主要分支之一﹐研究用数学、物理(重力)方法测定地球形状及其外部重力场的学科,又称为理论大地测量学,也有人称之为大地重力学或地球重力学。
几何大地测量的观测都是在地球重力场内,以铅垂线为依据的站心地平坐标系中进行的。
为了把这些观测数据归算到一个统一的大地坐标系统(局部的或全球的)中去,必须知道地球的大小、形状及其外部重力场。
测定地球形状可以用重力测量方法,也可以用几何大地测量方法。
但比较起来,用重力测量方法更为有利。
因为重力测量差不多可以在地面上任意地点(包括大陆上和海洋上)进行,而且重力点之间不需要像天文大地网各点之间那样互相联系着,这样,在选点和处理观测成果方面也就简单得多。
所以应用重力测量方法比较容易在全球表面上布满相当数量的重力点,然后由此求出比较可靠的地球扁率值,研究全球性的地球形状和建立全球统一的大地坐标系。
至于几何大地测量方法,则目前还无法在海洋上进行,仅由陆地上的天文大地网资料,只能研究区域性的地球形状,同时所推算的地球扁率值,也就不会像由地球表面上广泛分布着的重力点网所推算的地球扁率值那样可靠。
当然,在卫星大地测量出现以前,地球的长半径还只能用几何大地测量方法求定。
物理大地测量学的主要内容包括:1.重力测量的仪器和方法2.重力位理论3.地球形状及其外部重力场的基本理论4.用重力测量方法归算大地测量数据的问题。
通常将后面三个部分划归为理论物理大地测量学,也是本书的重点内容,主要研究以下几个方面的问题﹕重力位理论利用重力以及同重力有关的卫星观测数据确定地球形状及其外部重力场的理论基础﹐主要研究重力位函数的数学特性和物理特性。
地球形状及其外部重力场的基本理论主要是研究解算位理论边值问题﹐例如按斯托克斯理论或莫洛坚斯基理论或布耶哈默尔理论等解算﹐以此推求大地水准面形状或真正地球形状和地球外部重力场。
全球性地球形状利用全球重力以及同重力有关的卫星观测数据﹐按确定地球形状及其外部重力场的基本理论﹐推求以地球质心为中心的平均地球椭球的参数﹐以此建立全球大地坐标系﹐并在此基础上推求全球大地水准面差距﹑重力异常和重线偏差等。