解简易方程例3
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
解方程例3教学反思解方程例3教学反思范文(精选11篇)身为一名人民老师,我们要在教学中快速成长,教学的心得体会可以总结在教学反思中,那么优秀的教学反思是什么样的呢?下面是小编整理的解方程例3教学反思范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
解方程例3教学反思 1学生从五年级就开始接触简易方程,经历一年多的学习对于方程有了一定的认识,然而为何要设单位“1”的量为未知数这个问题在列方程解决稍复杂的分数实际问题时就一直困扰着学生。
列方程解决稍复杂的百分数实际问题是小学阶段的最后一个有关方程学习的单元,因此有必要从本质上去拨开学生心中为何要设单位“1”的量为未知数的那团云。
正好借助这节课通过对比分析的方法帮助学生很好的解决这个困惑。
案例描述:苏教版数学六年级下册教材教材例5:朝阳小学美术组有36人,女生人数是男生人数的80%。
美术组男生、女生各多少人?学生能很快根据题目条件进行相关的找单位“1”分析数量关系的解题前期准备,经历这这两步后学生通过已有经验可以很快确定用方程的策略来解决这个问题。
在教学的过程中,笔者故意提出:这里男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?学生在底下开始异口同声地回答设单位“1”的量也就是男生人数为未知数比较合理。
设美术组有男生x人,女生就有80%x人。
那么根据等量关系式:男人人数+女生人数=36学生很自然地列出方程x+80%x=36。
就在大家十分“得意”的时候,一个小男孩发表了自己不同的意见:“也可以把女生人数设为x。
”刚开始很多同学觉得有点不可思议,以前做这类问题不都是将男生人数(单位“1”)设为未知数x的吗?抓住这个千载难逢的机会,我就让他说说他是怎么想的`。
他是这么说的:设女生人数是x人,男生人数是x÷80%人,根据等量关系式:男人人数+女生人数=36列出方程:x+x÷80%=36。
听完他精彩的发言,大家恍然大悟,原来还可以这样?仔细回想这个聪明男孩的问题,原来数学真的需要动脑。
五年级数学上册《简易方程》教案(优秀7篇)五年级数学上册《简易方程》教案篇一【教学内容】教材第62、63页的内容,练习十四的第1~3题。
【教学目标】1.通过教学,使学生理解与掌握方程的意义和等式的基本性质。
2.培养学生观察、归纳和概括的能力。
3.培养学生仔细观察的良好习惯。
【重点难点】理解方程的意义。
【教学准备】多媒体课件,自制天平教具。
【情景导入】在下面算式的○里填上“>”、“<”或“=”。
3x6○19 7○1.8+5.22.5÷5○2x0.25 24+11○11+243.9-3○4÷5 15x8+2○120+2小结:像7=1.8+5.2,2.5÷5=2x0.25,24+11=11+24,15x8+2=120+2这样的式子叫做等式。
这节课我们就来研究有关等式的问题。
【新课讲授】1.激趣导入。
师:同学们在游乐场玩过跷跷板的游戏吗?(多媒体出示小朋友玩跷跷板的画面)如果两端的小朋友重量一样,会出现什么情况呢?这就是平衡。
2.方程的意义。
(1)认识天平。
出示简易天平、砝码。
提问:同学们知道这是什么?它是用来干什么的?怎样用天平来称物品的重量呢?师:这是一台天平,用来称量物体的重量。
在天平的左盘内放置所称的物品,右盘内放置砝码,当天平的指针在标尺中间时,表示天平平衡,也就是天平两端的重量相等,砝码上所标的重量就是所称物体的重量。
(2)实验演示,引出方程。
师:下面我来演示一下如何用天平称物品的重量。
演示实验一:称出一只空杯子重100克。
提问:天平平衡了吗?这说明一只空杯子重多少克?板书:一只空杯子=100克演示实验二:往空杯子里倒入约150毫升水(可在水中滴几滴红墨水显示)。
提问:现在天平怎样?如果水重x克,杯子和水共重多少克?你能用一个式子来表示吗?板书:100+x>100演示实验(白话文★)三:增加100克砝码。
提问:增加100克砝码,发现了什么?(杯子和水比200克重)如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?板书:100+x>200演示实验四:再增加100克砝码,天平往砝码这边倾斜。
五年级数学上册解方程例3教学设计“含有未知数” 与“等式”是方程意义的两点最重要的内涵。
“含有未知数”也是方程区别于其他等式的关键特征。
下面是为大家整理的五年级数学上册解方程例3教学设计5篇,希望大家能有所收获!五年级数学上册解方程例3教学设计1教学目标:1、使学生进一步认识用字母表示数及其作用,能正确地用含有字母的式子表示数量及数量关系、计算公式,培养学生抽象,概括的能力。
2、使学生加深对方程及相关概念的认识,掌握解简易方程的步骤和方法,能正确地解简易方程。
教学重点:能够熟练地理解字母表示数,数量关系。
教学难点:能够熟练并正确地解简易方程。
教学过程:一、揭示课题我们在复习了整数、小数的概念,计算和应用题的基础上,今天要复习解简易方程,(板书课题)通过复习,要进一步明白字母可以表示数量、数量关系和计算公式,加深理解方程的概念,掌握解简易方程的步骤、方法,能正确地解简易方程。
二、复习用字母表示数1、用含有字母的式子表示(1) 求路程的数量关系。
(2) 乘法交换律。
(3) 长方形的面积计算公式。
让学生写出字母式子,同时指名一人板演。
指名学生说说每个式子表示的意思。
提问:用字母表示数有什么作用?用字母表示乘法式子时要怎样写?2、做“练一练”第1题。
让学生做在课本上。
指名口答结果,老师板书,结合提问怎样求式子的值的。
3、做练习十四第1题。
指名学生口答。
选择两道说说是怎样想的。
三、复习解简易方程1、复习方程概念。
提问:什么是方程?你能举出方程的例子吗?(老师板书出方程的例子)这里用字母表示等式里的什么?指出:字母还可以表示等式里的未知数。
含有未知数的等式就叫方程。
(板书定义)2、做“练一练”第2题。
小黑板出示,学生判断并说明理由。
提问:5x-4x=2里未知数x等于几,x=2是这个方程的什么?7×0.3+x=2.5里未知数x等于几?x=0.4是这个方程的什么?那么,什么叫做“方程的解”?(板书定义)它与“解方程”有什么不同?(强调解方程是一步一步完成的过程)你会解方程求出方程的解吗?根据什么解方程?3、解简易方程。
第五单元 简易方程第 2 节 解简易方程【知识梳理】1.方程的意义。
含有未知数的等式就是方程。
注意:(1)方程一定是等式,而等式不一定是方程。
等式和方程的关系如下图所示:(2)方程必须具备的两个条件:① 必须是等式;②必须含有未知数。
2.等式的基本性质。
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
注意:因为除数不能为0,所以等式两边同时除以的数不能为0。
3.方程的解与解方程。
使方程左右两边相等的未知数的值,叫做方程的解;求方程的解的过程叫做解方程。
重点提示:“方程的解”中的“解”是名词,指使方程左右两边相等的未知数的值;“解方程”中的“解”是动词,指求方程的解的过程。
4.解形如b a =±x ,b ax =,c b =±ax 和()c b =±x a 的方程。
注意:①解方程的依据等式的性质。
②解方程的书写格式:在解方程之前必须先写“解”字,等号上、下要对齐。
5.检验。
把求得的未知数的值代入原方程,看方程左边的值是否等于方程右边的值,如果相等, 所求的未知数的值就是原方程的解;否则就不是。
依据方程的解的含义检验方程的解是否正确。
【诊断自测】一、判断:(1)5x+3是方程。
()(2)方程是等式,等式是方程。
()。
(3)方程的解就是解方程。
()(4)x=0.5是方程4x=2的解。
()二、下列式子中,哪些是等式?哪些是方程?(填序号)①6.5+3=9.5 ②0x+5 ③2x-50=2 ④4+2x=10⑤7-x>5 ⑥5+12x=65 ⑦9x=0 ⑧x÷12=6⑨9y等式:方程:三、选择。
(1)等式两边除以()的数,左右两边仍然相等。
A.不为0B. 相同C.同一个不为0(2)x=1.5是方程()的解。
A.18÷x=5.4+6.6B. (1.5+x)×4=7.5C.x+10.8+2.7=16四、解方程。
.
. 简易方程--解方程(基础+提高)
一、方程的意义
1、方程的意义
含有未知数的等式,我们称为方程。
如
100+x=150 5x=20
方程的两大要素:
①等式;②含有未知数(即字母)例1:下面的式子,哪些是方程?为什么。
4+3X =10
6+2X 7-X >3 X+Y=30 4a+3=5 17-8=9 8X =0 18÷X =2 m-4y=2
针对练习:下列式子中,是方程的在括号里打“√”
9-2x=3() 5.6+2.4=8() 3m-4=16
()3.8b >a( ) x
÷1.2=8.4÷7(
) y=6.3()2、方程和等式的关系3、等式的性质
等式两边同时加上或减去一个相同的数,左右两边仍然相等。
等式两边同时乘或除以一个相同的数(0除外),左右两边仍然相等。
方
程等式联系
方程一定是等式,等式不一定是方程区别含有未知数不一定含有未知数。
3解方程第1课时解方程(一)课时目标导航解方程(一)。
(教材第67~68页例1、例2、例3)1.根据等式的性质,使学生初步掌握解方程及检验方程的方法,理解解方程和方程的解的概念。
2.培养学生的分析能力及应用所学知识解决实际问题的能力。
3.帮助学生养成自觉检验的良好习惯。
重点:理解并掌握解方程的方法。
难点:理解形如a±x=b的方程原理,掌握正确的解方程格式及检验方法。
一、情景引入同学们,咱们玩一个猜一猜的游戏好吗?出示一个盒子,让学生猜一猜里面可能有几个球。
(学生思考后会说,可以是任意数。
)教师继续通过多媒体补充条件,并出示教材第67页例1情境图。
问:从图上你知道了哪些信息?引导学生看图回答:盒子里的球和外面的3个球,一共是9个。
并用等式表示:x+3=9(教师板书)二、学习新课1.方程的解和解方程及形如x±a=b的方程。
(1)出示教材第67页第一个天平图,让学生观察并说一说。
长方体盒子代表未知的x个球,每个小正方体代表一个球,则天平左边是(x+3)个球,右边是9个球,天平平衡,列式:x+3=9。
观察:把左边拿掉3个球,要使天平仍然保持平衡要怎么办?(右边也要拿掉3个球。
)追问:怎样用算式表示?学生交流,汇报:x+3-3=9-3x=6质疑:为什么两边都要减3呢?你是根据什么来求的?(根据等式的性质:等式的两边减去同一个数,左右两边仍然相等。
)(2)方程的解和解方程。
教师总结:刚才我们计算出的x=6,这就是使方程左右两边相等的未知数的值,叫做方程的解。
也就是说,x=6是方程x+3=9的解。
求方程解的过程叫做解方程。
提问:方程的解和解方程有什么区别?学生自主看课本学习,可能会初步知道,求出的x的值是方程的解;求解的过程就是解方程。
引导学生小结:“方程的解”中“解”的意思,是指能使方程左右两边相等的未知数的值,它是一个数值;而“解方程”中“解”的意思,是指求4的解的过程,是一个计算过程。