三角形证明(辅助线归类讲解)
- 格式:doc
- 大小:80.50 KB
- 文档页数:1
五种辅助线证明三角形≌在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD.证明:在AC上截取AF=AE,连接OF.∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60°∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°.显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60°在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC∴△DOC≌△FOC,CF=CD∴AC=AF+CF=AE+CD.二、中线倍长三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路.例2.已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是().分析:要求第三边上中线的取值范围,只有将将中线与两个已知边转移到同一个三角形中,然后利用三角形的三边关系才能进行分析和判断.解:如图2所示,设AB=7,AC=5,BC上中线AD=x.延长AD至E,使DE = AD=x.∵AD是BC边上的中线,∴BD=CD∠ADC=∠EDB(对顶角)∴△ADC≌△EDB∴BE=AC=5∵在△ABE中AB-BE<AE<AB+BE即7-5<2x<7+5三、作平行线当三角形问题中有相等的角或等腰等条件时,可通过作平行线将相等的角转换到某一个三角形中得到另外的等腰三角形或相等的角,从而为证明全等提供条件.例3.如图3,在等腰△ABC中,AB=AC,在AB上截取BD,在AC延长线上截取CE,且使CE=BD.连接DE交BC于F.求证:DF=EF.分析:要证DF=EF,必须借助三角形全等.而现有图形中没有全等三角形.由等腰三角形条件,可知∠B=∠ACB,作DH∥AE,可得∠DHB=∠ACB.则△DBH为等腰三角形.证明:作DH∥AE交BC于H.∴∠DHB=∠ACB,∵AB=AC,∴∠B=∠ACB∴∠DHB=∠B,DH=BD∵CE=BD ∴DH= CE又DH∥AE,∠HDF=∠E∠DFH=∠EFC(对顶角)∴△DFH≌△EFC(AAS)∴DF=EF四、补全图形在一些求证三角形问题中,延长某两条线段(边)相交,构成一个封闭的图形,可找到更多的相等关系,有助于问题的解决.例4.如图4,在△ABC中,AC=BC,∠B=90°,BD为∠ABC的平分线.若A点到直线BD的距离AD为a,求BE的长.分析:题设中只有一条已知线段AD,且为直角边,而要求的BE为斜边.要找到它们之间的关系,需设法构造其他的全等三角形.证明:延长AD、BC相交于F.由BD为∠ABC的平分线,BD⊥AF.易证△ADB≌△FDB ∴FD= AD=a AF=2a ∠F=∠BAD又∠BAD+∠ABD=90°,∠F+∠FAC=90°∴∠ABD=∠FAC∵BD为∠ABC的平分线∴∠ABD=∠CBE∴∠FAC=∠CBE,而∠ECB=∠ACF=90°,AC=BC∴△ACF≌△BCE(ASA)∴BE=AF=2a五、利用角的平分线对称构造全等角的平分线是角的对称轴,在证明全等过程中不仅提供了两个相等的角,还有一条公共边,利用角的平分线在角的两边上截取相等的线段,或向两边作垂线,对称构造出全等三角形是常用的证明方法.例5.如图5,在四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180°.证明:AD=CD.分析:由角的平分线条件,在BC上截取BE=BA,可构造△ABD≌△EBD,从而AD=DE.则只要证明DE=CD.证明:在BC上截取BE=BA,连接DE.由BD平分∠ABC,易证△ABD≌△EBD∴AD=DE ∠A=∠BED又∠A+∠C=180°,∠BED+∠DEC=180°∴∠DEC=∠C,∴DE=CD∴AD=CD二次根式双重非负性在实数范围内,我们知道式子表示非负数a的算术平方根,它具有双重非负性:(1);(2)a≥0.运用这两个简单的非负性,再结合非负数的性质“若几个非负数的和等于0,则这几个非负数都等于0”可以解决一些似乎无从下手的算术平方根问题.例1已知+=0,求x,y的值.分析:因为≥0,≥0,根据几个非负数之和等于0,则每个非负数都等于0,可知,从而,解之,得x=-1,y=4.例2若实数a、b满足+=0,则2b-a+1=___.分析:因为≥0,≥0,故由非负数的性质,得,两式相加,即得2b-a+1=0.例3已知实a满足,求a-2010的值.解:由a-20110,得a2011。
三角形作辅助性方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN= DC 在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180oFABC DE D C B A4321NF E DC B A∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BNMA BC D E F12345 12E DC B AP 12N DCB A∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM 又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4. 求证:BC = AB +CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
三角形中的常用辅助线方法总结在解决三角形相关问题时,辅助线是一种常用的方法。
通过引入辅助线,我们可以更好地理解三角形的性质和特点,从而更容易解决问题。
在本篇文章中,我将总结一些常用的辅助线方法,并给出相应的解释和推导。
一、中位线和中线1.定义:中位线是连接一个三角形的两个顶点和中点的线段,而中线是连接一个三角形的两个边对中点的线段。
2.性质:-三条中位线交于一点(重心),该点到各顶点距离的平方和最小。
-三条中线交于一点(重心),此点在中线上离两端点的距离分别是中线的两段长度的1:2-重心将中位线和中线按1:2分割。
-重心到三顶点的距离与中线长度成正比。
3.应用:-利用中线的性质可以求三角形的重心坐标。
-利用中线和中位线的定比分割性质可以求解三角形内部各线段的长度。
二、角平分线和高线1.定义:角平分线是从一个三角形的顶点出发,将对角分为两个相等角的线段,而高线是从一个三角形的顶点垂直于对边的线段。
2.性质:-三条角平分线交于一点(内心),该点到三边的距离和最小。
-高线与对应边的对称中线相等。
-三角形任意两边上的高线交于一点(垂心)。
-内心、垂心和重心共线,且重心到垂心的距离是重心到内心距离的2倍。
3.应用:-利用角平分线的性质可以求三角形内部角度的大小。
-利用高线的性质可以求解三角形的面积和高。
三、中垂线和外心1.定义:中垂线是从一个三角形的顶点垂直于对边的线段,而外心是指一个三角形的三条垂直平分线的交点。
2.性质:-三条中垂线交于一点(外心),该点到各顶点的距离相等。
-外心是三角形的外接圆圆心。
-外心到三个顶点的距离相等,且等于外接圆的半径。
3.应用:-利用中垂线的性质可以求解三角形的垂足和高。
-利用外心的性质可以求解三角形的外接圆半径和三角形外接圆内切于三边的三角形内切圆半径。
四、三角形不等边中点连接线1.定义:不等边中点连接线是连接一个三角形的三个顶点的中点的线段。
2.性质:-三角形三边的中点连接线交于一点。
诏明三龟形全等(舍仪段相等、气相苓)的几种方法一、三角彩全等的判定,① 卜」力分别相等的两个三角形全等(SSS)」最简单,考得也最少,考试过程中没有注意点】 ②有两边及其夹角对应相等的两个三角形全等(SAS),【最常考,而且考试就考“角是不是两边夹角”】I 当题目中得出“2对边及1对角相等”时.一定要检查“再是不是两边夹角: i ?③有两角及其夹边时应相等的两个三角形全等(ASA). ④行两角及一角的对边对应相等的两个.三角形仝等(AAS)。
⑤直角三角形全等条件行:斜边及一宜角边对应相等的两个直角三角形全等(IIL).j 直角三角形全等的特殊证法.但当该方法不行时,前面的4种方法也能用来证明直角三角形全等.| I 如何找斜边:斜边是直角所对的边,只要找90°的角所对的边就能找到斜边 |;!二、全等二角形的性质:①全等三角形的对应边相等:全等三角形的对应角相等。
②全等三角形的周长、面枳相等。
③全等三角形的对应边上的高对应相等。
④全等三角形的对应角的角平分线相等。
⑤全等三角形的对应边上的中线相等。
几种常见全等三角形的基本图形: 【平移】【”】[折■/对看]I 题n 中只要得出t 咐边及2对角相等•.那就能证明三用\形全等,唯一要做的就是区分好是ASA 还是AAS三、找全等三角形的方法:①可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;②可以从已知条件出发,在已知条件可以确定哪两个三角形相等:③从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;④若上述方法均不行,可考虑添加辅助线,构造全等一角形。
★ 三角形全等的证明中包含两个要素:边和角。
❶缺个角的条件:A 21.公共角2、对顶角△_晨4、等腰三角形5、同角或等角的补角(余角)A3、两全等三角形的对应角相等 A6、等角加(减)等角7、平行线❷缺条边的条件:1、公共边2、中点」' A*应F8 〃,4、等量差5、角平分线性质8、等于同一角的两个角相等久N" C B3、等量和,小6、等腰三角形|10、等于同一线段的两线段相等数形结合找条件【规律总结】找与边相邻的另一角TASA 找边的对角T AAS 找第的另一边TSASI 边为角的对边T 找任一角TAAS■题目中的幽藏条件1 .公共边、公共角2 .对顶角3 .正方形一4条边都相等、4个角都是90。
全等三角形六种辅助线方法及例题全等三角形是初中数学中一个非常重要的概念,掌握全等三角形的判定方法和辅助线方法对于解题至关重要。
本文将介绍全等三角形的六种辅助线方法,并结合例题进行详细讲解。
一、辅助线法1.等角分线法:将三角形内角的平分线相互交点构成的点与三角形的另外一个顶点相连,得到一条辅助线。
这条辅助线将三角形分成两个等角的小三角形,从而得到相似或全等三角形。
2.中线法:将三角形任意两边的中点相连,得到三角形的中线。
相等的中线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
3.高线法:将三角形内任意一条边的垂线向另外两边引出,得到三角形的高线。
相等的高线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
4.角平分线法:将三角形内角的平分线相互交点构成的点相连,得到三角形的角平分线。
相等的角平分线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
5.角平分线中垂线法:将三角形内角的平分线的中垂线相互交点构成的点相连,得到三角形的角平分线中垂线。
相等的角平分线中垂线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。
6.外心连线法:将三角形外接圆心与三角形三个顶点分别相连,得到三条辅助线。
这三条辅助线相等,将三角形分成三个面积相等的小三角形,从而得到相似或全等三角形。
二、例题解析1.已知△ABC,点D,E分别为BC,AB边上的中点,连接AD,BE相交于点F,求证:△DEF≌△ABC。
解析:由题意可知,△ABC是由两个等腰三角形组成的,因此可使用中线法证明两个三角形的全等。
由于D,E分别是BC,AB边上的中点,因此DE是AC中线,即DE=1/2AC;同理,AE是BC中线,AF=1/2BC。
因此,△ADB和△AEC是等腰三角形,且AD=EC,AB=AB,∠BAC=∠BAC,因此△ADB≌△AEC。
又因为DE是AC中线,BF是AE中线,因此DE=1/2AC,BF=1/2AE。
三角形全等证明常见做辅助线方法一、遇到三角形中线时常见的辅助线若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形。
(倍长中线法或“旋转”全等)1、如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。
(三角形一边上的中线小于其他两边之和的一半)2、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。
3、如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE.C二、遇到角平分线时常见的辅助线1.角平分线上点向角两边作垂线构造全等 过角平分线上一点向角两边作垂线,利用角平分线上的点到角两边距离相等的性质来证明问题。
(作垂线)2.截取构造全等(截长法、补短法)如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。
ADBC图1-1B3.延长垂线段(延长法)遇到垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形。
4.作平行线①、以角平分线上一点作角的另一边的平行线,构造等腰三角形,图4-1。
②、通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形,图4-2。
图4-2图4-1ABCBIG4、已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE 。
求证:AF=AD+CF 。
5、已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD6、已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+AD三、截长补短法(适合于证明线段的和、差、倍、分等类题目)截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相 等(截取----全等----等量代换)图2-6ECDABCD AEBDC补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换)①、对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。
【五种辅助线助你证全等】全等辅助线五种辅助线助你证全等在证明三角形全等时,有时需添加辅助线,下面介绍证明全等时常见的五种辅助线,可以帮助你更好的学习。
一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例1.如图1,在△ABC 中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD.证明:在AC上截取AF=AE,连接OF.∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60°∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°.显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60°在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD.二、中线倍长三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路.例2.已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是().分析:要求第三边上中线的取值范围,只有将将中线与两个已知边转移到同一个三角形中,然后利用三角形的三边关系才能进行分析和判断.解:如图2所示,设AB=7,AC=5,BC上中线AD=x.延长AD至E,使DE = AD=x.∵AD是BC边上的中线,∴BD=CD ∠ADC=∠EDB(对顶角)∴△ADC≌△EDB ∴BE=AC=5 ∵在△ABE 中 AB-BE<AE<AB+BE 即7-5<2x<7+5 ∴1<x <6 三、作平行线当三角形问题中有相等的角或等腰等条件时,可通过作平行线将相等的角转换到某一个三角形中得到另外的等腰三角形或相等的角,从而为证明全等提供条件.例3.如图3,在等腰△ABC中,AB=AC,在AB上截取BD,在AC延长线上截取CE,且使CE=BD.连接DE交BC于F.求证:DF=EF.分析:要证DF=EF,必须借助三角形全等.而现有图形中没有全等三角形.由等腰三角形条件,可知∠B=∠ACB,作DH∥AE,可得∠DHB=∠ACB.则△DBH为等腰三角形.证明:作DH∥AE交BC于H.∴∠DHB=∠ACB,∵AB=AC,∴∠B=∠ACB ∴∠DHB=∠B,DH=BD ∵CE=BD ∴DH= CE 又DH∥AE,∠HDF=∠E ∠DFH=∠EFC(对顶角)∴△DFH≌△EFC (AAS)∴DF=EF 四、补全图形在一些求证三角形问题中,延长某两条线段(边)相交,构成一个封闭的图形,可找到更多的相等关系,有助于问题的解决.例4.如图4,在△ABC 中,AC=BC,∠B=90°,BD为∠ABC的平分线.若A点到直线BD的距离AD为a,求BE的长.分析:题设中只有一条已知线段AD,且为直角边,而要求的BE为斜边.要找到它们之间的关系,需设法构造其他的全等三角形.证明:延长AD、BC相交于F.由BD为∠ABC的平分线,BD⊥AF.易证△ADB≌△FDB ∴FD= AD=a AF=2a ∠F=∠BAD 又∠BAD+∠ABD=90°,∠F+∠FAC=90°∴∠ABD=∠FAC ∵BD 为∠ABC的平分线∴∠ABD=∠CBE ∴∠FAC=∠CBE,而∠ECB=∠ACF=90°,AC=BC ∴△ACF≌△BCE(ASA)∴BE=AF=2a 五、利用角的平分线对称构造全等角的平分线是角的对称轴,在证明全等过程中不仅提供了两个相等的角,还有一条公共边,利用角的平分线在角的两边上截取相等的线段,或向两边作垂线,对称构造出全等三角形是常用的证明方法.例5.如图5,在四边形ABCD中,已知BD平分∠ABC,∠A+∠C=180°.证明:AD=CD.分析:由角的平分线条件,在BC上截取BE=BA,可构造△ABD≌△EBD,从而AD=DE.则只要证明DE=CD.证明:在BC上截取BE=BA,连接DE.由BD平分∠ABC,易证△ABD≌△EBD ∴AD=DE ∠A=∠BED 又∠A+∠C=180°,∠BED+∠DEC=180°∴∠DEC=∠C,∴DE=CD ∴AD=CD 1)用天平测量物体质量时,物体放在天平的左盘,砝码放在天平的右盘,当右盘中不放最小砝码时,左盘下沉,放最小砝码时,右盘下沉,这时取下最小砝码,向右移动游码,让天平横梁再次平衡.(2)物体的质量等于砝码的质量加游码对应的刻度值.(3)食用油的质量等于食用油和烧杯的质量减剩余食 2)减烧杯的质量。
倍长中线专题初中阶段三角形有三条重要的、也是最基本的线段:三角形的高线、中线、角平分线。
三种线段各有其重要信息反馈,就中线而言,它具有的功能:①必有相等的线段②必有相等的面积③必有倍长中线构成全等。
本专题只讨论倍长中线的问题。
【基本原理】:如图所示,AD是△ABC的中线,延长AD至E点,使DE=AD,得到△ADC≌△EDB。
口诀:图形有中线,倍长延中线,连接另一端,全等尽呈现。
【模型实例】:如图,在△ABC 中,AD 是BC 边的中线,E 是AD 上一点,连接BE 并延长交AC 于F 点,AF=EF ,求证:AC=BE证明: 如图所示。
延长AD 至G 点,使DG=AD ,连接BG 。
在△ADC 与△GDB 中,⎪⎩⎪⎨⎧=∠=∠=CD BD GDB ADC GD AD∴△ADC ≌△GDB∴BG =AC ,∠1=∠G又因为AF=EF∴∠1=∠2=∠3∴∠3=∠G∴BG=BE (等角对等边)∴AC=BE②证全等①作倍长中线 ③列出需要用的结果④转化替代 ⑤得出结果【练习1】:如图,在在△ABC中,D为BC的中点,求证:AD+>AB2AC【练习2】:如图,在△ABC中,D为B C的中点,且AD是角平分线。
求证:AB=AC【练习3】:AD是△ABC的中线,分别以AB边、AC边为直角边向外作等腰直角三角形,求证:EF=2AD【练习4】:在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于F点。
试探究线段AB与AF、CF之间的数量关系,并证明你的结论。
截长补短专题要证明两条线段之和等于第三条线段,可以采用“截长补短”法。
①截长法:把较长的线段截取一段等于两较短线中的一条;②补短法:把两条较短的线段补成一条,再证与长线段相等。
【模型实例】:如图,△ABC中,∠1=∠2,∠B=2∠C。
求证:AC=AB+BD 方法一:截长(利用角平分线构建全等三角形)分析:如图,在AC上截AE=AB,连接DE。
三角形常用辅助线在学习三角形的过程中,辅助线的运用是一个非常重要的解题技巧。
它能够帮助我们将复杂的三角形问题转化为更简单、更易于解决的形式。
接下来,让我们一起深入探讨三角形中常用的辅助线。
一、中线倍长法中线倍长法是解决三角形中线相关问题的常用方法。
如果一个三角形中有中线,我们可以将中线延长一倍,构造出全等三角形。
例如,在三角形 ABC 中,AD 是 BC 边上的中线。
我们延长 AD 至E,使 DE = AD,然后连接 BE。
这样就可以得到三角形 ADC 和三角形EDB 全等。
通过这种方法,我们可以将与中线相关的条件进行转化,从而解决问题。
二、截长补短法当遇到线段之间的和差关系时,截长补短法就派上用场了。
截长法是在较长的线段上截取一段等于较短的线段,然后证明剩余部分与另一条线段相等。
补短法是将较短的线段延长,使其与较长的线段相等,然后证明延长后的线段与另一条线段相等。
比如,在三角形 ABC 中,AB > AC,∠1 =∠2。
要证明 BD =DC,我们可以采用截长补短法。
如果用截长法,可以在 AB 上截取 AE = AC,连接 DE,证明三角形 AED 和三角形 ACD 全等,从而得出 DE = DC,再证明 BD = DE即可。
如果用补短法,可以延长 AC 至 F,使 AF = AB,连接 DF,证明三角形 ABD 和三角形 AFD 全等,得出 BD = DF,再证明 DF = DC即可。
三、作平行线法作平行线可以利用平行线的性质来解决问题。
比如,在三角形 ABC 中,D 是 AB 上一点,要证明∠ACD =∠A+∠B。
我们可以过点C 作CE∥AB,根据两直线平行,内错角相等,同位角相等的性质,得到∠ACE =∠A,∠ECD =∠B,从而证明∠ACD =∠A +∠B。
四、作垂线法作垂线常用于构造直角三角形,利用勾股定理或三角函数来解决问题。
例如,在三角形 ABC 中,要证明某两条边的关系,可以过某一顶点作垂线,然后利用直角三角形的相关知识进行求解。
完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。
下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。
一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。
具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法适用于证明线段的和、差、倍、分等类的题目。
例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。
要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。
具体证明过程为:在AC上截取AF=AE,连接OF。
由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。
显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。
在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。
另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。
要证明CD=AD+BC。
因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。
具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。
数学⽼师爆料,初中三⾓形最常见26种做辅助线做法及思路在初中数学中⼏何是函数之外的另⼀⼤考点及重点。
初中所学到的⼏何图形主要包括:(特殊)四边形、(特殊)三⾓形、圆等。
很多同学在刚刚接触⼏何时,往往被⼏何证明题考的⽣⽆可恋。
各种辅助线⾼的⼀团乱⿇,没有⼀点思绪,更不知从何下⼿!今天,您的福利来了,数学研讨社送您初中26种关于三⾓形的辅助线做法及选择辅助线思路。
1、在利⽤三⾓形三边关系证明线段不等关系时,如果不能直接证明结果,可以接连两点或延长⼀边构造三⾓形,使结论中出现的线段在⼀个或⼏个三⾓形中,然后利⽤三边关系定理及不等式性质证明。
(注意:利⽤三⾓形三边关系定理及推论证明时,常通过做辅助线,将求证量或与求证相关的量移到同⼀个或⼏个三⾓形中)2、利⽤三⾓形外⾓⼤于任何与它不相邻的内⾓证明⾓的不等关系式,可连接两点或延长某边,构造三⾓形,使求证的⼤⾓在某个三⾓形外⾓的位置上,⼩⾓处在内⾓的位置上,再利⽤外⾓定理证明。
3、有⾓平分线时常在⾓两边截取相等的线段,构造全等三⾓形4、有线段中点为端点的线段时,常加倍延长此线段构造全等三⾓形5、在三⾓形中有中线时,常加倍延长中线构造全等三⾓形6、截长补短作辅助线的⽅法截长法:在较长的线段上截取⼀条线段等于较短线段补短法:延长较短线段和较长线段相等7、证明两条线段相等的步骤:①观察要证明线段在那两个可能全等的三⾓形中,然后证明这两个三⾓形全等;②若图中没有全等三⾓形,可以把求证线段⽤和它相等的线段代替,再证明它们所在三⾓形的全等;③如果没有相等的线段替换,可作辅助线构造全等三⾓形。
8、在⼀个图形中,有多组垂直关系时,常⽤同⾓(等⾓)的余⾓相等来证明两个⾓相等。
9、三⾓形⼀边的端点到这边的中线所在的直线的距离相等10、条件不⾜时延长已知边构造三⾓形11、连接四边形的对⾓线。
把四边形问题转化成三⾓形来解决(由于篇幅问题。
下⾯就不⼀⼀配图,关于初中所有⼏何辅助线做法及对应例题解析可在评论区留⾔,给⼤家发资料!)12、有和⾓平分线垂直的线段时,通常把这条线段延长,可归纳为“⾓分垂等腰归”13、当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三⾓形。
全等三角形几何证明常用辅助线
辅助线证明三角形全等
一、辅助线定义
辅助线,又称辅助规则,是专门用来证明几何结论的辅助线,它可以
指向几何结论的前提或结果,以更清晰地证明几何结论。
二、辅助线用法
1.在证明三角形全等的情况下,用辅助线来证明角的相等性:用一条
辅助线平分角A,然后将辅助线平移到角B上,如果辅助线可以在角B上
的两点重合,则说明角A和角B是相等的。
2.在证明三角形全等的情况下,用辅助线来证明边的相等性:用一条
辅助线平分边AB,然后将辅助线平移到边CD上,如果辅助线可以在边CD
上的两点重合,则说明边AB和边CD是相等的。
3.在证明三角形全等的情况下,用辅助线来证明两个三角形的相等性:在三角形ABC中画出一条辅助线,然后将该辅助线平移到三角形CDE中,
如果辅助线可以在三角形CDE中的三个点重合,则说明两个三角形ABC和CDE是相等的。
三、辅助线证明三角形全等的步骤
1.识别出待证明的相关图形,并将其准确地表示在平面上。
2.根据定义,确定三角形全等的前提条件,并假设三角形全等。
3.画出两个三角形之间的辅助线,如果相交点都在两个三角形相交的
边上,证明该辅助线可以同时在两个三角形中存在。
三角形中的辅助线一、知识梳理1、判定两个三角形全等的一般思路判定两个三角形全等时如果给出的条件不全面,就需要根据已知的条件结合相应的公理来进行分析,先推导出所缺的条件然后再证明。
具体方法如下:(1)已知一边及与其相邻的一个内角对应相等判定两个三角形全等的公理中边和角相邻的有SAS、ASA、AAS,所以可以从三个方面进行考虑:(2)已知两边对应相等判定两个三角形全等的公理中已知两边的有SAS、SSS,所以可以从两个方面考虑(3)已知两角对应相等判定两个三角形全等的公理中已知两角的有ASA、AAS,所以可以从两个方面考虑(4)已知一边与其对角对应相等,与之相对应个公理只有AAS,可以考虑先判定这条边的某一邻角也对应相等,然后再判定这两个三角形全等。
2、证明边或角相等的一些常用的依据:(1)等线段(角)的和或差相等;(2)全等三角形的对应边(角)相等;(3)等角的余角或补角相等;(4)垂直定义;(5)角平分线的性质;(6)平行线得同位角、内错角相等,同旁内角互补。
3、角平分线的性质:角平分线上一点到角两边距离相等。
方法:从角平分线上一点作角的两边的垂线,使得垂线段和顶点到两垂足的距离相等。
借此,可在角的两边上实施截长补短或既截长又补短,达到“移多补少”的目的。
4、等腰三角形底边中线、高线与顶角平分线“三线合一”。
因此在等腰三角形中常作底边的高线,进而得到底边的中线和顶角平分线,创造线段、角相等的条件。
5、直角三角形中,30°角所对的边等于斜边的一半。
一般情况下,遇到30°角常用的添加辅助线的方法就是作垂线,构造直角三角形,解决线段的相关问题。
6、在三角形的问题中,120°角也是常见角,此时既可以作垂线,构造直角三角形;也可以利用120°的外角找到60°角经过添加线段,构造等边三角形。
二、专题精讲例1:1、已知△ABC中,AB=AC, CE是AB边上的中线,延长AB到D,使BD=AB,求证:CD = 2CE。
专题02 全等三角形做辅助线六种方法大全几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型中线倍长法:将中点处的线段延长一倍。
目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中去。
例1.如图,AD 为ABC V 中BC 边上的中线()AB AC >.(1)求证:2AB AC AD AB AC -<<+;(2)若8cm AB =,5cm AC =,求AD 的取值范围.【变式训练1】(1)如图1,已知ABC V 中,AD 是中线,求证:2AB AC AD +>;(2)如图2,在ABC V 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+;(3)如图3,在ABC V 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【变式训练2】(1)方法学习:数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图2),①延长AD到M,使得DM=AD;②连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;③利用三角形的三边关系可得AM的取值范围为AB﹣BM<AM<AB+BM,从而得到AD的取值范围是 ;方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以证明.(3)深入思考:如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠CAF=90°,请直接利用(2)的结论,试判断线段AD与EF的数量关系,并加以证明.【变式训练3】如图,在ABCV中,AD是BC边上的中线,过C作AB的平行线交AD的延长线于E点.若6AB=,2AC=,试求AE的取值范围.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)例1.如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD.求证:EF=BE+FD.【变式训练1】(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?小明探究此问题的方法是:延长FD到点G,使DG=BE,连结AG.先证明△ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是 .(2)拓展应用:如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=12∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.【变式训练2】已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),求证:△ABE≌△CBF.(2)当∠MBN绕点B旋转到AE≠CF时,如图2,猜想线段AE,CF,EF有怎样的数量关系,并证明猜想.(3)当∠MBN绕点B旋转到图3这种情况下,猜想线段AE,CF,EF有怎样的数量关系,并证明你的猜想.【变式训练3】在V ABC和V ADE中,∠BAC=∠DAE=90°,且AB=AC,AD=AE.(1)如图1,如果点D在BC上,且BD=5,CD=3,求DE的长.(2)如图2,AD与BC相交于点N,点D在BC下方,连接BD,且AD垂直BD,连接CE并延长与BA的延长线交于点F,点M是CA延长线上一点,且CM=AF,求证:CF=AN+MN.类型三、做平行线证明全等例1.如图,在△ABC中,∠ABC=∠ACB,D,E分别是AC和AC的延长线上的点,连接BD,BE,若AB=CE,∠DBC=∠EBC。
三角形作辅助线方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180oFABC DE D C B A4321NF E DC B A∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BNMABC D E F12345 12E DB AP 12N DCB A∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM 又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4. 求证:BC = AB +CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
几何证明-常用辅助线 (一)中线倍长法:例1 、求证:三角形一边上的中线小于其他两边和的一半。
已知:如图,△ABC 中,AD 是BC 边上的中线,求证:AD ﹤21(AB+AC) 分析:要证明AD ﹤21(AB+AC),就是证明AB+AC>2AD ,也就是证明两条线段之和大于第三条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构成一个三角形,不能用三角形三边关系定理,因此应该进行转化。
待证结论AB+AC>2AD 中,出现了2AD ,即中线AD 应该加倍。
证明:延长AD 至E ,使DE=AD ,连CE ,则AE=2AD 。
在△ADB 和△EDC 中,AD =DE ∠ADB =∠EDC BD =DC∴△ADB ≌△EDC(SAS) ∴AB=CE又 在△ACE 中,AC+CE >AE∴AC+AB >2AD ,即AD ﹤21(AB+AC)小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。
它可以将分居中线两旁的两条边AB 、AC 和两个角∠BAD 和∠CAD 集中于同一个三角形中,以利于问题的获解。
课题练习:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=AC 例2:中线一倍辅助线作法△ABC 中方式 AD 是BC 边中线方式2:间接倍长作CF ⊥AD 于F ,延长MD 到N , 作BE ⊥AD 使DN=MD , 连接BE 连接CD 例3:△ABC 中,AB=5,AC=3,求中线例4:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 课堂练习:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 交AC 于F ,求证:AF=EF例5:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.求证:AE 平分BAC ∠C 第 1 题图ADB CE图2-1 课堂练习:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。
C
三角形问题中常见的辅助线的作法
总体思想:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.有角平分线:角分线上找一点垂角两边;角分线上找一点平行角一边 4.垂直平分线联结线段两端
5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,
6.
7.例1、(例2例3123、4应用:1O ,
求证:2(1。