博弈论中的均衡
- 格式:docx
- 大小:36.97 KB
- 文档页数:2
问题:博弈论三种均衡的异同结合工作实践举一个例子,谈以下三种均衡的异同,1、占优策略均衡,2、纳什均衡,3、混合策略纳什均衡。
国企办公室当中的智猪博弈。
“大猪”们辛辛苦苦加班,工资一分也不多拿,“小猪”们一边逍遥自在,工资一分也不少拿,这种情况在国企办公室里比比皆是。
很遗憾,我就是“大猪”们中的一员,因为我们什么都缺,尤其缺能干的人,就是不缺人。
严格占优均衡(DSE)、重复剔除占优均衡(IEDE)、纯策略纳什均衡(PNE)、混合策略纳什均衡(MNE),前一个均衡是后一个均衡的特例,后一个均衡是前一个均衡的扩展,即DSE是IEDE的子集,IEDE是PNE的子集,PNE是MNE的子集。
他们的区别如下:1、占优策略“不管你怎么做,我所做的都是我能做得最好的。
”其他人无论采取什么策略,目前你采取的策略就是最优的,永远不会改变。
2、纳什均衡:在一种策略组合上,其他人不改变策略时,那么你就不会改变策略,因为目前最优。
★“给定你的做法后,我所做的是我能做得最好的。
”★“给定我的做法后,你所做的是你能做得最好的。
”★如果你有占优策略, 你可以使用此策略, 以不变应万变;★如果你没有占优策略, 你必须随机应变。
在达到了纳什均衡之后, 所有参与者都没有动机想再变了。
纳什均衡是常态,帕累托最优几乎不存在。
经典案例:囚徒困境。
3、混合策略纳什均衡由所有参与人的混合策略构成的纳什均衡。
有些博弈不存在纳什均衡,或者纳什均衡不唯一,如猜硬币博弈。
要想为博弈方的选择和博弈结果做明细的预测,就要用到混合策略纳什均衡。
混合策略纳什均衡是面对其他博弈者选择的不确定性的一个理性对策,其主要特征是作为混合策略一部分的每一个纯策略有相同的期望值,否则,一个博弈者会选择那个期望值最高的策略而排除所有其他策略,这意味着原初的状态不是一个均衡。
博弈论名词解释博弈论是一种研究冲突和合作决策的数学理论。
在博弈论中,玩家通过制定决策来实现自己的利益,同时也要考虑其他玩家的决策对自己利益的影响。
博弈论的研究对象是在有限的资源和信息条件下,决策制定者之间的相互作用。
以下是一些常见的博弈论名词解释:1. 纳什均衡(Nash equilibrium):是指在博弈过程中,每个玩家依据其他玩家的行为选择自己的最佳策略,而没有动机单方面改变策略。
纳什均衡是一种稳定状态,即每个玩家的策略都是最优的。
2. 零和博弈(zero-sum game):是指一个玩家的收益与另一个玩家的损失完全相等,总收益为零。
在零和博弈中,一个玩家的利益的增加必然导致另一个玩家的利益的减少,双方利益存在完全的对立关系。
3. 非零和博弈(non-zero-sum game):是指一个玩家的利益的增加不一定导致另一个玩家的利益减少。
在非零和博弈中,玩家之间的利益可以相互协调、互利互惠。
4. 博弈树(game tree):是博弈论中常用的一种图形表示方式,用于展示博弈过程中的决策步骤和可能的结果。
博弈树由顶点和边组成,顶点表示玩家的决策点,边表示不同的行动选择。
5. 最优策略(optimal strategy):在博弈论中,最优策略是指玩家的最佳选择,使得在对手的任何策略下,自身获得最大利益。
最优策略可能根据玩家的目标和信息不同而变化。
6. 合作与背叛(cooperation and defection):博弈论中常涉及到的两个关键概念。
合作指玩家之间通过协调行动来获得共同利益,背叛指玩家为了自身利益而选择对方不合作。
7. 博弈矩阵(game matrix):是一种表示博弈参与者和策略选择关系的表格。
博弈矩阵以参与者为行,以策略选择为列,用数字表示参与者在不同策略下的收益情况。
8. 支配策略(dominant strategy):在博弈论中,一种策略如果在所有可能的对手策略下都能带来最佳结果,则被称为支配策略。
博弈论的主要均衡概念及其比较
均衡概念是博弈论的核心概念,它指的是一种状态,在这种状态下,双方玩家的策略都是最优的,没有一方可以通过改变自己的策略而获得更好的结果。
主要的均衡概念有:
1、纳什均衡:纳什均衡是博弈论中最重要的均衡概念,它是由美国经济学家纳什提出的,它是指当双方玩家的策略都是最优的,没有一方可以通过改变自己的策略而获得更好的结果,即每个玩家都没有动力改变自己的策略。
2、Nash-Subgame均衡:Nash-Subgame均衡是由美国经济学家纳什提出的,它是指在一个博弈中,每个玩家都有一个最优的策略,这种策略可以使每个玩家获得最大的利益,且每个玩家都不会改变自己的策略,从而使得博弈的结果是一个稳定的状态。
3、博弈树均衡:博弈树均衡是由美国经济学家John Nash提出的,它是指在博弈树中,每个玩家都有一个最优的策略,这种策略可以使每个玩家获得最大的利益,且每个玩家都不会改变自己的策略,从而使得博弈的结果是一个稳定的状态。
纳什均衡和Nash-Subgame均衡是两种最重要的均衡概念,它们都是基于每个玩家都有一个最优的策略,而博弈树均衡则是基于博弈树模型的均衡概念。
它们之间的区别在于,纳什均衡和Nash-Subgame均衡是针对一般情况的均衡概念,而博弈树均衡是针对博弈树模型的均衡概念。
对称均衡非对称均衡博弈论
对称均衡和非对称均衡是博弈论中的重要概念,用于描述博弈中各方的策略选择和结果。
在博弈论中,博弈是指一种决策情形,其中参与者的利益受到彼此的影响。
对称均衡和非对称均衡都是描述博弈中可能出现的情况的概念。
首先,让我们来看看对称均衡。
在博弈论中,对称均衡是指参与者采取相同的策略,并且没有动机去改变自己的策略,因为任何一方的单方面改变都不会使其获益。
对称均衡的一个经典例子是“囚徒困境”博弈,其中两名囚犯面临合作或者背叛的选择。
在对称均衡中,如果两名囚犯都选择背叛,那么他们都会受到最严厉的惩罚,而如果两名囚犯都选择合作,那么他们都会受益。
因此,对称均衡发生在他们都选择背叛或者都选择合作的情况下。
其次,非对称均衡是指参与者采取不同的策略,并且在当前策略下没有动机去改变自己的策略,因为任何一方的单方面改变都不会使其获益。
非对称均衡的一个例子是“买方市场”博弈,其中卖方和买方在价格谈判中采取不同的策略。
在非对称均衡中,如果卖方设定了一个最低价格,而买方愿意接受这个价格,那么双方都没有动机改变自己的策略。
总的来说,对称均衡和非对称均衡是博弈论中用于描述参与者策略选择和结果的重要概念。
通过研究对称均衡和非对称均衡,我们可以更好地理解博弈中参与者的决策行为,以及他们可能达到的结果。
这些概念对于经济学、政治学以及其他社会科学领域都具有重要意义。
希望这个回答能够帮助你更好地理解对称均衡、非对称均衡和博弈论的相关概念。
博弈论纳什均衡什么是纳什均衡?1、纳什均衡(Nash equilibrium ),又称非合作博弈均衡,是博弈论概念,指的是:一种博弈稳定结果,谁单方改变策略,谁就会损失。
两个囚徒互相揭发,就是一种纳什均衡。
对于每个囚徒来说,如果打破纳什均衡,在对方实施揭发策略时,改变揭发策略,保持沉默,自己就会由判刑2年,变成判刑5年。
也就是说,两个囚徒互相揭发是稳定博弈结果,谁单方改变策略,就会受到损失。
这也就是均衡涵义所在,两个囚徒从利己角度,都不会单方改变策略。
博弈策略稳定,博弈结果也稳定。
之所以命名为纳什均衡,是因为提出者是经济学家、博弈论创始人约翰.纳什。
之所以称为非合作博弈均衡,原因就是:两个囚徒如果合作,互相保持沉默,各自只要坐牢1年;但最终博弈结果,也就是纳什均衡显著特征,是不合作。
2、纳什均衡意义重大。
纳什均衡提出,震动整个经济学界。
诺贝尔经济学奖得主萨缪尔森曾说:“你只要教会鹦鹉说‘需求和供给’,它也是经济学家。
”博弈论专家坎多瑞则说:“这只鹦鹉现在必须多学一个词了,那就是‘纳什均衡’。
”诺贝尔经济学奖得主迈尔森也说:“发现纳什均衡意义,可以和生命科学中发现DNA 双螺旋结构相媲美。
”纳什也因为提出纳什均衡,创立博弈论,而获得1994年诺贝尔经济学家奖。
纳值均衡意义重大,简单来说,就是它对于经济学具有重大意义。
读友们如果了解经济学看不见的手原理,就知道,古典经济学认为,通过市场这只‘看不见的手’调节,个体追求私利行为,会促进集体利益最大化。
但纳什均衡却违反上述原理:两个囚徒分别追求私利行为,并没有促进集体(囚徒整体)利益最大化,反而是损人不利己。
这正是市场失灵软肋之处,通过博弈论视角可以得到合乎逻辑解释,更有条件找到合适解决方案。
从上述这点,读友们可以“一斑窥全豹”,感受到博弈论重要性。
更重要的是,纳什均衡非常普遍,小至个人沟通,中到公司竞争,大到国家往来,都可以观察到。
Q2:怎样运用纳什均衡?1、分析囚徒困境。
博弈论公式大全
博弈论中的公式和定理有很多,以下是一些常见和重要的博弈论公式:
1. 纳什均衡公式:对于任意的策略组合s1,s2,如果对于所有的i,pi(s1, s2) >= pi(si(1), s2) 和 pi(s1, s2) >= pi(s1, si(2))都成立,则称(s1, s2)为纳什均衡。
2. 零和博弈公式:在零和博弈中,一方的收益等于另一方的损失,即总和为零。
常见的零和博弈有剪刀石头布游戏、赌博等。
3. 优势策略均衡公式:如果对于任意的对手策略s2,玩家i的策略s1都是最优的,则称(s1, s2)为优势策略均衡。
4. 纯策略与混合策略公式:在博弈论中,玩家的策略可以分为纯策略和混合策略。
纯策略是指玩家在每个信息集上选择固定的行动,而混合策略则允许玩家以一定的概率在多个行动中进行选择。
5. 贝叶斯均衡公式:在非完全信息博弈中,如果每个玩家都采用贝叶斯纳什均衡策略,那么这个策略组合就是贝叶斯均衡。
6. 最大最小值定理:对于完全二叉树博弈,如果每个节点都有正的权重,那么最大最小值就是所有叶子节点的权重的最大最小值。
7. 尼姆定理:在非零和博弈中,如果每个玩家都追求自己的最大收益,则至少有一个玩家会获得零收益。
8. 约翰逊定理:在完全信息博弈中,如果存在一个玩家有严格优势策略,那么这个玩家将获得所有收益。
9. 拉姆齐定理:在非完全信息博弈中,如果每个玩家都采用最优混合策略,那么这个策略组合就是拉姆齐最优。
以上是一些常见的博弈论公式,它们在博弈论的研究和应用中发挥着重要的作用。
几种均衡的概念
1. Nash均衡:在博弈论中指的是每个参与者通过最优的策略选择,使得任何一个参与者单方面改变策略都不能获得更多的收益。
2. Walras均衡:在经济学中指市场上的供求达到均衡状态,所有商品的价格都已经确定,市场整体没有供过于求或需求过剩的情况。
3. Cournot均衡:是用来描述投资者怎样平衡利润最大化与市场份额之间的关系。
指的是几个投资者在市场中进行投资,每个投资者预测对手的投资行为,然后选择最优策略的状态。
4. Stackelberg均衡:是博弈论中,一种非纳什均衡,也是竞争者在垄断形势下的最优策略。
指的是在竞争者之间制定不同的价格、数量或其他策略,使得每个竞争者都能获得最大的利润。
5. Pareto均衡:是指在任何人都不愿意我的情况下,通过某种资源分配方法来使一个人或一组人的利益得到了提高,但另一些人的利益没有降低,这种资源分配方法被称为Pareto均衡。
博弈论中的均衡
一、博弈论的定义
博弈论是研究决策者之间相互影响的一种数学工具。
它主要关注的是
在决策者之间存在相互作用和相互依存的情况下,如何做出最优决策。
二、博弈论中的均衡概念
均衡是博弈论中一个重要的概念。
它指的是在一个博弈中,每个参与
者都采取了最优策略,并且没有任何一个参与者能够通过改变自己的
策略来获得更多的收益。
三、纳什均衡
纳什均衡是博弈论中最为常见和重要的均衡概念之一。
它指的是在一
个非合作博弈中,每个参与者都采取了最优策略,并且这些最优策略
构成了一个稳定状态,即没有任何一个参与者能够通过改变自己的策
略来获得更多的收益。
四、纳什均衡存在定理
纳什均衡存在定理指出,在任何一个有限制性条件(例如有限次迭代)下满足某些基本条件(例如紧致性)的非合作博弈中,至少存在一个
纳什均衡。
五、纳什均衡的计算方法
在一些简单的博弈中,可以通过列出参与者的收益矩阵来计算纳什均衡。
具体方法是找到每个参与者的最优策略,并检查这些最优策略是
否构成了一个稳定状态。
在一些复杂的博弈中,计算纳什均衡可能非常困难甚至不可能。
此时,可以采用数值方法(例如迭代法)或者近似方法(例如线性规划)来
求解。
六、纳什均衡的应用
纳什均衡在经济学、政治学、生物学等领域都有广泛应用。
在市场竞
争中,企业可以通过分析竞争对手的行为和策略来制定自己的最优策略;在国际关系中,各国可以通过分析其他国家的行为和策略来制定
自己的外交政策。
七、纳什均衡存在局限性
尽管纳什均衡是博弈论中最为常见和重要的均衡概念之一,但它也存
在一些局限性。
在一些博弈中,存在多个纳什均衡,而且这些纳什均
衡可能会导致非常不同的结果;在一些博弈中,参与者的收益函数可
能并不是凸函数,因此纳什均衡可能不存在或者不唯一。
八、总结
博弈论中的均衡是一个重要的概念,其中纳什均衡是最为常见和重要
的一种。
通过计算纳什均衡,参与者可以找到自己的最优策略,并且
预测其他参与者的行为和策略。
然而,纳什均衡也存在局限性,在实
际应用中需要注意。