模糊c均值聚类
- 格式:pptx
- 大小:423.09 KB
- 文档页数:11
模糊c 均值算法
模糊c均值算法,也叫Fuzzy C Means算法,是一种无监督的聚类算法。
与传统的聚类算法不同的是,模糊C均值算法允许同一样本点被划分到不同的簇中,而且每个样本点到各个簇的距离(或者说相似度)用模糊数表示,因而能更好地处理样本不清晰或重叠的情况。
模糊c均值算法的步骤如下:
1. 初始化隶属度矩阵U,每个样本到每个簇的隶属度都为0-1之间的一个随机数。
2. 计算质心向量,其中每一项的值是所有样本的对应向量加权后的和,权重由隶属度矩阵决定。
3. 根据计算得到的质心向量计算新的隶属度矩阵,更新每个样本点到每个簇的隶属度。
4. 如果隶属度矩阵的变化小于一个预先设定的阈值或者达到了最大迭代次数,则停止;否则,回到步骤2。
模糊c均值算法是一种迭代算法,需要进行多次迭代,直到满足一定的停止条件。
同时,该算法对于隶属度矩阵的初始值敏感,不同的初始值可能会导致不
同的聚类结果。
FCM模糊c均值1、原理详解模糊c-均值聚类算法fuzzy c-means algorithm (FCMA)或称(FCM)。
在众多模糊聚类算法中,模糊C-均值(FCM)算法应用最广泛且较成功,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而决定样本点的类属以达到自动对样本数据进行分类的目的。
聚类的经典例子然后通过机器学习中提到的相关的距离开始进行相关的聚类操作经过一定的处理之后可以得到相关的cluster,而cluster之间的元素或者是矩阵之间的距离相对较小,从而可以知晓其相关性质与参数较为接近C-Means Clustering:固定数量的集群。
每个群集一个质心。
每个数据点属于最接近质心对应的簇。
1.1关于FCM的流程解说其经典状态下的流程图如下所示集群是模糊集合。
一个点的隶属度可以是0到1之间的任何数字。
一个点的所有度数之和必须加起来为1。
1.2关于k均值与模糊c均值的区别k均值聚类:一种硬聚类算法,隶属度只有两个取值0或1,提出的基本根据是“类内误差平方和最小化”准则,进行相关的必要调整优先进行优化看是经典的欧拉距离,同样可以理解成通过对于cluster的类的内部的误差求解误差的平方和来决定是否完成相关的聚类操作;模糊的c均值聚类算法:一种模糊聚类算法,是k均值聚类算法的推广形式,隶属度取值为[0 1]区间内的任何数,提出的基本根据是“类内加权误差平方和最小化”准则;这两个方法都是迭代求取最终的聚类划分,即聚类中心与隶属度值。
两者都不能保证找到问题的最优解,都有可能收敛到局部极值,模糊c均值甚至可能是鞍点。
1.2.1关于kmeans详解K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。
K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。
模糊c均值聚类算法及应用随着数字化时代的到来,数据量的增加让人们变得更加注重数据分析与聚类。
相比较传统的聚类算法,模糊c 均值聚类算法在实际应用中的效果更加出色。
本文将对模糊c均值算法进行详细介绍,并且剖析其在实际应用中的优势。
一、什么是模糊c均值聚类算法模糊c均值聚类算法是一种基于物理学中的隶属度理论,来对不同种类数据进行分类的一种算法。
其基本原理是通过计算不同数据在所属类别中的隶属程度,并根据不同的权重来计算数据的均值和方差,从而实现对数据进行分类的目的。
在传统的c均值聚类算法中,所有的数据点都必须完全属于某一个类别中,而在模糊c均值聚类算法中,一个数据点可以属于多个不同的类别,且归属于每个类别的隶属度都是按照百分比计算的。
换句话说,每个数据点都有可能属于多个不同的类别,且在不同类别中的权重不同。
二、模糊c均值聚类算法的优势模糊c均值聚类算法在大量实验中都取得了理想的效果。
其优势主要有以下几个方面:1.能够适应不同数据的分布情况在聚类分析中,很多数据不是严格遵循正态分布等统计规律的,这就使得传统的c均值聚类算法很难准确分类。
然而,采用模糊c均值算法处理这些数据时,可以很好地适应多样性的数据分布。
2. 更准确地表达数据之间的联系在实际应用中,很多数据点不仅需要分类,还要进行关联性分析。
在传统的c均值聚类算法中,只能体现点与点之间的距离远近,很难准确刻画数据之间的关联关系。
而在模糊c均值聚类算法中,可以很好地给每个点进行加权处理,使得每个点被分类后能更加准确地表达和传达其所代表的信息。
3. 更加灵活的聚类动态传统的c均值聚类所表现出来的聚类动态,很难被实时地调整。
而模糊c均值聚类算法中,每个数据点都有一定的隶属度,可以更加灵活地调整聚类动态。
使用模糊c 均值求解,总是能得到的比传统c均值聚类更加的平滑,不容易受到某些噪音的干扰,更能够优化每个点的分类。
三、模糊c均值聚类算法的应用1. 人脸识别在人脸识别领域,模糊c均值算法可以有效地应用于人脸的分类和特征提取。
模糊c均值聚类算法C均值聚类算法(C-Means Clustering Algorithm)是一种常用的聚类算法,目的是将一组数据点分成若干个类群,使得同一类群内的数据点尽可能相似,不同类群之间的数据点尽可能不相似。
与K均值聚类算法相比,C均值聚类算法允许一个数据点属于多个类群。
C均值聚类算法的基本思想是随机选择一组初始聚类中心,然后通过迭代的方式将数据点分配到不同的类群,并调整聚类中心,直到满足停止条件。
算法的停止条件可以是固定的迭代次数,或者是聚类中心不再改变。
具体而言,C均值聚类算法的步骤如下:1.随机选择k个初始聚类中心,其中k是预先设定的类群数量。
2.根据欧氏距离或其他距离度量方法,计算每个数据点到每个聚类中心的距离。
3.将每个数据点分配到距离最近的聚类中心的类群。
4.根据聚类中心的分配情况,更新聚类中心的位置。
如果一个数据点属于多个类群,则根据各个类群的权重计算新的聚类中心位置。
5.重复步骤2到4,直到满足停止条件。
C均值聚类算法的优点是灵活性高,可以允许一个数据点属于多个类群。
这在一些应用场景中非常有用,例如一个商品可以属于多个类别。
然而,C均值聚类算法的缺点是计算复杂度较高,对初始聚类中心的选择敏感,以及类群数量k的确定比较困难。
为了解决C均值聚类算法的缺点,可以采用如下方法进行改进:1.使用聚类效度指标来评估聚类结果的好坏,并选择最优的聚类中心数量k。
2. 采用加速算法来减少计算复杂度,例如K-means++算法可以选择初始聚类中心,避免随机选择的可能不理想的情况。
3.对数据进行预处理,例如归一化或标准化,可以提高算法的收敛速度和聚类质量。
4.针对特定应用场景的需求,可以根据数据属性来调整聚类中心的权重计算方式,以适应特定的业务需求。
总结起来,C均值聚类算法是一种常用的聚类算法,与K均值聚类算法相比,它可以允许一个数据点属于多个类群。
然而,C均值聚类算法也存在一些缺点,例如计算复杂度高,对初始聚类中心的选择敏感等。
模糊c均值聚类算法的概念
模糊C均值聚类算法(Fuzzy C-means clustering algorithm,简
称FCM)是一种基于模糊理论的聚类算法,用于将数据集划
分为若干个模糊的子集,每个子集代表一个聚类。
FCM算法的目标是最小化数据点与聚类中心之间的模糊距离。
模糊距离所描述的是一个数据点属于每个聚类的可能性,而不仅仅是属于一个特定聚类的二进制标识。
FCM算法的步骤如下:
1. 初始化聚类中心,可以随机选择数据点作为初始中心。
2. 根据初始聚类中心,计算每个数据点对于每个聚类中心的成员关系度(即属于每个聚类的可能性)。
3. 根据成员关系度更新聚类中心,计算每个聚类中心的坐标。
4. 重复步骤2和3,直到聚类中心不再发生变化或达到最大迭
代次数。
在每次迭代中,FCM算法根据每个数据点到聚类中心的距离
计算其模糊隶属度,按照隶属度对数据点进行聚类。
每个数据点隶属于每个聚类的可能性是在0到1之间连续变化的,表示了数据点与每个聚类之间的相似程度。
相比于传统的硬聚类算法,模糊C均值聚类算法允许数据点
属于多个聚类,更好地处理了数据点的模糊性,适用于数据集中存在重叠样本或不确定性较高的场景。
模糊 c 均值聚类算法模糊 c 均值聚类算法是一种常用的聚类算法,其特点是能够解决数据集中存在重叠现象的问题,适用于多类别分类和图像分割等领域。
本文将从算法原理、应用场景、优缺点等方面分析模糊c 均值聚类算法。
一、算法原理模糊 c 均值聚类算法与传统的聚类算法相似,都是通过对数据集进行聚类,使得同一类的数据样本具有相似的特征,不同类的数据样本具有不同的特征。
但是模糊c 均值聚类算法相对于传统的聚类算法而言,其对于数据集中存在重叠现象具有一定的优越性。
模糊 c 均值聚类算法的主要思想是:通过迭代计算,确定数据集的类别个数,并计算每个数据样本属于不同类别的概率值。
在此基础上,通过计算每个聚类中心的权值,并对每个数据样本属于不同类别的概率进行调整,以达到数据样本的合理分类。
二、应用场景模糊 c 均值聚类算法的应用范围较广,主要包括:1.多类别分类:在多类别分类中,不同的类别往往具有比较明显的特征区别,但是存在一些数据样本的特征存在重叠现象。
此时,模糊 c 均值聚类算法可以对这些数据样本进行合理分类。
2.图像分割:在图像分割过程中,一张图片包含了不同的对象,这些对象的特征往往具有一定的相似性。
模糊 c 均值聚类算法可以通过对这些相似的特征进行分类,实现对于图像的自动分割。
3.市场分析:在市场分析中,需要根据一定的统计规律,对市场中的产品进行分类。
模糊 c 均值聚类算法可以帮助市场研究人员实现对市场中产品的自动分析分类。
三、优缺点分析模糊 c 均值聚类算法相对于传统的聚类算法而言,其对于数据集中存在重叠现象具有一定的优越性,具体优缺点如下所示:1.优点:(1) 能够有效地解决重叠现象问题,在多类别数据分类和图像分割等领域具有比较好的应用前景。
(2) 通过迭代计算,能够实现对数据集的自动分类,自动化程度高。
2.缺点:(1) 算法的时间复杂度比较高,需要进行多次迭代计算,因此在数据量较大时,运算时间比较长。
(2) 模糊 c 均值聚类算法对于初始聚类中心的选择较为敏感,不同的聚类中心初始化可能会导致最终分类效果的不同。
模糊c均值聚类算法
模糊c均值聚类算法(Fuzzy C-Means Algorithm,简称FCM)是一种基于模糊集理论的聚类分析算法,它是由Dubes 和Jain于1973年提出的,也是用于聚类数据最常用的算法之
一。
fcm算法假设数据点属于某个聚类的程度是一个模糊
的值而不是一个确定的值。
模糊C均值聚类算法的基本原理是:将数据划分为k个
类别,每个类别有c个聚类中心,每个类别的聚类中心的模糊程度由模糊矩阵描述。
模糊矩阵是每个样本点与每个聚类中心的距离的倒数,它描述了每个样本点属于每个聚类中心的程度。
模糊C均值聚类算法的步骤如下:
1、初始化模糊矩阵U,其中每一行表示一个样本点,每
一列表示一个聚类中心,每一行的每一列的值表示该样本点属于该聚类中心的程度,U的每一行的和为
1.
2、计算聚类中心。
对每一个聚类中心,根据模糊矩阵U
计算它的坐标,即每一维特征值的均值。
3、更新模糊矩阵U。
根据每一个样本点与该聚类中心的距离,计算每一行的每一列的值,其中值越大,说明该样本点属于该聚类中心的程度就越大。
4、重复步骤2和步骤
3,直到模糊矩阵U不再变化,即收敛为最优解。
模糊C均值聚类算法的优点在于它可以在每一个样本点属于每一类的程度上,提供详细的信息,并且能够处理噪声数据,因此在聚类分析中应用十分广泛。
然而,其缺点在于计算量较大,而且它对初始聚类中心的选取非常敏感。
模糊 c 均值聚类算法概述模糊 c 均值聚类算法是一种基于模糊逻辑的聚类算法,其通过将每个数据点分配到不同的聚类中心来实现数据的分组。
与传统的 k-means 算法相比,模糊 c 均值聚类算法在处理数据集特征模糊和噪声干扰方面表现更好。
本文将详细介绍模糊 c 均值聚类算法的原理、优点和缺点,以及其在实际应用中的一些场景和方法。
原理模糊 c 均值聚类算法基于模糊集合理论,将每个数据点分配到不同的聚类中心,而不是像 k-means 算法一样将数据点硬性地分配到最近的聚类中心。
算法的核心是定义每个数据点属于每个聚类中心的权重,即模糊度。
具体而言,模糊 c 均值聚类算法的步骤如下:1.初始化聚类中心。
从输入数据中随机选择一些数据作为初始聚类中心。
2.计算每个数据点到每个聚类中心的距离。
可以使用欧氏距离或其他距离度量方法。
3.根据距离计算每个数据点属于每个聚类的模糊度。
模糊度是一个介于 0 和1 之间的值,表示某个数据点属于某个聚类的程度。
4.更新聚类中心。
根据数据点的模糊度重新计算每个聚类的中心位置。
5.重复步骤 2、3 和 4,直到聚类中心的位置不再发生明显变化或达到预定的迭代次数。
优点模糊 c 均值聚类算法相比传统的 k-means 算法具有以下优点:1.模糊度。
模糊 c 均值聚类算法可以为每个数据点分配一个模糊度值,这样可以更好地应对数据集中的噪声和模糊性。
而 k-means 算法仅将数据点硬性分配到最近的聚类中心。
2.灵活性。
模糊 c 均值聚类算法中的模糊度可以解释某个数据点同时属于多个聚类的情况,这在一些实际应用中可能是具有意义的。
3.鲁棒性。
模糊 c 均值聚类算法对初始聚类中心的选择相对不敏感,因此在大多数情况下能够获得较好的聚类结果。
缺点虽然模糊 c 均值聚类算法具有许多优点,但也存在一些缺点:1.计算复杂度。
模糊 c 均值聚类算法需要在每个迭代步骤中计算每个数据点与每个聚类中心的距离,这导致算法的计算复杂度较高。
模糊c均值聚类例子
模糊c均值聚类是一种常用的聚类方法,其原理是将数据集分成若干个模糊的类别,每个数据点都有一定的隶属度,指示其属于每个类别的可能性。
下面通过一个例子来介绍模糊c均值聚类的应用。
假设我们有一个数据集,包含10个数据点,每个数据点有两个特征值x和y。
我们想将这些数据点分成3个不同的类别。
首先,我们需要初始化3个聚类中心,可以随机选择数据集中的3个点作为初始中心。
然后,对于每个数据点,计算其隶属度,即它属于每个聚类中心的概率。
这个概率可以使用一些距离度量方式来计算,例如欧几里得距离或曼哈顿距离。
接下来,根据每个数据点的隶属度,更新聚类中心。
具体来说,对于每个聚类中心,计算它所属的数据点的加权平均值,其中权重为每个数据点属于该聚类的隶属度。
这个过程会不断迭代,直到聚类中心不再发生变化或者达到最大迭代次数。
最后,根据每个数据点的隶属度,我们可以将其分配到最可能属于的聚类中心所在的类别。
通过模糊c均值聚类,我们可以有效地将数据集分成多个模糊的类别,这对于数据分析和分类任务非常有用。
- 1 -。
模糊C均值聚类-FCM算法FCM(fuzzy c-means)模糊c均值聚类融合了模糊理论的精髓。
相较于k-means的硬聚类,模糊c提供了更加灵活的聚类结果。
因为⼤部分情况下,数据集中的对象不能划分成为明显分离的簇,指派⼀个对象到⼀个特定的簇有些⽣硬,也可能会出错。
故,对每个对象和每个簇赋予⼀个权值,指明对象属于该簇的程度。
当然,基于概率的⽅法也可以给出这样的权值,但是有时候我们很难确定⼀个合适的统计模型,因此使⽤具有⾃然地、⾮概率特性的模糊c均值就是⼀个⽐较好的选择。
聚类损失函数:N个样本,分为C类。
C是聚类的簇数;i,j是标号;表⽰样本i 属于 j类的⾪属度。
xi表⽰第i个样本,xi是具有d维特征的⼀个样本。
cj是j簇的中⼼,也具有d维度。
||*||可以是任意表⽰距离的度量。
模糊c是⼀个不断迭代计算⾪属度和簇中⼼的过程,直到他们达到最优。
对于单个样本xi,它对于每个簇的⾪属度之和为1。
迭代的终⽌条件为:其中k是迭代步数,是误差阈值。
上式含义是,继续迭代下去,⾪属程度也不会发⽣较⼤的变化。
即认为⾪属度不变了,已经达到⽐较优(局部最优或全局最优)状态了。
该过程收敛于⽬标Jm的局部最⼩值或鞍点。
抛开复杂的算式,这个算法的意思就是:给每个样本赋予属于每个簇的⾪属度函数。
通过⾪属度值⼤⼩来将样本归类。
算法步骤:1、初始化2、计算质⼼FCM中的质⼼有别于传统质⼼的地⽅在于,它是以⾪属度为权重做⼀个加权平均。
3、更新⾪属度矩阵b⼀般取2。
【转载⾃】Fuzzy C-Means(模糊C均值聚类)算法原理详解与python实现 - Yancy的博客 - CSDN博客。