神奇的函数——囧函数
- 格式:doc
- 大小:64.00 KB
- 文档页数:2
“囧”色彩意义探析摘要:网络用词“囧”以越来越高的频率出现在网民的视野中,对“囧”进行色彩意义的分析显得十分必要。
文章阐述了“囧”色彩意义产生的原因、其色彩意义与语境的关系、及“囧”色彩意义的功用,对此,我们应该重视对网络用语色彩意义的分析,了解色彩意义对网络用语的作用。
关键词:“囧”;色彩意义;词汇中图分类号:h13文献标识码:a文章编号:1005-5312(2011)30-0097-01一、引言随着网络的发展,网络用词也逐渐增多。
最近几年,“囧”作为网络用词,以很高的频率显现在网民的眼球当中。
“囧”最早出现于甲骨文中,音为jiong,上声,《广韵》:俱永切,上梗,见,阳部。
《汉语大辞典》释义为:窗透明,引申为明亮。
《文选·江淹》:“囧囧秋月明,冯轩詠尧老。
”李善注:“囧,大明也。
”囧,一本作“冏”。
关于“囧”的本义,有窗户说、仓廪说、地名说、祭祀说、牛耳说等多种说法,其中大家比较认可的是表窗户,引申为光明之意。
现在网络上广泛流行的“囧”,其意义与本义并无多大关联,而是发展为表示尴尬、窘迫、压抑、无奈等一系列与此相关的意义。
仔细观察“囧”的形状,结合网民们在使用时赋予它的意义,我们通过联想可把“囧”比喻为一副伤心沮丧的脸,由于它的外观和人的这种表情很相似,“八”似眉眼,“口”似一张嘴。
为什么网民会选择“囧”,并将其赋予一种新的意义,而不是其它词呢?我们可以从词语色彩意义的角度出发来探讨这一问题。
二、“囧”色彩意义的产生在现代汉语词汇学中,词语的色彩意义是附着在表示概念的理性意义之上的,它和词汇意义、语法意义一起共同构成了词义的整体内容。
虽然色彩意义在词义这一整体中是表示事物的次要方面,起次要地位的意义成分,但我们在分析词义时则不能将其忽视。
色彩意义不仅能够使词语的意义多彩缤纷,显现出细微的差别,更能丰富汉语词汇复杂的表意功能。
杨振兰先生认为,色彩意义在词义系统中的地位、所承担的交际职能虽然不能与词汇意义相提并论,但是如果忽视这种在形成机制、性质特点、功能价值等方面完全不同于词汇意义的独立的意义类型是不应该的。
比狄利克雷函数更加诡异的函数在上一篇文章里,我们谈到了狄利克雷函数,并指出了它所具有的三个诡异的性质:处处不连续,处处不可导,在任意闭区间上不可积。
文章的链接如下:诡异的狄利克雷函数我们还指出,狄利克雷函数其实是一类最简单的病态函数,这就意味着存在比狄利克雷函数更加复杂,更加诡异的函数,本篇文章就带着读者开一开脑洞,自己来想办法构造出一些更诡异的函数来。
1.只在一点连续的函数只在一点不连续的函数非常好构造,只需要把一整个曲线在某一点掰开就可以了,而狄利克雷函数则是在所有点都不连续的。
那么如何来构造只在一点处连续的函数呢?我们可以把狄利克雷函数稍微改造一下,变成下面这个样子:为了让大家直观地理解,我们近似地把它的图像画出来千万要注意!这只是它近似的图像,而真正的图像我们是不可能画出来的,因为有理数和无理数都是密密麻麻地分布在实数轴上的。
这个函数只在x=0 处连续,在其它点均不连续,我们来说明这一点。
在x不等于0的地方,如果是有理点,则函数的取值也不为0,但是在它附近任意小的邻域内,都包含无数多个无理点,在那上面函数取值一定是0,函数趋近于这一点时是无穷震荡形式的,因而极限不存在,也就不可能连续。
同样如果x在无理点出,那么这一点的函数取值为0,但是在它的任意领域之内都包含无数多个有理点,那些点处函数取值不为0,因此它也是一个无穷震荡形式的,故而极限也不存在,亦不连续。
那么它为什么在x=0 处就连续了呢?我们还是根据连续性的定义,即它在这一点的函数值等于极限值来证明。
首先有f(0)=0,然后我们利用夹逼定理来求函数在这一点的极限值:所以我们得到了函数值等于极限值,于是函数在0这一点连续。
上面这个例子只是让大家初步领略了一下病态函数的威力,以此为基础,还可以构造出更多的病态函数,具有更加诡异的性质。
2.只在一点处可导的函数我们把上面的函数再稍加改造一下,得到如下函数:我们还是先来近似地画一下它的函数图像:这个函数的性质就是只在x=0 处可导。
神奇的Gamma函数 (上)rickjin关键词:特殊函数, 欧拉G a m m a函数诞生记学高等数学的时候,我们都学习过如下一个长相有点奇特的Gamma函数Γ(x)=∫∞0t x−1e−t dt通过分部积分的方法,可以推导出这个函数有如下的递归性质Γ(x+1)=xΓ(x)于是很容易证明,Γ(x)函数可以当成是阶乘在实数集上的延拓,具有如下性质Γ(n)=(n−1)!学习了Gamma 函数之后,多年以来我一直有两个疑问:∙ 1.这个长得这么怪异的一个函数,数学家是如何找到的;∙ 2.为何定义Γ函数的时候,不使得这个函数的定义满足Γ(n)=n!而是Γ(n)=(n−1)!最近翻了一些资料,发现有不少文献资料介绍Gamma 函数发现的历史,要说清楚它需要一定的数学推导,这儿只是简要的说一些主线。
1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16,⋯可以用通项公式n2自然的表达,即便n为实数的时候,这个通项公式也是良好定义的。
直观的说也就是可以找到一条平滑的曲线y=x2通过所有的整数点(n,n2),从而可以把定义在整数集上的公式延拓到实数集合。
一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,⋯,我们可以计算2!,3!, 是否可以计算 2.5!呢?我们把最初的一些(n,n!)的点画在坐标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。
但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯.贝努利和他的弟弟丹尼尔.贝努利,由于欧拉当时和丹尼尔.贝努利在一块,他也因此得知了这个问题。
而欧拉于1729 年完美的解决了这个问题,由此导致了Γ函数的诞生,当时欧拉只有22岁。
事实上首先解决n!的插值计算问题的是丹尼尔.贝努利,他发现,如果m,n都是正整数,如果m→∞,有1⋅2⋅3⋯m(1+n)(2+n)⋯(m−1+n)(m+n2)n−1→n!于是用这个无穷乘积的方式可以把n!的定义延拓到实数集合。
2019-2020年高考数学专题练习——集合与逻辑(一)一、选择题1.已知集合{}2320A x x x =-+≥,(){}321B x log x +<,则A B =( ) A. {}21x x -<< B.{} 12x x x ≤≥或 C.{} 1x x < D.∅2.集合{}2log 2A x Z x =∈≤的真子集个数为( ) A .7 B .8 C .15 D .163.若复数z =(x 2-4)+(x +3)i (x ∈R ),则“z 是纯虚数”是“x =2”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4.设有下面四个命题:1P :若z 满足z C ∈,则 z z R ⋅∈;2P :若虚数(),a bi a R b R +∈∈是方程32 1 0x x x +++=的根,则a bi -也是方程的根: 3P :已知复数12,z z 则12z z =的充要条件是12z z R ∈: 4P ;若复数12z z >,则12,z z R ∈.其中真命题的个数为( )A .1B .2C .3D .45. “221a b +=”是“sin cos 1a b θθ+≤恒成立”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件6.已知集合{}{}2320,230A x x x B x x =-+<=->,则R A C B ⋂= ( )A .31,2⎛⎫-- ⎪⎝⎭B.31,2⎛⎫ ⎪⎝⎭C .31,2⎛⎤⎥⎝⎦D .3,22⎛⎫⎪⎝⎭7.设集合2{|60,}A x x x x Z =--<∈,{|,,}B z z x y x A y A ==-∈∈,则A ∩B =( ) A .{0,1} B .{0,1,2} C .{0,1,2,3} D .{-1,0,1,2}8.已知p :x R ∀∈,220x x a ++>;q :28a <.若“p q ∧”是真命题,则实数a 的取值范围是( )A .(1,+∞)B .(-∞,3)C .(1,3)D .(-∞,1)∪(3,+∞)9.设R θ∈,则“66ππθ-<”是“3sin 2θ<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件10.设集合{}2|670A x x x =--<,{}|B x x a =≥,现有下面四个命题: p 1:a R ∃∈,A B =∅;p 2:若0a =,则(7,)A B =-+∞; p 3:若(,2)R C B =-∞,则a A ∈;p 4:若1a ≤-,则A B ⊆. 其中所有的真命题为( ) A .p 1,p 4 B .p 1,p 3,p 4 C .p 2,p 3 D .p 1,p 2,p 411.已知命题P :存在n R ∈,使得223()n nf x nx-=是幂函数,且在(0,+∞)上单调递增; 命题q :“2,23x R x x ∃∈+>”的否定是“2,23x R x x ∀∈+<”.则下列命题为真命题的是 A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝12.已知集合M ={x |22194x y +=},N ={y|132x y+=},则M ∩N =A .∅B .{(3,0),(2,0)}C .{3,2}D .[-3,3]13.设集合{}{}m B m A 2,2,42==,,若φ≠⋂B A ,则m 的取值可能是( ) A.1 B.2 C.3 D.214.下列判断错误..的是 ( ) A .“22bm am <”是“b a <”的充分不必要条件B .命题“01,23≤--∈∀x x R x ”的否定是“01,23>--∈∃x x R x ”C .若p ,q 均为假命题,则q p Λ为假命题D .命题:若12=x ,则1=x 或1-=x 的逆否命题为:若1≠x 或1-≠x ,则12≠x15.已知A ,B ,C ,D ,E 是空间五个不同的点,若点E 在直线BC 上,则“AC 与BD 是异面直线”是“AD 与BE 是异面直线”的( ) A .充分不必要条件 B .充分必要条件 C.必要不充分条件 D .既不充分也不必要条件16.下列选项错误的是( )A .命题“若1x ≠,则2320x x -+≠”的逆否命题是“若2320x x -+=,则1x =”B .“2x >”是“2320x x -+>”的充分不必要条件;C.若命题p :x R ∀∈,210x x ++≠,则p ⌝:0x R ∃∈,20010x x ++=; D .在命题的四种形式中,若原命题为真命题,则否命题为假命题17.对于常数m 、n ,“0mn >”是“方程221mx y +=的曲线是椭圆”的( )条件 A .充分不必要 B .必要不充分 C.充分必要D .既不充分也不必要条件18.设S 是整数集Z 的非空子集,如果,,a b S ∀∈有ab S ∈,则称S 关于数的乘法是封闭的. 若T,V 是Z 的两个不相交的非空子集,,T U Z ⋃=且,,,a b c T ∀∈有;,,,abc T x y z V ∈∀∈有xyz V ∈,则下列结论恒成立的是()A. ,T V 中至少有一个关于乘法是封闭的B. ,T V 中至多有一个关于乘法是封闭的C. ,T V 中有且只有一个关于乘法是封闭的D. ,T V 中每一个关于乘法都是封闭的19.设集合S={1,2,3,4,5,6},定义集合对(A ,B)::,A 中含有3个元素,B 中至少含有2个元素,且B 中最小的元素不小于A 中最大的元素.记满足的集合对(A ,B)的总个数为m ,满足的集合对(A ,B)的总个数为n ,则的值为( )A.111 B.161C.221 D.29220.定义非空集合A 的真子集的真子集为A 的“孙集”,则集合{1,3,5,7,9}的孙集的个数为 () A .23B .24C .26D .3221.已知:集合2012,3,2,{1,A =},A B ⊆,且集合B 中任意两个元素之和不能被其差整除。
高中数学复习:利用函数性质解题1、已知6lg )3(222-=-x x x f ,则)(x f 的定义域是 。
2、设函数⎩⎨⎧>-≤+=)10(3)10()]5([)(x x x x f f x f ,则=)5(f 。
3、设⎩⎨⎧<≥=1||1||)(2x x x x x f ,,,)(x g 是二次函数,若)]([x g f 的值域是),0[+∞,则)(x g 的值域是( ) A .),1[]1,(+∞⋃--∞ B .),0[]1,(+∞⋃--∞ C .),0[+∞ D .),1[+∞4、设()f x 是定义在R 上的函数,若81)0(=f ,且对任意的x ∈R ,满足: (2)()3,(4)()103x x f x f x f x f x +-≤+-≥⨯,则)2014(f = .5、函数c bx ax x f ++=2)(的图象关于任意直线l 对称后的图象依然为某函数图象,则实数c b a 、、应满足的充要条件为 。
6、将函数2642--+=x x y ,[]60,∈x 的图像绕坐标原点逆时针方向旋转角θ)0(αθ≤≤,得到曲线C .若对于每一个旋转角θ,曲线C 都是一个函数的图像,则α的最大值为__________。
7、已知函数|)1lg(|)(+=x x f ,若b a ≠且)()(b f a f =,则b a +的取值范围是 。
8、已知函数|lg |)(x x f =,若b a <<0且)()(b f a f =,则b a 2+的取值范围是 。
9、已知函数⎩⎨⎧+∞∈∈⋅=),1(log ]1,0[sin )(2011x x x x x f ,,π,若满足)()()(c f b f a f ==,(c b a 、、互不相等),则c b a ++的取值范围是 。
10、已知:函数⎩⎨⎧>+-≤<=)9(11)90(log )(3x x x x x f ,若a ,b ,c 均不相等,且)()()(c f b f a f ==,则c b a ⋅⋅的取值范围是 。
甘肃省张掖中学2013-2014学年第一学期高三第二次模拟考试数学理试题一、选择题:本大题共12小题。
每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B 等于( ). A .{x |3≤x <4} B .{x |x ≥3} C .{x |x >2} D .{x |x ≥2} 2.复数-i1+2i(i 是虚数单位)的实部是( ).A.15 B .-15 C .-15i D .-253.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ). A .13 B .35 C .49 D .634.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“α⊥β”是“m ⊥β”的( )5.(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ) A .6 B .7 C .8 D .96.程序框图如图所示:如果输入x =5,则输出结果为( ).A .109B .325C .973D .2 9177.已知x 、y 满足约束条件,则Z=2x+4y 的最小值为( )﹣308已知a =log 23.4,b =log 43.6,3.0log 31 c 则( )A .a >b >cB .b >a >cC .a >c >bD .c >a >b9已知α∈(,),tan (α﹣7π)=﹣,则sinα+cosα的值为( )A -B C251 D -25110.已知f (x )是定义在R 上的奇函数,满足.当时,211.设椭圆C :+=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为A ,过点A 与AF 2垂直的直线交x 轴负半轴于点Q ,且2+=.则椭圆C 的离心率为( )A .21B .31C .41 D .51 12.已知函数在x 1处取得极大值,在x 2处取得极小值,满足x 1∈(﹣1,1),x 2∈(1,4),则2a+b 的取值范围是( )A (-6,-4) B(-6,-1) C(-10,-6) D(-10,-1)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
《囧函数》
数学函数上有一些函数图象很像“囧”,这类函数人们生动地称为囧函数。
当我们
在函数的外侧加上一个正方形的时候,一个具有数学意义的“囧”就诞生了。
定义:函数图像类似于“囧”字的函数。
常见"囧函数"类型:
1. 绝对值型"囧函数"
形如:()R c b a a
x b y ∈>>+-=,0,0c 型 例 求函数11-=
x y 的函数图像 解析: x=1与x=-1是函数图像的渐近线
2. 偶次方型"囧函数"。
形如:()为偶数m R c b a a
b y m ,,0,0
c x ∈>>+-=
例 画出函数y=114-x 的大致图像并求单调区间? 解析:大致图像如图3,单增区间为:()(]0,11--∞- ,
单减区间为:[)()∞+,1
1,0
3.半脸型"囧函数" 形如:(),,0,0c x R c b a a b
y ∈>>+-=
例.画出函数y=11
-x 的大致图像?
解析:大致图形如图,像半张脸。
4.特殊半脸型"囧函数"————“囧数列” 例.已知数列{a n }的通项是a n =1413
--n n (n ∈N *
),则它的最大项与最小项分别是第几项? 解析:
如图,显然最大项为第5项,最小项为第4项。