全日制义务教育数学课标说明
- 格式:doc
- 大小:41.50 KB
- 文档页数:11
全日制义务教育数学课程标准(实验稿)解读全日制义务教育数学课程标准(实验稿)解读一、基本情况全日制义务教育是指义务教育阶段学制为九年,学生每天在学校接受寓教于乐的教育。
数学作为自然科学之一,是培养学生创新思维和科学素养的核心课程之一。
为此,教育部组织专家编写了《全日制义务教育数学课程标准(实验稿)》,以指导全国义务教育学校实施数学课程教学。
二、主要内容数学课程标准以“知识和技能,思维方法和学科基础,情感态度和价值观”为三个方面,分为初中阶段和初高中阶段两个部分。
1. 初中阶段:(1)知识和技能:包括数与式,数据分析,运算与算法,几何,函数,数学思想与方法等方面。
(2)思维方法和学科基础:包括数学思想方法,数学结论证明,数学科学发展历史等方面,并指出初中阶段重点培养学生的逻辑思维和推理能力。
(3)情感态度和价值观:包括培养学生对数学的兴趣和热爱,让学生体会到数学的美和智慧,以及培养学生的奋斗精神和劳动习惯。
2. 初高中阶段:(1)知识和技能:包括进一步的代数,函数,数列,概率,统计等方面,同时注重数学学科知识的综合运用。
(2)思维方法和学科基础:包括发展学生的创新能力,加强数学与现实生活的联系,以及加深学生对数学学科的理解。
(3)情感态度和价值观:包括进一步培养学生的兴趣和热情,让学生更加深入地了解数学的智慧和价值,以及对数学学科的深入理解和认识。
三、标准意义数学课程标准的意义在于指导教师和学生在教与学的过程中更加有针对性地掌握和运用数学知识和能力,从而更好地准备应对各种考试、应用和研究。
同时,数学课程标准还可以促进教育资源的合理配置,为提高我国数学人才水平奠定良好的基础。
四、实践问题虽然数学课程标准已经正式发布,但是在实践中还面临一些问题。
比如,目前有些学校因为学生年龄和兴趣的差异,对数学课程内容的难度设置较为难以把握;有些学校对实验教学和创新能力的培养存在一定的困难;还有一些学校由于师资力量和教学条件限制,对数学课程实施效果不佳。
《全日制义务教育数学课程标准》解读IP讲座讲稿东北师范大学李淑文第二讲《标准》的基本理念与核心概念《标准》的理念是构建整个《标准》的基石,对《标准》内容的认识和理解从它的基本理念开始。
一、《标准》的基本理念1、对数学课程的认识《标准》指出:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
”这一提法反映了义务教育阶段面向全体学生,体现基础性、普及性和发展性的基本精神,代表着一种新的数学课程理念和实践体系。
(1)人人学有价值的数学是指作为教育内容的数学,应满足学生未来社会生活的需要,能适应学生个性发展的要求,并有益于启迪思维、开发智力。
就内容来讲“有价值的数学”应包括基本的数学的概念与运算,空间与图形的初步知识,与信息处理、数据处理有关的统计与概率初步知识等第,还包括在理解与掌握这些内容的过程中形成和发展起来的数学概念和能力,如数感、符号感、空间观念、统计观念、推理能力和应用意识等等。
(2)人人都获得必需的数学是指“有价值”的数学应该、也能够为每一个学生所掌握。
它意味着《标准》中所规定的内容及教学要求是最基本的,是每一个普及义务教育的地区、每一个智力正常的儿童,在教师的引导和学生自身的努力下,人人都能够获得成功体验的。
(3)不同的人在数学上得到不同的发展是指数学课程要面对每一个有差异的个体,适应每一个学生的不同发展需要。
因此,数学课程涉及的领域应该是广泛的,这些领域里既有可供学生思考、探究和具体动手操作的题材,也接触、了解、钻研自己感兴趣的数学问题,最大限度地满足每一个学生的数学需要,最大限度地开启每一个学生的智慧潜能,为有特殊才能和爱好的学生提供更广阔的活动领域和更多的发展机会。
2、对数学的认识因为数学不仅是一门知识,更是人类实践活动创造的产物,是有诸多元素构成的多元结构;社会与文化不仅推动着数学的发展,同时数学也是推动社会与文化发展的关键性因素;对数学的认识不仅要从数学家关于数学本质的观点中去领悟,更要从数学活动的亲身实践中去体验;因此,《标准》没有采取简单定义的方法,而是从数学与人类社会生活、数学与人类文化等方面指出,数学是人类生活的工具;数学是人类用于交流的语言;数学能赋予人创造性;数学是一种人类文化等。
全日制义务教育数学课程标准(修改稿)2007-4目录前言 (3)第一部分基本理念与设计思路 (4)一、基本理念 (4)二、设计思路 (5)第二部分课程目标 (8)一、总体目标 (8)二、学段目标 (9)第三部分内容标准 (12)第一学段(1-3年级) (12)一、数与代数 (12)二、图形与几何 (13)三、统计与概率 (14)四、综合与实践 (14)第二学段(4-6年级) (14)一、数与代数 (14)二、图形与几何 (15)三、统计与概率 (17)四、综合与实践 (17)第三学段(7—9年级) (17)一、数与代数 (17)二、图形与几何 (20)三、统计与概率 (25)四、综合与实践 (26)第四部分实施建议 (26)一、教学建议 (26)二、评价建议 (32)三、教材编写建议 (36)附录1 课程目标的术语解释 (41)附录2 内容标准及教学建议中的案例 (43)前言《全日制义务教育数学课程标准(修改稿)》(以下简称《标准》)是根据《义务教育法》、《基础教育课程改革纲要(试行)》制定的。
《标准》以推进实施素质教育,培养学生的创新精神和实践能力,促进学生全面发展为宗旨,明确数学课程的性质和地位,阐述数学课程的基本理念和设计思路,提出数学课程目标与内容标准,并对课程实施提出建议。
《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,所规定的课程目标和内容标准是每一个学生在该阶段应当达到的基本要求。
《标准》是教材编写、教学、评估和考试命题的依据。
在实施过程中,应当遵照《标准》的要求,充分考虑全体学生的发展,关注个体差异,因材施教。
为更好地理解和把握有关的目标和内容,《标准》编入了一些案例,以供参考。
第一部分基本理念与设计思路数学是研究数量关系和空间形式的科学。
数学与人类的活动息息相关,特别是随着现代计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人文科学中发挥着越来越大的作用。
《全日制义务教育数学课程标准》(实验稿)——系列介绍之一
《全日制义务教育数学课程标准》(实验稿)是我国教育部根据国家教育体制改革的有
关要求制定的义务教育数学课程标准。
标准的颁布将有助于更好地推进数学课程教学改革,促进学生们深刻理解和研究数学知识体系,提高他们的数学素养,实现数学课程素质教育。
《全日制义务教育数学课程标准》(实验稿)建立了客观、科学、全面的义务教育数学
课程体系。
数学课程以自然思维、问题解决、现实有效性、多角度研究等思维方式为基础,充分考虑到学生的学习规律、认知能力等特点,力求将理论和实践、研究与实践有机结合,构建适合本地区学生特点和学习习惯的数学课程体系;采用小班活动教学模式,打破传统
的纵向深度教学模式,提倡研究性学习,激发学生的主动性和创新能力;突出核心知识。
严格执行学生知识理解测验,督促学生有条理地学习数学,有效提升学生的学习能力;加
强实践与探究的数学环节,使学生掌握与学科关联的社会实践知识,加强应用数学,操作
意识及实操能力。
《全日制义务教育数学课程标准》(实验稿)旨在为全日制义务教育中数学课程建立一
个公平、科学、合理的评价体系,使学生在数学课程中掌握基本的数学规律、表达与计算
能力,提升科学思维和创新意识;让学生在学习数学的同时,也能加深综合应用能力,在
学习活动中形成可持续发展的学习新兴法,以数学课程为主线把学生带到正规学习的过程中,提高学生的学习质量和水平。
数学是研究数量关系和空间形式的科学。
数学素养是现代社会每一个公民应该具备的基本素养。
一、课程性质数学课程具有基础性、普及性和发展性。
数学课程能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。
义务教育的数学课程能为学生未来生活、工作和学习奠定重要的基础。
二、课程基本理念1.数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
2.课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。
课程内容的选择要贴近学生的实际,有利于学生体验与理解、思考与探索。
课程内容的组织要重视过程,处理好过程与结果的关系;要重视直观,处理好直观与抽象的关系;要重视直接经验,处理好直接经验与间接经验的关系。
课程内容的呈现应注意层次性和多样性。
3.教学活动是师生积极参与、交往互动、共同发展的过程。
有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。
数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程。
除接受学习外,动手实践、自主探索与合作交流同样是学习数学的重要方式。
学生应当有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教。
教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能、数学思想和方法,获得基本的数学活动经验。
4.学习评价的主要目的:是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。
义务教育数学课程标准(2024年版)义务教育数学课程标准(2024年版)1. 简介本标准是根据我国教育法、义务教育法和数学教育的发展需要,在深入总结近年来我国义务教育数学课程改革经验的基础上,对《义务教育数学课程标准(2011年版)》进行修订而成的。
本标准旨在指导和规范我国义务教育阶段的数学教学,提高数学教育质量,培养学生的数学核心素养,为学生的终身发展奠定基础。
2. 课程目标2.1 知识与技能学生能掌握必要的数学知识,理解基本的数学概念、性质、定理和公式,学会用数学语言表达问题,具备运用数学知识解决实际问题的能力。
2.2 过程与方法学生能通过观察、实验、模拟、推理等方法探索数学问题,培养逻辑思维、创新思维和批判性思维能力。
2.3 情感、态度与价值观学生能认识数学在人类文明发展中的重要作用,体验数学的趣味性和挑战性,养成积极学习数学的态度,树立克服困难的信心。
3. 课程内容3.1 数与代数包括:实数、代数式、方程(方程组)、不等式(不等式组)等。
3.2 空间与图形包括:平面图形、立体图形、几何变换等。
3.3 统计与概率包括:统计量、概率、随机现象等。
3.4 综合与应用包括:数学阅读、数学写作、数学建模、数学探究等。
4. 课程实施4.1 教学建议教师应根据学生的认知规律和个体差异,采用启发式、探究式、讨论式等教学方法,激发学生的学习兴趣,引导学生主动参与课堂活动。
4.2 评价建议评价应关注学生的知识与技能、过程与方法、情感、态度与价值观等方面的全面发展,采用多元化、过程性的评价方式,充分尊重学生的个性特点。
4.3 教材编写与使用建议教材应遵循课程标准的要求,注重数学知识的逻辑顺序和学生的认知规律,提供丰富的教学资源,为教师教学和学生学习提供有力支持。
5. 课程展望本标准实施过程中,应不断总结经验,适时进行修订和完善,以适应我国义务教育数学教育的发展需要。
同时,要加强与其他学科的课程整合,提高学生的综合素质,为培养创新型人才贡献力量。
全日制义务教育数学课程标准(修改稿)2007-4目录前言0第一部分基本理念与设计思路0一、基本理念1二、设计思路1第二部分课程目标3一、总体目标3二、学段目标4第三部分内容标准5第一学段(1~3年级)5一、数与代数5二、图形与几何6三、统计与概率7四、综合与实践7第二学段(4~6年级)7一、数与代数7二、图形与几何8三、统计与概率8四、综合与实践9第三学段(7~9年级)9一、数与代数9二、图形与几何11三、统计与概率14四、综合与实践15第四部分实施建议15一、教学建议15二、评价建议18三、教材编写建议21附录1 课程目标的术语解释24附录2 内容标准及教学建议中的案例25前言《全日制义务教育数学课程标准(修改稿)》(以下简称《标准》)是根据《中华人民共和国义务教育法》、《基础教育课程改革纲要(试行)》制定的。
《标准》以推进实施素质教育,培养学生的创新精神和实践能力,促进学生全面发展为宗旨,明确数学课程的性质和地位,阐述数学课程的基本理念和设计思路,提出数学课程目标与内容标准,并对课程实施提出建议。
《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,所规定的课程目标和内容标准是每一个学生在该阶段应当达到的基本要求。
《标准》是教材编写、教学、评估和考试命题的依据。
在实施过程中,应当遵照《标准》的要求,充分考虑全体学生的发展,关注个体差异,因材施教。
为更好地理解和把握有关的目标和内容,《标准》编入了一些案例,以供参考。
第一部分基本理念与设计思路数学是研究数量关系和空间形式的科学。
数学与人类的活动息息相关,特别是随着现代计算机技术的飞速发展,数学更加广泛应用于社会生产和日常生活的各个方面。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具,不仅是自然科学和技术科学的基础,而且在社会科学与人生掌握现代生活和学习中所需要的数学知识与技能,另一方面要发挥数学在培养人的逻辑推理和创新思维方面的不可替代的作用。
《全日制义务教育数学课程标准(实验稿)》第一部分前言数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。
数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐的发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
一、基本理念1.义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:──人人学有价值的数学;──人人都能获得必需的数学;──不同的人在数学上得到不同的发展。
2.数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据,进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想象力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3.学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。
内容的呈现应采用不同的表达方式,以满足多样化的学习需求。
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。
义务教育数学课程标准说明《全日制义务教育数学课程标准(修改稿)》修改说明根据几年课程改革实验的经验和出现的问题,在深入调查、认真研讨和广泛征求意见的基础上,数学课程标准修改组形成了的《标准》(修改稿)。
标准(修改稿修改的主要内容包括以下几个方面。
1、体例与结构做了适当调整本次修改,在保持原课程标准基本结构不变的基础上,经充分讨论,在结构上有两处调整。
一是前言内容做了较大的调整。
在前言重点阐述了《标准》的指导思想、意义与功能。
明确了《标准》应以《义务教育法》和全面推进素质教育,培养创新型人才为依据。
明确了《标准》的意义和功能。
在前言中指出,“《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,所规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。
《标准》是教材编写、教学、评估和考试命题的依据。
”二是将课程目标中的关键术语的解释和所有比较完整的案例统一放在附录中,案例进行统一编号,便于查找和使用,同时减少了《标准》正文的篇幅。
2、修改和完善了数学课程的基本理念《标准》提出的基本理念总体上反映了基础教育改革的方向,对个别表述的方式进行了修改。
如将原来“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。
3、理清了《标准》的设计思路《标准》中设计思路表述的不够清晰,修改稿对设计思路做了较大的修改。
主要是对四个方面的课程内容“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”做了明确的阐述。
将“空间与图形”改为“图形与几何”。
确立了“数感”、“符号意识”等七个义务教育阶段数学教育的关键词,并给出较清晰的描述。
4、对学生培养目标做了修改学生的培养目标在具体表述上做了修改,提出了“四基”:基础知识、基本技能、基本思想和基本活动经验;提出了“两能”:发现问题和提出问题的能力、分析问题和解决问题的能力。
全日制义务教育数学课程标准数学作为一门基础学科,对于学生的综合素质和思维能力的培养起着至关重要的作用。
全日制义务教育数学课程标准的制定,旨在明确学生在不同学段应该掌握的数学知识和能力,促进学生全面发展。
本文将就全日制义务教育数学课程标准进行探讨,旨在为教育工作者和学生家长提供一些参考。
首先,全日制义务教育数学课程标准应该明确各学段学生应该掌握的数学知识和能力。
在小学阶段,学生应该掌握基本的算术运算、简单的几何图形和常见的度量衡等知识;在初中阶段,学生应该进一步学习代数、几何、概率统计等知识,并培养解决实际问题的能力;在高中阶段,学生应该学习更加深入的数学知识,包括微积分、线性代数等,为将来的学业和职业发展做好准备。
其次,全日制义务教育数学课程标准应该注重培养学生的数学思维和解决问题的能力。
数学不仅仅是一门学科,更是一种思维方式。
通过学习数学,学生可以培养逻辑思维、分析问题和解决问题的能力。
因此,数学课程应该注重培养学生的数学思维,引导学生学会运用数学知识解决实际问题,培养学生的创新意识和实践能力。
此外,全日制义务教育数学课程标准应该注重与时俱进,结合社会需求和科技发展更新课程内容。
随着科技的不断发展和社会的不断变化,数学的应用领域也在不断扩大。
因此,数学课程应该及时更新内容,结合实际应用,引导学生学习数学知识并将其运用到实际生活和工作中。
最后,全日制义务教育数学课程标准应该注重评价体系的建立和完善。
教育评价是教育的重要组成部分,对于学生的学习和教师的教学都具有重要意义。
因此,数学课程标准应该明确学生的评价指标和评价方法,鼓励学生通过多种形式的评价展现自己的数学能力,促进教师的教学改革和提高教学质量。
综上所述,全日制义务教育数学课程标准的制定对于学生的数学学习和教师的教学都具有重要意义。
通过明确学生应该掌握的知识和能力、注重培养学生的数学思维和解决问题的能力、与时俱进更新课程内容以及建立完善的评价体系,可以促进数学教育的全面发展,为学生的未来发展奠定坚实的基础。
《全日制义务教育数学课程标准(实验修订稿)》修改说明一、修改工作的基本过程2005年5月,教育部成立义务教育阶段数学课程标准(实验稿)修订工作组,启动修改工作.修订工作组首先到实验区进行实地调研,通过问卷、听课和访谈等方式,听取第一线教师的意见;之后,针对课程标准的框架、设计理念、课程目标、内容标准、实施建议等部分,进行了认真的讨论与研究,完成修改初稿.2006年6月至9月,向全国30多位专家、学者和第一线教师寄发修改稿的初稿和征求意见表,邀请几位中科院院士和数学家座谈,征求对修改稿的意见.在听取意见的基础上,修订工作组对修改初稿又进行了认真修改,形成《全日制义务教育数学课程标准(实验修订稿)》.二、修改课程标准的基本原则修改组确定的《标准》修改的基本原则和思路是:修改的基础是课程改革4年的实践和调查研究的结果;修改应稳步进行,使得《标准》更加准确、规范、明了、全面;增强可操作性,更适合于教材编写、教师教学、学习评价.明确修改过程中要进一步处理好以下几个关系:一是关注过程和结果的关系;二是学生自主学习和教师讲授的关系;三是合情推理和演绎推理的关系;四是生活情境和知识系统性的关系.三、修改的主要方面1.体例与结构的调整本次修改,在保持原课程标准基本结构不变的基础上,经充分讨论.在结构上有两处调整.一是前言内容做了较大的调整.在前言重点阐述了《标准》的指导思想、意义与功能.明确了《标准》应以《中华人民共和国义务教育法》和全面推进素质教育,培养创新型人才为依据.明确了《标准》的意义和功能.在前言中指出,“《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,所规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求.《标准》是教材编写、教学、评估和考试命题的依据.”二是将课程目标中的关键术语的解释和所有比较完整的案例统一放在附录中,案例进行统一编号,便于查找和使用.这样大大减少了《标准》正文的篇幅.2.基本理念的修改一是阐述了数学意义与性质,数学教育的作用和义务教育阶段数学课程的创新特征.例如,对于什么是“数学”?将原来“数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程.”改为“数学是研究数量关系和空间形式的科学.数学与人类的活动息息相关.……数学教育作为促进学生全面发展教育的重要组成部分,一方面要使学生掌握现代生活和学习中所需要的数学知识技能,另一方面要发挥数学在培养人的逻辑推理和创新思维方面的功能.……义务教育阶段的数学课程具有公共基础的地位,课程设计要适应学生未来生活、工作和学习的需要,使学生掌握必需的数学基础知识与基本技能,发展学生抽象思维和推理能力,培养学生应用意识和创新意识,并使学生在情感、态度与价值观等方面都得到发展.二是对基本理念的表述做了一些修改.《标准》提出的基本理念总体上反映了基础教育改革的方向,对个别表述的方式进行了修改.如将原来“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”.将原来的第3、4两条合并成一条,整体上阐述数学教学过程的特征,“教学活动是师生积极参与、交往互动、共同发展的过程.有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者.数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,掌握有效的数学学习方法”.3.设计思路的修改《标准》中设计思路表述的不够清晰,修改稿对设计思路做了较大的修改.主要是对四个方面的课程内容“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”做了明确的阐述.将“空间与图形”改为“图形与几何”.确立了“数感”、“符号意识”等十个义务教育阶段数学教育的关键词,并给出描述.4.学生培养目标的修改学生的培养目标在具体表述上做了修改,在几年实验研究的基础上,对于课程改革倡导的使学生经历数学学习过程,学会数学思考等方面的经验进行了概括,归纳出基本思想和基本活动经验.在“双基”的基础上,提出了“四基”:即基础知识、基本技能、基本思想和基本活动经验;对于问题解决能力方面,在原来分析问题和解决问题能力的基础上,进一步提出培养学生发现问题和提出问题的能力.5.具体内容和表述方式的修改对于三个学段的具体内容进行了适当调整.对“数与代数”,“图形与几何”“统计与概率”和“综合与实践”四个领域的内容进行了适当的修改.主要修改内容如下:数与代数第一学段1.增加“能进行简单的四则混合运算(两步)”第二学段1.增加“结合现实情境感受大数的意义,并能进行估计”.2.增加“了解公倍数和最小公倍数;了解公因数和最大公因数”.3.删除“会口算百以内一位数乘、除两位数”.4.理解等式的性质,会用等式的性质解简单方程,改为“能解简单的方程(如-+xx).”x=3=2,532第三学段1.明确几个概念:了解算术平方根的概念、会用根号表示算术平方根.了解最简二次根式的概念.掌握合并同类项和去括号的法则.2.增加几个具体的内容:能解简单的三元一次方程组能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等了解一元二次方程的根与系数的关系(韦达定理),不要求应用.体会一次函数与二元一次方程、二元一次方程组的关系.知道给定不共线三点的坐标可以确定一个二次函数3.减少了部分内容了解有效数字的概念.利用一次函数的图象,求方程组的近似解.能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题.图形与几何1.内容的结构的调整:《标准(实验稿)》的“空间与图形”分为四个部分:第一、二学段为(1)图形的认识;(2)测量;(3)图形与变换;(4)图形与位置.第三学段为(1)图形的认识;(2)图形与变换;(3)图形与坐标:(4)图形与证明.《标准(修改稿)》的“图形与几何”,第一、二学段仍分为四部分,具体表示有所变动,(1)图形的认识;(2)测量;(3)图形的运动;(4)图形与位置.第三学段分为三个部分:(1)图形的性质;(2)图形的运动;(3)图形与坐标.其中,第(1)部分大体整合了《标准(实验稿)》的第(1)、(4)部分(图形的认识、图形与证明)的内容,以利于在探索、发现、确认、证明图形性质过程的过程中,体现两种推理(合情推理与演绎推理)相辅相成的关系;体现《标准(修改稿)》在总体目标中提出的增强学生“发现和提出问题,分析和解决问题”的能力的要求.第(2)部分除了《标准(实验稿)》第(2)部分(图形与变换)的图形的轴对称、旋转、平移、相似外,还包括了图形的投影.这部分内容强调了图形的运动是研究图形性质的一种有效方法.第(3)部分包括两部分内容——坐标与图形的位置、坐标与图形的运动,比《标准(实验稿)》的第(3)部分(图形与坐标)内容有所增加,要求也更加具体、明确.2.主要内容的修改第一学段(1)“能在方格纸上画出简单图形沿水平方向、垂直方向平移后的图形”放在第二学段(2)“能在方格纸上画出简单图形的轴对称图形”放在第二学段.(3)在东、南、西、北和东北、西北、东南、西南中,给定一个方向,辨认其余七个方向,并能用这些词语描绘物体所在的方向;会看简单的路线图.改为:给定东、南、西、北四个方向中的一个方向,能辨认其余三个方向,知道东北、西北、东南、西南四个方向,能用这些词语描绘物体所在的方向.第二学段(1)删掉“两点确定一条直线和两条相交直线确定一个点”.(2)增加“通过操作,了解圆的周长与直径的比为定值”.第三学段(1)对“基本事实”(《标准(修改稿)》中不再使用“公理”这个词),在既考虑其自身的体系,又关注学生的实际情况的基础上,《标准(修改稿)》明确了9条基本事实.但是,“两直线平行,同位角相等”不再作为基本事实,而作为定理加以证明.(基本事实:①两点确定一条直线.②两点间直线段最短.③过一点有且只有一条直线与已知直线垂直.④两条直线被第三条直线所截,如果同位角相等,那么两直线平行.⑤过直线外一点有且只有一条直线与这条直线平行.⑥两边及其夹角分别相等的两个三角形全等.⑦两角及其夹边分别相等的两个三角形全等.⑧两条直线被一组平行线所截,所得的对应线段成比例.⑨三边分别相等的两个三角形全等.)(2)为适当加强推理,《标准(修改稿)》增加了下列定理的证明:相似三角形的判定定理和性质定理,垂径定理,圆周角定理,切线长定理等.但是,不要求运用这些定理证明其他命题.(3)对于“证明”,不仅要求“知道证明的意义和必要性,知道证明要合乎逻辑”,而且要求“知道证明的过程可以有不同的表达形式”.强调证明除了用简化了的三段论证表达外,还可以采用其他符合学生思维过程的表达形式.(4)删去了一些内容:有关等腰梯形的内容.视点、视角、盲区等(降低了关于视图与投影的要求).计算圆锥的侧面积和全面积统计与概率1.统计与《标准》相比,《标准修改稿》对统计内容做了适当调整,使三个学段统计内容学习的层次性方面更加明确.主要变化如下:(1)第一学段与《标准》相比,最大的变化是鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,不要求学生学习正规的统计图(一格代表一个单位的条形统计图)以及平均数(这些内容放在了第二学段).这种变化主要原因有三:第一,更加突出了学生对数据分析的体验,鼓励学生用自己的方式去分析数据;第二,早期经验的多样化可以为以后学习“正规”的统计图表和统计量奠定比较牢固的基础;第三,使得统计内容在第一、二学段的要求层次更加明确.在收集数据方法方面,考虑到学生年龄特征,要求学生了解测量、调查等的简单方法,不要求学生从报刊、杂志、电视等媒体中获取数据信息.(2)第二学段与《标准》相比,在统计量方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在了第三学段).这种变化主要原因有二:第一,平均数是一个非常重要的刻画数据平均水平的统计量,需要学生重点体会;第二,考虑到学生的特征,其他刻画数据平均水平的统计量不宜集中学习.另外,删去“体会数据可能产生的误导”这一要求.(3)第三学段与《标准》相比,强调了对“随机”的体会.比如,增加了“通过案例了解简单随机抽样”、“通过表格、折线图等,了解随机现象的变化趋势”.(4)加强体会数据的随机性实际上,体会数据的随机性是《标准修改稿》的一个重要特点,也是一个重要变化.在以前的学习中,学生主要是依靠概率来体会随机思想的,《标准修改稿》希望通过数据使学生体会随机思想.这种变化从“数据分析观念”核心词的表述,以及案例21、案例43、案例73中也可以看到.(5)增加了一些案例,特别是对案例在数学上、教学上做了比较详细的阐述,希望对教师有所启发.2.概率与《标准》相比,《标准修改稿》的主要变化如下:(1)第一学段、第二学段的要求降低.在第一学段,去掉了《标准》对此内容的要求;第二学段,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述.(2)明确指出所涉及的随机现象都基于简单随机事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的.在第三学段,学生通过列出简单随机现象所有可能的结果、以及指定事件发生的所有可能结果,来了解随机现象发生的概率.(3)增加了一些案例,特别是对案例在数学上、教学上做了比较详细的阐述,希望对教师有所启发.综合与实践在标准的修改中,根据课程实验积累的经验,进一步理清了思路,主要变化为:一、把三个学段的名称作了统一,统称为“综合与实践”(第三学段不另叫“课题学习”),进一步明确了“综合与实践”的目的和内涵:“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径.针对问题情境,学生综合所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间、数学与其他学科之间的联系,加深对所学数学内容的理解.二、提出了明确的要求:“综合与实践”应当保证每学期至少一次.它可以在课堂上完成,也可以在课外完成,还可以课内外相结合.三、对三个学段的差异作了进一步的明确,一方面突出了创新的核心是“发现和提出问题、分析和解决问题”,另一方面突出了不同学段的特点.第一学段:内容安排应强调问题情境相对简单、生动有趣、学生容易参与,可以把操作活动作为主要形式.教师在组织教学活动时要力求使学生明白解决问题的目标和步骤,引导学生多动手、多思考、多提问题,争取更多的学生获得成功的体验,鼓励学生之问的合作交流.具体目标1.经历实际操作的过程,在解决问题的过程中了解所学内容之间的关联,加深对学习内容的理解.2.获得一些初步的数学实践活动经验,感受数学在日常生活中的作用,知道能够运用所学的知识和方法解决简单问题.第二学段:学生将在教师的指导下,经历有目的、有设计、有步骤的综合与实践活动,进一步获得数学活动的经验.通过应用和反思,加深对所学知识的理解;通过探索,引发学习的兴趣和培养思考的习惯;通过交流,发展理解他人、团结互助的合作精神.教师应通过问题设计、求解过程的引导,鼓励学生多动手、多思考;发现问题、提出问题;克服困难、积极进取;主动与同伴合作、积极与他人交流.具体目标1.通过应用和反思,加深对于所用知识和方法的理解,了解所学过知识之间的联系.2.初步获得在给定目标下,设计解决问题方案的经验.3.结合实际背景,初步体验发现问题、提出问题和解决问题的过程.第三学段:在本学段中,学生将在教师的指导下,将所学过的知识有机地结合,增强对知识的理解;注意与实际问题有机地结合,进一步获得数学活动的经验,增强应用意识.具体目标1.通过对有关问题的探讨,了解所学过的数与代数、图形与几何、统计与概率知识之间的关联.2.初步获得发现问题和提出问题的经验.3.结合实际背景,在给定目标下,设计解决问题的方案,进一步体验分析问题和解决问题的过程,发展相应的能力.以上概要地说明了本次修改的主要内容,详细的修改内容见《全日制义务教育数学课程标准(实验修订稿)》原文.修订稿充分吸收了近几年来基础教育数学课程改革的探索成果与经验教训,能针对实践中出现的问题与偏差作出大方向上的调整,具有更强的科学性、指导性和可操作性.第11 页共11 页。