f分布t分布与卡方分布
- 格式:doc
- 大小:268.00 KB
- 文档页数:6
1.均匀分布(Uniform Distribution): 这种分布的密度函数是一条平行于坐标轴的直线,表示所有取值的概率相同。
2.正态分布(Normal Distribution): 这种分布又称高斯分布,是一种对称的分布,其概率密度函数是一个钟形曲线。
3.指数分布(Exponential Distribution): 这种分布的密度函数是一条指数形的曲线,常用来描述随机事件的发生时间间隔。
4.卡方分布(Chi-square Distribution): 这种分布常用于统计检验,其概率密度函数是一条单峰曲线。
5.t分布(t Distribution): 这种分布常用于统计检验,其概率密度函数是一条单峰曲线,但比卡方分布的峰值低。
6.F分布(F Distribution): 这种分布常用于统计检验,其概率密度函数是一条双峰曲线。
卡方分布t分布和F分布的概念与应用卡方分布、t分布和F分布的概念与应用卡方分布、t分布和F分布是概率统计中常见的三种概率分布。
它们在统计学中有着广泛的应用,能够帮助我们进行假设检验、构建置信区间等分析工作。
本文将分别介绍卡方分布、t分布和F分布的概念,以及它们在实际问题中的具体应用。
一、卡方分布卡方分布是以统计学家Karl Pearson命名的一类概率分布。
卡方分布常用于计算一组独立同分布的随机变量的平方和的分布。
它的概率密度函数取决于自由度参数,自由度越大,卡方分布的形状越接近正态分布。
卡方分布的应用非常广泛。
例如,在假设检验中,我们可以使用卡方分布来判断一个样本是否符合某种理论分布。
同时,卡方分布还可以用于计算观察值与理论值之间的差异,从而评估模型的拟合程度。
此外,卡方分布还可以用于计算置信区间和预测区间。
二、t分布t分布是根据正态分布和卡方分布引出的一种概率分布。
t分布的曲线形状与自由度有关,当自由度较小时,曲线较为平缓,自由度增加时,曲线逐渐接近于标准正态分布。
t分布的一个重要应用是在小样本情况下的假设检验。
当总体标准差未知,并且样本容量较小(通常小于30)时,我们需要使用t分布来估计总体均值的置信区间。
此外,t分布还可以用于对两个样本均值的差异进行比较,判断是否存在显著差异。
三、F分布F分布是以统计学家Ronald Fisher命名的一种概率分布。
F分布常用于方差分析和回归分析等统计方法中。
它是两个独立卡方分布的比值的分布。
F分布的形状取决于两个自由度参数。
F分布在方差分析中起着重要作用。
方差分析可以帮助我们判断不同组之间是否存在显著差异,而F分布可以用于计算F统计量,以确定差异是否显著。
此外,F分布还常用于线性回归分析中,用于比较回归模型的拟合优度。
总结卡方分布、t分布和F分布是统计学中常见的三种概率分布。
它们在假设检验、置信区间估计、拟合优度分析等统计任务中有着广泛的应用。
熟练掌握这些概率分布的概念和特性,对于进行统计分析和研究是非常重要的。
布,它们与正态分布一起,是试验统计中常用的分布。
2当X 1、X 2、…、Xn 相互独立且都服从 N(0,1)时,Z=v X i 的i2(n),它的分分布称为自由度等于 布密度p(z )=n 的1 AnX22- n2 0,n-1.+处 2 -u , 0u 2e du ,2分布,记作Zz _2e其他,称为Gamma 函数,且】1 =1,式中的『-=I2分布是非对称分布,具有可加性,即当丫与Z_I - = n 。
2相互独立,且丫2(n ), Z 2(m ),贝y Y+Z 〜2(n+m )。
Y+Z= X+§1.4 常用的分布及其分位数 1.卡平方分布卡平方分布、t 分布及F 分布都是由正态分布所导出的分证明:先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互独 立且都服从N(0,1),再根据 2分布的定义以及上述随机变 量的相互独立性,令 丫=X 2+X 2+…+X -, z=x 备+X 2+2+…+Xn+m ,即可得到丫+Z 〜2(n +m )。
2. t 分布若X 与丫相互独立,且X 〜N(0,1) , 丫〜2(n ),则Z =x . 丫的分布称为自由度等于n的t分布,记作Z〜t (n),它的分布密度;z2 V .n丿n 1 ~Y。
”心LP(z)=―;=时(殳)I请注意:t分布的分布密度也是偶函数,且当n>30时,t分布与标准正态分布 N(0,1)的密度曲线几乎重叠为一。
这时,t 分布的分布函数值查 N(0,1)的分布函数值表便可以得到。
3. F分布若X与丫相互独立,且X〜2(n),丫〜2(m), 则Z=X丫的分布称为第一自由度等于n、第二自由度等于n mm的F分布,记作Z〜F (n, m),它的分布密度2P (Z(m nz) 2n mn m------ in——1 z2-,z 0 n m2 20,其他。
请注意:F 分布也是非对称分布,它的分布密度与自由度1的次序有关,当 Z 〜F (n , m )时,刁〜F (m ,n )。
t分布f分布和卡方分布的关系
t分布、F分布和卡方分布是统计学中常用的概率分布,它们之间有着紧密的关系和相互作用。
我们来看看t分布和F分布。
t分布是一种用于小样本推断的概率分布,适用于总体标准差未知的情况。
而F分布是一种用于比较两个样本方差是否显著不同的概率分布。
如果我们将两个相互独立的t分布的平方和进行标准化,就可以得到F分布。
因此,可以说t 分布是F分布的特殊情况。
接下来,我们再来看看卡方分布。
卡方分布是一种用于推断总体方差的概率分布,适用于总体标准差已知的情况。
卡方分布的形状取决于自由度,自由度越大,卡方分布越接近正态分布。
当自由度为1时,卡方分布就是指数分布的特殊情况。
总结一下,t分布、F分布和卡方分布之间的关系是:t分布是F分布的特殊情况,而F分布是卡方分布的特殊情况。
它们在统计学中有着广泛的应用,可以帮助我们进行推断和比较,从而更好地理解数据和总体的特征。
虽然这些概率分布在统计学中有着严格的定义和推导过程,但我们可以简单地理解它们的关系,以便更好地应用于实际问题中。
通过掌握它们的特点和应用场景,我们可以更准确地进行统计推断和数据分析,为决策提供科学依据。
无论是在科学研究、医学诊断还是
经济分析中,这些概率分布都扮演着重要的角色,对于推动人类社会的进步和发展起着不可替代的作用。
简述卡方分布,t分布,f分布的定义
卡方分布也叫卡方检验分布,是常见的概率分布,由英国数学家卡方发现,故称之为卡方分布。
数学家卡方的主要工作是统计学分布的概率期望,他在19世纪20年代发现卡方分布,他还拓展了卡方分布,发现和推导出它的非等距变量的统计分布。
卡方分布的定义:它是一种从n个标准正态分布中自由度为k的独立变量中提取的统计概率分布,其中n个独立变量的平方和服从卡方分布。
二、t分布
t分布也叫t牛顿分布,是一种概率分布,由卡普牛顿在19世纪20年代发现,故称之为t分布。
它是统计学中又一种重要的概率分布。
t分布的全称是Student t分布,因为它主要在学生t检验中使用,故又称之为Student t分布。
t分布的定义:Student t分布是由自由度为k的一组独立变量的统计概率分布。
该分布与卡方分布非常相似,但是它不是一个单位正态分布的统计分布,因此其期望值不是0。
实际上,当自由度很大时,t分布可以趋近于正态分布。
三、F分布
F分布也叫F检验分布,是一种不可能概率分布,由比利时统计学家卡默特在20世纪初发现,故称之为F分布。
F分布的定义:它是由自由度分别为m和n的两组独立样本对比的统计概率分布,m为数据的自由度。
两个样本之间的方差比服从F分布。
总结:
卡方分布是一种从n个标准正态分布中自由度为k的独立变量中提取的统计概率分布,其中n个独立变量的平方和服从卡方分布。
t 分布是由自由度为k的一组独立变量的统计概率分布,而F分布是由自由度分别为m和n的两组独立样本对比的统计概率分布。
§1、4 常用得分布及其分位数1、 卡平方分布卡平方分布、t 分布及F 分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。
当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑ii X 2 得分布称为自由度等于n 得2χ分布,记作Z ~2χ(n),它得分布密度p(z )=⎪⎪⎩⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛Γ--,,00,2212122其他z e x n z n n 式中得⎪⎭⎫ ⎝⎛Γ2n =u d e u u n ⎰∞+--012,称为Gamma 函数,且()1Γ=1,⎪⎭⎫ ⎝⎛Γ21=π。
2χ分布就是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。
证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互独立且都服从N(0,1),再根据2χ分布得定义以及上述随机变量得相互独立性,令Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +,Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +,即可得到Y+Z ~2χ(n +m )。
2、 t 分布 若X 与Y 相互独立,且X ~N(0,1),Y ~2χ(n ),则Z =n Y X得分布称为自由度等于n 得t 分布,记作Z ~ t (n ),它得分布密度 P(z)=)()(221n nn ΓΓ+2121+-⎪⎪⎭⎫ ⎝⎛+n n z 。
请注意:t 分布得分布密度也就是偶函数,且当n>30时,t 分布与标准正态分布N(0,1)得密度曲线几乎重叠为一。
这时, t 分布得分布函数值查N(0,1)得分布函数值表便可以得到。
3、 F 分布 若X 与Y 相互独立,且X ~2χ(n ),Y ~2χ(m ), 则Z=m Y n X得分布称为第一自由度等于n 、第二自由度等于m 得F 分布,记作Z ~F (n , m ),它得分布密度 p(z)=⎪⎪⎪⎩⎪⎪⎪⎨⎧>++-⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛+Γ•。
抽样分布公式t分布卡方分布F分布抽样分布公式:t分布、卡方分布、F分布抽样分布是统计学中的重要概念,用于推断总体参数以及进行假设检验。
本文将重点介绍三种常见的抽样分布公式:t分布、卡方分布和F分布。
一、t分布公式t分布是用于小样本情况下进行参数估计和假设检验的重要分布。
它的定义如下:假设有一个总体,样本容量为n,总体的均值和标准差未知。
如果从该总体中随机抽取一个样本,计算样本均值与总体均值的差异,用t 值来衡量。
那么,t值的概率分布就是t分布。
t分布的公式如下:t = (x - μ) / (s / √n)其中,x为样本均值,μ为总体均值,s为样本标准差,n为样本容量。
t分布的自由度为n-1。
在实际应用中,可以利用t分布表或统计软件来查找不同自由度下的t值对应的概率。
二、卡方分布公式卡方分布是应用于统计推断的重要分布,主要用于分析分类资料或定类变量的相关性。
它的定义如下:假设有一个总体,样本容量为n,比较观察值与理论值之间的差异。
我们将差异的平方进行求和,并除以理论值,得到统计量,称为卡方统计量。
卡方分布的公式如下:χ^2 = Σ((O - E)^2 / E)其中,O为观察值,E为理论值。
卡方分布的自由度取决于总体参数的个数减去估计的参数个数。
在实际应用中,同样可以利用卡方分布表或统计软件来查找不同自由度下的卡方值对应的概率。
三、F分布公式F分布是应用于统计推断的另一重要分布,主要用于比较两个或多个总体方差是否相等。
它的定义如下:假设有两个总体A、B,分别进行抽样,计算两个样本方差的比值,得到F统计量。
F分布的公式如下:F = (s1^2 / σ1^2) / (s2^2 / σ2^2)其中,s1^2和s2^2分别为样本A和样本B的方差,σ1^2和σ2^2分别为总体A和总体B的方差。
F分布的自由度取决于样本容量和总体个数。
在实际应用中,同样可以利用F分布表或统计软件来查找不同自由度下的F值对应的概率。
§1.4 常用的分布及其分位数1. 卡平方分布卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。
当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑ii X 2 的分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的分布密度 p(z )=⎪⎪⎩⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛Γ--,,00,2212122其他z e x n z n n 式中的⎪⎭⎫⎝⎛Γ2n =u d e u u n ⎰∞+--012,称为Gamma 函数,且()1Γ=1,⎪⎭⎫ ⎝⎛Γ21=π。
2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。
证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +,Y+Z= X 21+X 22+…+X 2n+ X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。
2. t 分布 若X 与Y 相互独立,且X ~N(0,1),Y ~2χ(n ),则Z =nY X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n nn ΓΓ+2121+-⎪⎪⎭⎫ ⎝⎛+n n z 。
请注意:t 分布的分布密度也是偶函数,且当n>30时,t 分布与标准正态分布N(0,1)的密度曲线几乎重叠为一。
这时,t 分布的分布函数值查N(0,1)的分布函数值表便可以得到。
3. F 分布 若X 与Y 相互独立,且X ~2χ(n ),Y ~2χ(m ), 则Z=mY n X的分布称为第一自由度等于n 、第二自由度等于m 的F 分布,记作Z ~F (n , m ),它的分布密度 p(z)=⎪⎪⎪⎩⎪⎪⎪⎨⎧>++-⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛+Γ∙。
其他,00,2)(1222222z m n z n m n z m n m n m m n n 请注意:F 分布也是非对称分布,它的分布密度与自由度的次序有关,当Z ~F (n , m )时,Z1~F (m ,n )。
4. t 分布与F 分布的关系若X ~t(n ),则Y=X 2~F(1,n )。
证:X ~t(n ),X 的分布密度p(x )=⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛+Γ221n n n π2121+-⎪⎪⎭⎫ ⎝⎛+n n x 。
Y=X 2的分布函数F Y (y ) =P{Y<y }=P{X 2<y }。
当y ≤0时,F Y (y)=0,p Y (y )=0; 当y >0时,F Y (y ) =P{-y <X<y } =x d x p y y )(⎰-=2x d x p y )(0⎰, Y=X 2的分布密度p Y (y )=21)(121221212n y n y n n n n ++-⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛Γ⎪⎭⎫ ⎝⎛+Γ∙,与第一自由度等于1、第二自由度等于n 的F 分布的分布密度相同,因此Y=X 2~F(1,n )。
为应用方便起见,以上三个分布的分布函数值都可以从各自的函数值表中查出。
但是,解应用问题时,通常是查分位数表。
有关分位数的概念如下:4. 常用分布的分位数1)分位数的定义分位数或临界值与随机变量的分布函数有关,根据应用的需要,有三种不同的称呼,即α分位数、上侧α分位数与双侧α分位数,它们的定义如下:当随机变量X的分布函数为 F(x),实数α满足0 <α<1 时,α分位数是使P{X< xα}=F(xα)=α的数xα,上侧α分位数是使P{X >λ}=1-F(λ)=α的数λ,双侧α分位数是使P{X<λ1}=F(λ1)=0.5α的数λ1、使P{X>λ2}=1-F(λ2)=0.5α的数λ2。
因为1-F(λ)=α,F(λ)=1-α,所以上侧α分位数λ就是1-α分位数x 1-α;F(λ1)=0.5α,1-F(λ2)=0.5α,所以双侧α分位数λ1就是0.5α分位数x 0.5α,双侧α分位数λ2就是1-0.5α分位数x1-0.5α。
2)标准正态分布的α分位数记作uα,0.5α分位数记作u0.5α,1-0.5α分位数记作u 1-0.5α。
(uα)=α,当X~N(0,1)时,P{X< uα}=F0,1P{X<u0.5α}= F(u0.5α)=0.5α,0,1P{X<u1-0.5α}= F(u1-0.5α)=1-0.5α。
0,1根据标准正态分布密度曲线的对称性,当α=0.5时,uα=0;当α<0.5时,uα<0。
uα=-u1-α。
如果在标准正态分布的分布函数值表中没有负的分位数,则先查出u 1-α,然后得到uα=-u1-α。
论述如下:当X~N(0,1)时,P{X< uα}= F(uα)=α,0,1(u1-α)=1-α,P{X< u1-α}= F0,1(u1-α)=α,P{X> u1-α}=1- F0,1故根据标准正态分布密度曲线的对称性,uα=-u1-α。
例如,u 0.10=-u 0.90=-1.282,u 0.05=-u 0.95=-1.645,u 0.01=-u 0.99=-2.326,u 0.025=-u 0.975=-1.960,u 0.005=-u 0.995=-2.576。
又因为P{|X|< u1-0.5α}=1-α,所以标准正态分布的双侧α分位数分别是u 1-0.5α和-u1-0.5α。
标准正态分布常用的上侧α分位数有:α=0.10,u 0.90=1.282;α=0.05,u 0.95=1.645;α=0.01,u 0.99=2.326;α=0.025,u 0.975=1.960;α=0.005,u 0.995=2.576。
χα(n)。
3)卡平方分布的α分位数记作2χα(n)>0,当X~2χ(n)时,P{X<2χα(n)}=α。
2χ0.005(4)=0.21,2χ0.025(4)=0.48,例如,2χ0.05 (4)=0.71,2χ0.95(4)=9.49,2χ0.975(4)=11.1,2χ0.995(4)=14.9。
24)t分布的α分位数记作tα(n)。
当X~t (n)时,P{X<t α(n)}=α,且与标准正态分布相类似,根据t 分布密度曲线的对称性,也有t α(n)=-t 1-α(n),论述同u α=-u 1-α。
例如,t 0.95 (4)=2.132,t 0.975 (4)=2.776,t 0.995 (4)=4.604,t 0.005 (4)=-4.604,t 0.025 (4)=-2.776,t 0.05 (4)=-2.132。
另外,当n>30时,在比较简略的表中查不到t α(n),可用u α作为t α(n)的近似值。
5)F 分布的α分位数记作F α(n , m )。
F α(n , m )>0,当X ~F (n , m )时,P{X<F α(n , m )}=α。
另外,当α较小时,在表中查不出F α(n , m ),须先查 F 1-α(m , n ),再求F α(n , m )=),(11n m F α-。
论述如下: 当X ~F(m , n )时,P{X< F 1-α(m , n )}=1-α, P{X 1>),(11n m F α-}=1-α,P{X 1<),(11n m F α-}=α, 又根据F 分布的定义,X 1~F(n , m ),P{X 1<F α(n , m ) }=α, 因此 F α(n , m )= ),(11n m F α-。
例如,F 0.95 (3,4)=6.59,F 0.975 (3,4)=9.98,F 0.99 (3,4)=16.7,F 0.95 (4,3)=9.12,F 0.975 (4,3)=15.1,F 0.99 (4,3)=28.7,F 0.01 (3,4)=7.281,F 0.025 (3,4)=1.151,F 0.05 (3,4)=12.91。
【课内练习】1. 求分位数①χ20.05(8),②χ20.95(12)。
2. 求分位数① t 0.05(8),② t 0.95(12)。
3. 求分位数①F 0.05(7,5),②F 0.95(10,12)。
4. 由u 0.975=1.960写出有关的上侧分位数与双侧分位数。
5. 由t 0.95(4)=2.132写出有关的上侧分位数与双侧分位数。
6. 若X ~χ2(4),P{X<0.711}=0.05,P{X<9.49}=0.95,试写出有关的分位数。
7. 若X ~F(5,3),P{X<9.01}=0.95,Y ~F(3,5),{Y<5.41}= 0.95,试写出有关的分位数。
8. 设X 1、X 2、…、X 10相互独立且都服从N(0,0.09)分布,试求P{X i i2∑>1.44}。
习题答案:1. ①2.73,②21.0。
2. ①-1.860,②1.782。
3. ①1488.,②3.37。
4. 1.960为上侧0.025分位数,-1.960与1.960为双侧0.05分位数。
5. 2.132为上侧0.05分位数,-2.132与2.132为双侧0.1分位数。
6. 0.711为上侧0.95分位数,9.49为上侧0.05分位数,0.711与19.49为双侧0.1分位数。
7. 9.01为上侧0.05分位数,5.41为上侧0.05分位数,1901.与5.41为双侧0.1分位数,1541.与9.01为双侧0.1分位数。
8. 0.1。