三角形
- 格式:doc
- 大小:400.22 KB
- 文档页数:16
三角形的基本概念和定义三角形是几何学中最基本的形状之一,其作为平面图形,由三条线段所构成。
本文将探讨三角形的基本概念和定义,其中包括三角形的构成要素、分类以及相关定理。
一、三角形的构成要素三角形由3条线段所构成,我们称之为边。
这3条边可以连接成一个封闭的图形,其中任意两条边的交点称为顶点。
顶点之间的线段称为角。
在三角形中,我们可以将边分为不同的角度,从而定义其性质。
其中,最长的一条边叫做底边,其他两条边叫做腿(legs)。
两条腿的末端构成顶点。
二、三角形的分类根据三角形的边长和角度的不同,我们可以将三角形进行分类。
以下是常见的分类:1. 根据边长分类:- 等边三角形:三条边的长度都相等,每个角都是60度。
- 等腰三角形:两条边的长度相等,两个对应的角也相等。
- 普通三角形:三条边的长度都不相等,三个角也都不相等。
2. 根据角度分类:- 直角三角形:其中一个角是90度。
根据两腿的长度关系,我们还可以分为等腿直角三角形和斜腿直角三角形。
- 钝角三角形:其中一个角大于90度。
- 锐角三角形:所有角都小于90度。
三、三角形的相关定理在三角形中,存在一些定理和性质,这些定理可以帮助我们研究和解决与三角形相关的问题。
以下是一些常见的三角形定理:1. 三角形内角和定理:三角形的所有内角的和等于180度。
2. 三边定理(三角形的海伦公式):设三角形的三边长分别为a、b、c,其半周长为s,则三角形的面积可以用海伦公式计算:面积= √(s(s-a)(s-b)(s-c))。
3. 直角三角形的勾股定理:直角三角形中,两个腿的平方和等于斜边的平方:a² + b² = c²。
4. 等腰三角形的性质:等腰三角形的底角相等,顶角相等。
5. 等边三角形的性质:所有角都是60度,每个角的外角也是60度。
6. 同位角定理:当两条平行线被一条截线切割,所形成的内角和外角相等。
7. 外角定理:三角形的外角等于不相邻的内角之和。
三角形的证明方法
三角形的证明方法有以下几种:
1. 使用勾股定理证明:如果已知三角形的三边长度,可以利用勾股定理来证明三角形的存在。
勾股定理表达式为:a^2 + b^2 = c^2,其中a、b、c为三角形的三边长度。
2. 使用余弦定理证明:如果已知三角形的两边长度和它们之间的夹角,则可以使用余弦定理来证明三角形的存在。
余弦定理表达式为:c^2 = a^2 + b^2 - 2ab*cosC,其中c为三角形的第三边长度,a、b为两边长度,C为夹角的度数。
3. 使用正弦定理证明:如果已知三角形的两边长度和一个夹角的度数,可以使用正弦定理来证明三角形的存在。
正弦定理表达式为:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的三边长度,A、B、C为夹角的度数。
4. 使用面积法证明:如果已知三角形的三个顶点坐标,可以利用向量叉积的方法来计算三角形的面积。
如果面积不为零,则可以证明三角形的存在。
这些方法可以根据已知的条件选择合适的方法证明三角形的存在。
三角形所有知识点三角形,这可是数学世界里的“常客”!从小学到高中,它一直陪伴着咱们的学习旅程。
先来说说三角形的定义吧。
三角形啊,就是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形。
这听起来是不是有点抽象?给您举个例子,咱家里的三角衣架,那就是个实实在在的三角形。
它的三条边紧紧相连,形成了一个稳定的形状,能稳稳地挂住衣服。
三角形的分类那也是有讲究的。
按角来分,可以分成锐角三角形、直角三角形和钝角三角形。
锐角三角形就是三个角都小于 90 度的三角形。
您想想看,那些小巧可爱的三角积木,它们的角是不是都比较尖锐,这很可能就是锐角三角形哟!直角三角形呢,有一个角是 90 度,像咱们教室里的墙角,那就是个直角。
钝角三角形就更好理解啦,有一个角大于 90 度小于 180 度。
按边来分的话,有等边三角形、等腰三角形和一般三角形。
等边三角形,三条边都相等,三个角也都相等,都是 60 度。
还记得学校门口卖的彩色三角旗吗?有时候就会有等边三角形的,看起来特别规整。
等腰三角形呢,有两条边相等,相应的两个角也相等。
就像有些女士戴的等腰三角形的耳环,是不是很漂亮?三角形的内角和是 180 度,这可是个非常重要的知识点。
我记得有一次和孩子一起做手工,我们用硬纸板剪了几个三角形,然后想办法去测量它们的内角和。
孩子一开始还不太相信内角和一定是 180 度,结果我们量了又量,算了又算,最后得出的结论都是 180 度,孩子可兴奋了,对这个知识点记得特别牢。
三角形还有个很重要的性质,就是三角形任意两边之和大于第三边,任意两边之差小于第三边。
这在我们生活中也很有用呢!比如说,我们要搭一个三角形的架子,如果选的三根木条长度不符合这个条件,那可就搭不成三角形啦。
再来说说三角形的面积。
三角形的面积等于底乘以高除以 2。
这就好比我们要给一块三角形的地种庄稼,得先算出它的面积,才能知道需要多少种子。
在高中阶段,我们对三角形的研究就更深入啦。
三角形所有知识点总结一、三角形的定义和性质1.1 三角形的定义三角形是由三条线段相互连接而成的闭合图形。
1.2 三角形的分类根据边长和角度的关系,三角形可以分为以下几类: - 等边三角形:三条边的长度相等。
- 等腰三角形:两条边的长度相等。
- 直角三角形:其中一个角是直角(90度)。
- 钝角三角形:其中一个角大于90度。
- 锐角三角形:三个角都小于90度。
1.3 三角形的性质三角形有许多重要性质需要了解: - 三角形的内角和为180度。
- 三角形任意两边之和大于第三边。
- 等边三角形的三个角都是60度。
- 等腰直角三角形的两个锐角都是45度。
二、三角形的重要定理2.1 三角形的重心定理重心定理指出,三角形的三条中线交于一点,该点被称为重心。
重心到三角形三个顶点的距离满足以下关系:重心到某个顶点的距离等于其他两个顶点到该顶点距离的和的一半。
2.2 三角形的垂心定理垂心定理指出,三角形的三条高交于一点,该点被称为垂心。
垂心到三角形三个顶点的距离满足以下关系:垂心到某个顶点的距离等于其他两个顶点到该顶点距离的和的一半。
2.3 三角形的外心定理外心定理指出,三角形的三条垂直平分线交于一点,该点被称为外心。
外心到三角形三个顶点的距离相等。
2.4 三角形的角平分线定理角平分线定理指出,三角形的三条角平分线交于一点,该点被称为角平分点。
角平分点到三角形的三个顶点的距离满足以下关系:角平分点到某个顶点的距离与该边对应边的长度之比等于另外两个顶点到对边的距离与对边长度的比值。
三、三角形的边长计算公式3.1 三角形的周长三角形的周长即三边之和,用公式表示为:周长 = 边1长 + 边2长 + 边3长。
3.2 三角形的面积根据海伦公式,可以计算三角形的面积。
海伦公式如下:设三角形的三边长分别为a、b、c,则三角形的面积S可通过以下公式计算:S = √(s * (s-a) * (s-b) * (s-c)),其中s=(a+b+c)/2。
三角形的分类引言三角形是几何学中常见且重要的形状。
根据其边长和角度的不同,三角形可以分为不同的分类。
本文将介绍三角形的基本概念以及常见的分类方法。
三角形的定义三角形是一个由三条线段组成的图形,这三条线段被称为三角形的边。
三角形的三个顶点分别是三条边的端点,相应的角就是由两条边组成的夹角。
三角形的分类方法1. 根据边长分类根据三角形的边长,可以将三角形分为以下三类:•等边三角形:三条边的长度相等。
所有的内角都是60度。
•等腰三角形:两条边的长度相等。
至少有两个内角是相等的。
•普通三角形:三条边的长度都不相等。
2. 根据角度分类根据三角形的内角,可以将三角形分为以下三类:•直角三角形:一个内角是90度。
•钝角三角形:一个内角大于90度。
•锐角三角形:三个内角都小于90度。
3. 综合分类根据边长和角度的关系,可以将三角形进一步细分:•正三角形:既是等边三角形,又是等角三角形。
•直角等腰三角形:既是直角三角形,又是等腰三角形。
•等边等腰三角形:既是等边三角形,又是等腰三角形。
•普通三角形:边长都不相等,内角都不相等。
三角形判定法则在给定三角形的三条边的长度时,可以使用以下判定法则来确定三角形的类型:1.三边关系判定法则:对于三条边长为a、b、c的三角形,如果满足任意两边之和大于第三边,那么这三条线段可以组成一个三角形。
2.直角三角形判定法则:三边关系满足的前提下,如果a²+b²=c²,或者b²+c²=a²,或者a²+c²=b²,则这个三角形是一个直角三角形。
3.等腰三角形判定法则:三边关系满足的前提下,如果存在两边的长度相等,那么这个三角形是一个等腰三角形。
4.等边三角形判定法则:三边关系满足的前提下,如果三边的长度都相等,那么这个三角形是一个等边三角形。
结论三角形是几何学中最基本的形状之一。
根据边长和角度的不同,我们可以将三角形分为多个分类。
三角形概念大全三角形是几何学中最基本的形状之一,由三条边和三个顶点组成。
在这篇文章中,我们将详细介绍三角形的概念、性质、分类以及一些与三角形相关的重要定理和公式。
1. 三角形的基本概念三角形是由三条线段(边)和三个点(顶点)组成的多边形。
其中,边是连接两个顶点的线段,而顶点是多边形的拐角处。
三角形中的三个顶点用大写字母A、B、C表示,对应的边用小写字母a、b、c表示。
2. 三角形的性质(1)内角和定理:三角形的三个内角之和等于180度。
即∠A +∠B + ∠C = 180°。
(2)外角和定理:三角形的一个内角和其相邻的两个外角之和等于360度。
即∠A + ∠D + ∠E = 360°。
(3)角平分线定理:三角形的内角平分线相交于三角形的内心,且内心到三角形的各边的距离相等。
(4)中线定理:三角形的三条中线交于一点,这个点被称为三角形的重心,重心到三角形的各顶点的距离相等。
3. 三角形的分类根据边长和角度的不同,三角形可以分为以下几种类型:(1)按边长分类:a. 等边三角形:三条边的长度都相等。
b. 等腰三角形:至少有两条边的长度相等。
c. 普通三角形:三条边的长度都不相等。
(2)按角度分类:a. 锐角三角形:三个内角都小于90度。
b. 直角三角形:一个内角为90度。
c. 钝角三角形:其中一个内角大于90度。
(3)综合分类:a. 等腰直角三角形:一条等边与一个直角。
b. 等边锐角三角形:三个等边均为锐角。
c. 正三角形:既是等边三角形又是等腰三角形同时也是锐角三角形。
4. 三角形的重要定理和公式(1)勾股定理:直角三角形中,两直角边的平方和等于斜边的平方。
a² + b² = c²(c为斜边)(2)正弦定理:三角形中,边与其对应的正弦值成比例。
a/sinA = b/sinB = c/sinC(3)余弦定理:三角形中,边与其余弦值成反比。
a² = b² + c² - 2bc*cosA (a为边A对应的边长,A为角A对应的内角,b和c同理)(4)海伦公式:已知三角形的三边长度,可以求出三角形的面积。
一、三角形相关概念1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.二.三角形的高、中线及角平分线1.下列四个图形中,线段BE是△ABC的高的图形是()A.B.C.D.2.如果线段AM和线段AN分别是△ABC边BC上的中线和高,那么下列判断正确的是()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN3.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线 B.高线 C.中线 D.无法确定4.下列说法错误的是()A.三角形的高、中线、角平分线都是线段B.三角形的三条中线都在三角形内部C.锐角三角形的三条高一定交于同一点D.三角形的三条高、三条中线、三条角平分线都交于同一点5.若一个三角形的三条高所在直线的交点在三角形外部,此三角形是三角形.6.如图,点D在线段BC上,AC⊥BC,AB=8cm,AD=6cm,AC=4cm,则在△ABD 中,BD边上的高是cm.7.如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.(二)三角形三边关系定理①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可1.若三角形的两边a、b的长分别为3和5,则其第三边c的取值范围是()A.2<c<5 B.3<c<8 C.2<c<8 D.2≤c≤82.三角形的两边长为6cm和3cm,则第三边长可以为()A.2 B.3 C.4 D.103.以下各组线段长能组成三角形的是()A.1,5,6 B.4,3,5 C.2,5,8 D.5,5,12 4.已知三角形的两边长分别是2cm和7cm,其周长的数值为偶数,则此三角形的周长为.5.若a,b,c是△ABC三边的长,化简:|a+b﹣c|+|b﹣a﹣c|﹣|c﹣a﹣b|.6.已知三角形的两边长为4和6,第三条边长x最小.(1)求x的取值范围;(2)当x为何值时,组成三角形周长最大?最大值是多少?(三)三角形的稳定性三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.1.下列图形中不具有稳定性是()A.B.C.D.2.下列物品不是利用三角形稳定性的是()A.自行车的三角形车架B.三角形房架C.照相机的三脚架D.放缩尺3.如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是()A.两点之间线段最短B.垂线段最短C.两定确定一条直线D.三角形的稳定性4.如图(1)扭动三角形木架,它的形状会改变吗?如图(2)扭动四边形木架,它的形状会改变吗?如图(3)斜钉一根木条的四边形木架的形状形状会改变吗?为什么?归纳:①三角形木架的形状,说明三角形具有②四边形木架的形状说明四边形没有.(四)三角形的内角结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°(1)构造平角①可过A点作MN∥BC(如图)②可过一边上任一点,作另两边的平行线(如图)(2)构造邻补角,可延长任一边得邻补角(如图)构造同旁内角,过任一顶点作射线平行于对边(如图)结论2:在直角三角形中,两个锐角互余.表示:如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°(因为∠A+∠B+∠C=180°)注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ABC中,∠C=180°-(∠A+∠B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.1.在△ABC中,∠A=∠B=∠C,则△ABC是()三角形.A.锐角B.直角C.钝角D.等腰直角2.如图,在△ABC中,∠B=60°,∠C=50°,如果AD平分∠BAC,那么∠ADB 的度数是()A.35°B.70°C.85°D.95°3.如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°4.如图,AE是△ABC的角平分线,AD⊥BC,垂足为D.若∠ABC=66°,∠C=34°,则∠DAE=°.5.在△ABC中,如果∠A:∠B:∠C=1:2:3,根据三角形按角进行分类,这个三角形是三角形.∠A=度.6.如图,将一张三角形纸片折叠,使得点A、点C都与点B重合,折痕分别为DE、FG,此时测得∠EBG=36°,则∠ABC=°.7.如图,已知∠1=20°,∠2=25°,∠A=50°,求∠BDC的度数.(五)三角形的外角1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角,这两个角为对顶角,大小相等.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.如图中,∠ACD=∠A+∠B , ∠ACD>∠A , ∠ACD>∠B.③三角形的一个外角与与之相邻的内角互补3.外角个数过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.1.如图,已知∠ACD=130°,∠B=20°,则∠A的度数是()A.110°B.30°C.150°D.90°2.如图,△ABC中,点D在BC延长线上,则下列结论一定成立的是()A.∠1=∠A+∠B B.∠1=∠2+∠AB.C.∠1=∠2+∠B D.∠2=∠A+∠B3.将一副直角三角板如图放置,使两直角边重合,则∠α的度数为()A.75°B.105°C.135°D.165°4.如图,BC⊥ED于点O,∠A=50°,∠D=20°,则∠B=度.5.如图,求x的值.6.如图,△ABC中,∠ABC=∠C=70°,BD平分∠ABC,求∠ADB的度数.7.如图,已知BD是△ABC的角平分线,CD是△ABC的外角∠ACE的外角平分线,CD与BD交于点D.(1)若∠A=50°,则∠D=;(2)若∠A=80°,则∠D=;(3)若∠A=130°,则∠D=;(4)若∠D=36°,则∠A=;(5)综上所述,你会得到什么结论?证明你的结论的准确性.(六)多边形①多边形的对角线2)3(nn条对角线②n边形的内角和为(n-2)×180°③多边形的外角和为360°1.内角和为720°的多边形是()A.B.C.D.2.正十二边形的一个内角的度数为()A.30°B.150°C.360°D.1800°3.若正多边形的一个外角是60°,则这个正多边形的边数是()A.4 B.5 C.6 D.74.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形5.一个多边形的每一个内角都等于150°,这个多边形共有条边.6.若一个多边形的外角和比它的内角和的少90°,求多边形的边数.。
三角形及三角函数公式三角形是初中数学中的重要概念,也是几何学中的基础形状之一。
在本文中,我们将探讨三角形的性质以及与之相关的三角函数公式。
一、三角形的基本性质三角形是由三条边和三个角所确定的平面图形。
在三角形中,有一些基本概念和性质我们需要了解。
1. 三角形的内角和定理根据三角形的性质,三角形的三个内角的和为180度。
即:∠A + ∠B + ∠C = 180°。
这是一个重要的定理,对于解决三角形相关问题很有帮助。
2. 三角形的外角和定理三角形的外角定义为不与三角形的内角相邻的角。
根据三角形的性质,三角形的外角的和等于360度。
即:∠X + ∠Y + ∠Z = 360°。
3. 三角形的分类根据三角形的边长和角度的关系,三角形可以分为以下几类:- 等边三角形:三条边都相等的三角形。
- 等腰三角形:两条边相等的三角形。
- 直角三角形:拥有一个直角(90度)的三角形。
- 钝角三角形:拥有一个钝角(大于90度)的三角形。
- 锐角三角形:三个角都是锐角(小于90度)的三角形。
二、三角函数公式三角函数是数学中常见的函数之一,它们与三角形的角度和边长之间有着密切的关系。
下面是一些重要的三角函数公式。
1. 正弦定理正弦定理描述了三角形的边长与角度之间的关系。
对于任意一个三角形ABC,其三个边的长度分别为a、b、c,对应的角度为∠A、∠B、∠C,则有以下的正弦定理公式:a/sin∠A = b/sin∠B = c/sin∠C = 2R其中R为三角形外接圆的半径。
2. 余弦定理余弦定理描述了三角形的边长与角度之间的关系。
对于任意一个三角形ABC,其三个边的长度分别为a、b、c,对应的角度为∠A、∠B、∠C,则有以下的余弦定理公式:a² = b² + c² - 2bc * cos∠Ab² = a² + c² - 2ac * cos∠Bc² = a² + b² - 2ab * cos∠C3. 正切定理正切定理描述了三角形的角度与边长之间的关系。
第四章 三角形 4.1 认识三角形(1)三角形中角的关系:(1)三角形的三个内角之和是 ;(2)直角三角形的两个锐角三角形的分类:按角分为三类: 三角形; 三角形和 三角形。
(一) 学习过程例1 证明三角形的内角和为180°例2 在△ABC 中,(1)0082,42,C A B ∠=∠=∠则= (2)5,A B C C ∠+∠=∠∠那么=(3)在△ABC 中,C ∠的外角是120°,B ∠的度数是A ∠度数的一半,求△ABC 的三个内角的度数变式训练:在△ABC 中(1)0078,25,B A C ∠=∠=∠则= (2)若C ∠=55°,010B A ∠-∠=,那么A ∠= ,B ∠=例3 已知△ABC 中,::1:2:3A B C ∠∠∠=,试判断此三角形是什么形状?变式训练:已知△ABC 中,090,2,A B B C ∠-∠=∠=∠试判断此三角形是什么形状?例4 如图,在△ABC 中,90ACB ∠=,CD ⊥AB 于点D ,1,2?A B ∠∠∠∠与有何关系与呢21DC B A例5 如图,已知00060,30,20,A B C BOC ∠=∠=∠=∠求的度数。
变式训练:如图在锐角三角形ABC 中,BE 、CD 分别垂直AC 、AB ,若040A ∠=,求BH C ∠的度数。
拓展:1、如图所示,求A B C D E ∠+∠+∠+∠+∠的度数。
2、如图在△ABC 中,已知1,2,,A B ABC ACB ACB ∠=∠∠=∠∠=∠∠求的度数。
OCBAHE DCBAHED CB A2D A4.1 认识三角形(2)1、三角形的有关概念(1)三角形的定义:由不在 上的三条线段首尾 相连所组成的图形。
(2)三角形的基本构造:①组成三角形的三条线段叫做三角形的 ②两条边相接的点叫做三角形的 ③相邻两边组成的角叫做三角形的 2、三角形的三边关系: (1)三角形任意两边之和 第三边 (2)三角形任意两边之差 第三边例1 图中共有几个三角形?并把它们用符号表示出来。
例2 下面各组数分别表示三条线段的长度,试判断以它们为边是否能组成三角形。
(1)1 ;4 ;5 (2)3 ;3 ;5(3)3x ;5x ;7x (x 为正数) (4)三条线段长度之比为4:7:6 变式训练:有下列长度的三条线段能否构成三角形?为什么? (1)3 ;4 ;8 (2)5 ;6 ;11 (3)5 ;7 ;10 (4)4 ;4 ;9 (5)5 ;5 ;5例3 小明要制作一个三角形铁丝架,已知有两根铁丝长度分别是3cm ,5cm (1) 他该如何选择第三根铁丝?你能帮助小明确定它的长度或范围吗? (2) 如果要求第三根铁丝的长度是整数,那么小明有几种选择?变式训练:1、已知两条线段的长为5cm 和8cm ,要订成一个三角形,试求: (1) 第三条线段的长度范围;(2) 若第三条线段的长度为奇数,求此时三角形的周长。
2、已知等腰三角形中,有两边长为3和7,求此等腰三角形的底边和腰长G FE D CBA例4 如图所示,在小河的同侧有A,B,C 三个村庄,图中的线段表示道路,某邮递员从A 村送信到B 村,总是走经过C 村的道路,不走经过D 村的道路,这是为什么呢? 请利用你所学的数学知识加以证明。
拓展:1、若设,,a b c 是△ABC 的三边,则a b c a b c +++--=2、已知,,a b c 是△ABC 的三边,2,5a b ==,且三角形的周长是偶数,(1)求c 的值;(2)判断△ABC 的形状。
回顾小结:掌握三角形三边关系:“三角形任意两边之和大于第三边;三角形任意两边之差小于第三边”。
4.1认识三角形(3)画出下图三角形的三条高,中线,角平分线;E DCBA1、在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做2、在三角形中, 的线段,叫做这个三角形的中线。
3、从三角形的一个顶点向它的对边所在直线作垂线, 之间的线段叫做三角形的高。
例1 (1)如图1,D 为S △ABC 的变BC 边的中点,若S △ADC =15, 那么S △ABC = (2)如图2,已知AD 、BE 分别是△ABC 中BC 、AC 边上的高,若0070,120,2C ∠=∠=∠=那么D CBA21EDCBA图1 图2变式训练:如图在△ABC 中,BD 平分00,66,24,ABC C ABD A ∠∠=∠=∠那么=例2 如图,已知在△ABC 中,ABC ACB ∠∠与的平分线交于点O ,试说明:(1)01180()2BOC ABC ACB ∠=-∠+∠ (2)01902BOC A ∠=+∠变式训练:如图在△ABC 中,已知I 是△ABC 三个内角平分线的交点,0130BIC BAC ∠=∠,则为( ) A 、40° B 、50° C 、65° D 、80°DCB AOCBAICBAFEA例3 如图,已知在△ABC 中,CF 、BE 分别是AB 、AC 边上的中线,若AE=2,AF=3,且△ABC 的周长为15,求BC 的长。
变式训练:如图,在△ABC 中,AB=AC ,AC 边上的中线BD 把三角形的周长分为12和15两部分,求△ABC 各边的长。
(1)如图,若AD 为△ABC 底边BC 的中线,则ABD S= =12;(2)两个等底(同底)三角形面积之比等于它们的 之比;两个等高(同高)三角形面积之比等于它们的 之比;(3)如图,在四边形ABCD 中,点E 、F 分别在BC 、CD 上,DF=FC,CE=2EB 。
已知,SDFAECF S m S n ==四边形(其中n>m ),则ABCD S 四边形=2、如图1在△ABC 中,AD ⊥BC 于点D ,AE 平分()BAC C B ∠∠>∠ (1)试探究,EAD C B ∠∠∠与的关系;(2)若F 是AE 上一动点①若F 移动到AE 之间的位置时,FD ⊥BD ,如图2所示,此时EFD C B ∠∠∠与与的关系如何?②当F 继续移动到AE 延长线上时,如图3所示FD ⊥BC ,①中的结论是否还成立,如果成立说明理由,如果不成立,写出新的结论。
DC BAFEDC BA图1E D CBAFE DCBA EDC BA4.2 图形的全等1._________________________和______都相同。
2.下面,我们看看图形的运动对全等图形有何影响?图形经过平移、旋转、翻折的图形运动,位置发生了变化,但形状和大小却没有改变,图形运动前后的两个图形是全等的;反过来,也就是说,两个全等的图形经过图形运动一定能重合.3.请你说说什么是全等多边形?什么是全等多边形的对应顶点、对应角、对应边?你认为全等多边形有何特征?全等多边形对应边、对应角分别相等.如图1,四边形ABCD与四边形EFGH全等,可记为四边形ABCD≌四EFGH,请指出对应顶点、对应角、对应边.全等多边形的识别方法:如果两个多边形对应边、对应角分别相等,那么这两个多边形全等.三角形是特殊的多边形,所以,全等三角形的对应边、对应角分别相等;如果两个三角形的___________、__________分别相等,那么这两个多边形全等.例1 如图2,已知将△ABC绕其顶点A顺时针方向旋转20°后得到△ADE.(1)△ABC与△ADE的关系如何?(2)求∠BAD的度数.4.3 探索三角形全等的条件(1)已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.C 'B 'A 'C B A图中相等的边是:AB=A ′B 、BC=B ′C ′、AC=A ′C . 相等的角是:∠A=∠A ′、∠B=∠B ′、∠C=∠C ′.(1)提出问题:你能画一个三角形与它全等吗?怎样画?(提示:可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.(2)小明家衣橱上两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明快速配一块回来,如果只有一把尺子,小明该怎么办?讨论下面几种情况: 1.给一个条件: 只给定一条边时:只给定一个角时:2.给出两个条件可能是:①一边一内角;②两内角;③两边.①3cm3cm3cm30︒30︒30︒②50︒50︒30︒30︒③6cm4cm4cm6cm可以发现按这些条件画出的三角形都_______________保证一定全等. 给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条___、两边一内角、两_____一边. 在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况. 探究sss已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? 1.作图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.这反映了一个规律:_______________的两个三角形全等,简写为_________或_________.用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的__________.[例1]如图,1、如图,△ABC 中 AB=AC , D 为BC 中点求证:①△ABD ≌△ACD . ②∠BAD=∠CAD③AD ⊥BC变式训练:如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?FDCBEAD CB A例2、如图,已知AB=CD ,AC=BD ,求证:∠A=∠D拓展延伸1、如图,AC 与BD 交于点O ,AD=CB ,E 、F 是BD 上两点,且AE=CF ,DE=BF.请推导下列结论:⑴∠D=∠B ;⑵AE ∥CF .2、已知如图,A 、E 、F 、C 四点共线,BF=DE ,AB=CD.⑴请你添加一个条件,使△DEC ≌△BFA ; ⑵在⑴的基础上,求证:DE ∥BF.3、 已知:AB =AC, D 为△ABC 内部一点, 且BD = CD,连接AD 并延长,交BC 于点E. 试找出图中的一对全等的三角形,并证明你的结论。