全等三角形及其判定习题课讲解
- 格式:ppt
- 大小:871.50 KB
- 文档页数:26
C EODBA21C EDB A21OA全等三角形专题讲解专题一 全等三角形判别方法的应用专题概说:判定两个三角形全等的方法一般有以下4种: 1.三边对应相等的两个三角形全等(简写成“SSS ”)2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS") 3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA ”)4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS")而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL ”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别两个直角三角形全等.三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.例1 已知:如图1,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O,且AO 平分∠BAC .那么图中全等的三角形有___对.图1(2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.例2 如图2,已知AB=AD ,∠1=∠2,要使△ABC ≌△ADE,还需添加的条件是(只需填一个)_____. 图2(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.例3 已知:如图3,AB=AC,∠1=∠2. 求证:AO 平分∠BAC .分析:要证AO 平分∠BAC ,即证∠BAO=∠BCO,要证∠BAO=∠BCO,只需证∠BAO 和∠BCO 所在的两个三角形全等.而由已知条件知,只需再证明BO=CO 即可.图3GABF DEC ODA CBFCEDBA(4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法有些几何问题中,往往不能直接证明一对三角形全等,一般需要作辅助线来构造全等三角形.例4 已知:如图4,在Rt △ABC 中,∠ACB=90º,AC=BC ,D 为BC 的中点,CE ⊥AD 于E ,交AB 于F ,连接DF .求证:∠ADC=∠BDF .说明:常见的构造三角形全等的方法有如下三种:①涉及三角形的中线问题时,常采用延长中线一倍的方法,构造出一对全等三角形;②涉及角平分线问题时,经过角平分线上一点向两边作垂线,可以得到一对全等三角形;③证明两条线段的和等于第三条线段时,用“截长补短”法可以构造一对全等三角形.(5)会在实际问题中用全等三角形的判别方法新课标强调了数学的应用价值,注意培养同学们应用数学的意识,形成解决简单实际问题的能力﹒在近年中考出现的与全等三角形有关的实际问题,体现了这一数学理念,应当引起同学们的重视.例5 要在湖的两岸A 、B 间建一座观赏桥,由于条件 限制,无法直接度量A ,B 两点间的距离﹒请你用学过的数 学知识按以下要求设计一测量方案﹒(1)画出测量图案﹒(2)写出测量步骤(测量数据用字母表示)﹒ 图5 (3)计算A 、B 的距离(写出求解或推理过程,结果用字母表示)﹒分析:可把此题转化为证两个三角形全等.第(1)题,测量图案如图5所示.第(2)题,测量步骤:先在陆地上找到一点O ,在AO 的延长线上取一点C ,并测得OC=OA ,在BO 的延长线上取一点D ,并测得OD=OB,这时测得CD 的长为a ,则AB 的长就是a .第(3)题易证△AOB ≌△COD ,所以AB=CD ,测得CD 的长即可得AB 的长.解:(1)如图6示.(2)在陆地上找到可以直接到达A 、B 的一点O,在AO 的延长线上取一点C ,并测得OC =OA ,在BO 的延长线上取一点D ,并测得OD =OB,这时测出CD 的长为a ,则AB 的长就是a .(3)理由:由测法可得OC=OA ,OD=OB . 又∠COD=∠AOB ,∴△COD ≌△AOB .∴CD=AB=a . 图6评注:本题的背景是学生熟悉的,提供了一个学生动手操作的机会,重点考查了学生的操作能力,培养了 学生用数学的意识﹒练习:1.已知:如图7,D 是△ABC 的边AB 上一点,AB ∥FC ,DF 交AC 于点E ,DE=FE . 求证:AE=CE .C ED B AAO Q M CPBN A D C PBHF EGAD CBADCFBEA2.如图8,在△ABC 中,点E 在BC 上,点D 在AE 上,已知∠ABD=∠ACD ,∠BDE=∠CDE .求证:BD=CD .3.用有刻度的直尺能平分任意角吗?下面是一种方法:如图9所示,先在∠AOB 的两边上取OP=OQ ,再取PM=QN,连接PN 、QM,得交点C ,则射线OC 平分∠AOB .你能说明道理吗?4.如图10,△ABC 中,AB=AC,过点A 作GE ∥BC ,角平分线BD 、CF 相交于点H ,它们的延长线分别交GE 于点E 、G .试在图10中找出3对全等三角形,并对其中一对全等三角形给出证明.5.已知:如图11,点C 、D 在线段AB 上,PC=PD .请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为__________,你得到的一对全等三角形是△_____≌△_____.6.如图12,∠1=∠2,BC=EF ,那么需要补充一个直接条件_____(写出一个即可),才能使△ABC ≌△DEF .7图13,在△ABD 和△ACD 中,AB=AC,∠B=∠C .求证:△ABD ≌△ACD .AODCBAFCGBEAF DCB EOED218.如图14,直线AD与BC相交于点O,且AC=BD,AD=BC.求证:CO=DO.9.已知△ABC,AB=AC,E、F分别为AB和AC延长线上的点,且BE=CF,EF交BC于G.求证:EG=GF.10.已知:如图16,AB=AE,BC=ED,点F是CD的中点,AF⊥CD.求证:∠B=∠E.11.如图17,某同学把一把三角形的玻璃打碎成了三块,现在要到玻璃店去配一块大小形状完全一样的玻璃,那么最省事的办法是()﹒(A)带①和②去 (B)带①去(C)带②去(D)带③去12.有一专用三角形模具,损坏后,只剩下如图18中的阴影部分,你对图中做哪些数据度量后,就可以重新制作一块与原模具完全一样的模具,并说明其中的道理.13.如图19,将两根钢条AA’、BB’的中点O连在一起,使AA’、BB’可以绕着点O自由转动,就做成了一个测量工件,则A' B'的长等于内槽宽AB,那么判定△OAB≌△OAB的理由是( )(A)边角边(B)角边角(C)边边边(D)角角边专题二角的平分线从一个角的顶点出发,把一个角分成相等的两个角的射线,叫做这个角的平分线.角的平分线有着重要的作用,它不仅把角分成相等的两部分,而且角的平分线上的点到角两边的距离相等,到一个角的两边距离相等的点在这个角的平分线上,再加上角的平分线所在的直线是角的对称轴.因此当题目中有角的平分线时,可根据角的平分线性质证明线段或角相等,或利用角的平分线构造全等三角形或等腰三角形来寻找解题思路.(1)利用角的平分线的性质证明线段或角相等F ED CB A 21A FH DCGBEADCBE AF DC BE C E D例6 如图20,∠1=∠2,AE ⊥OB 于E , BD ⊥OA 于D ,交点为C .求证:AC=BC .说明:本题若用全等方法证明点C 到OA 、OB 距离相等,浪费时间和笔墨,不如直接应用角平分线性质证明,原因在于同学们已经习惯了用全等的方法,不善于直接应用定理,仍去找全等三角形,结果相当于重新证明了一次定理,以后再学新定理,应用时要注意全等定势的干扰,注意采用简捷证法. 例7 已知:如图21,△ABC 中, BD=CD ,∠1=∠2.求证:AD 平分∠BAC .说明:遇到有关角平分线的问题时,可引角的两边的垂线,先证明三角形全等,然后根据全等三角形的性质得出垂线段相等,再利用角的平分线性质得出两角相等.(2)利用角的平分线构造全等三角形 ①过角平分线上一点作两边的垂线段例8 如图22,AB ∥CD ,E 为AD 上一点,且BE 、CE 分别平分∠ABC 、∠BCD . 求证:AE=ED .分析:由于角平分线上一点到角的两边的距离相等,而点E 是两条角平分线的交点,因此我们自然想到过点E 分别作AB 、BC 、CD 的垂线段.②以角的平分线为对称轴构造对称图形例9 如图23,在△ABC 中,AD 平分∠BAC,∠C=2∠B .求证:AB=AC+CD .分析:由于角平分线所在的直线是这个角的对称轴,因此在AB 上截取AE=AC,连接DE ,我们就能构造出一对全等三角形,从而将线段AB 分成AE 和BE 两段,只需证明BE=CD 就可以了.③延长角平分线的垂线段,使角平分线成为垂直平分线 例10 如图24,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E . 求证:∠ACE=∠B+∠ECD .分析:注意到AD 平分∠BAC ,CE ⊥AD ,于是可延长CE 交AB 于点F,即可构造全等三角形..(3)利用角的平分线构造等腰三角形如图25,在△ABC 中,AD 平分∠BAC ,过点D 作DE ∥AB ,DE 交AC 于点E .易证△AED 是等腰三角形. 因此,我们可以过角平分线上一点作角的一边的平行线,构造等腰三角形.CF E BADQPCBACB AD EA例11 如图26,在△ABC 中,AB=AC,BD 平分∠ABC ,DE ⊥BD 于D ,交BC 于点E .求证:CD=21BE .分析:要证CD=21BE ,可将BE 分成两条线段,然后再证明CD 与这两条线段都相等.练习:1.如图27,在△ABC 中,∠B=90º,AD 为∠BAC 的平分线,DF ⊥AC 于F,DE=DC .求证:BE=CF .2.已知:如图28,AD 是△ABC 的中线,DE ⊥AB 于E ,DF ⊥AC 于F ,且BE=CF .求证:(1)AD 是∠BAC 的平分线;(2)AB=AC .3.在△ABC 中,∠BAC=60º,∠C=40º,AP 平分∠BAC 交BC 于P,BQ 平分∠ABC 交AC 于Q . 求证:AB+BP=BQ+AQ .4.如图30,在△ABC 中,AD 平分∠BAC ,AB=AC+CD . 求证:∠C=2∠B .5.如图31,E 为△ABC 的∠A 的平分线AD 上一点,AB >AC . 求证:AB —AC >EB-EC .CB AD 4321C E BADF CE BAD CEBADCBADACBD6.如图32,在四边形ABCD 中,BC >BA ,AD=CD ,BD 平分∠ABC . 求证:∠A+∠C=180º.7.如图33所示,已知AD ∥BC ,∠1=∠2,∠3=∠4,直线DC 过点E 作交AD 于点D ,交BC 于点C .求证:AD+BC=AB .8.已知,如图34,△ABC 中,∠ABC=90º,AB=BC,AE 是∠A 的平分线,CD ⊥AE 于D .求证:CD=21AE .9.△ABC 中,AB=AC,∠A=100º,BD 是∠B 的平分线.求证:AD+BD=BC .10.如图36,∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC 交AB 于点D ,交AC 于点E ,若BD+CE=9,则线段DE 的长为( )A .9B .8C .7D .611.如图37,△ABC 中,AD 平分∠BAC ,AD 交BC 于点D ,且D 是BC 的中点.求证:AB=AC .A CF E B M D12.已知:如图38,△ABC 中,AD 是∠BAC 的平分线,E 是BC 的中点,EF ∥AD ,交AB 于M ,交CA 的延长线于F .求证:BM=CF .。
全等三角形的判定一、知识点复习①"边角边〞定理:两边和它们的夹角对应相等的两个三角形全等。
〔SAS 〕图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠=EF BC E B DE AB ∴△ABC ≌△DEF 〔SAS 〕②"角边角〞定理:两角和它们的夹边对应相等的两个三角形全等。
〔ASA)图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧∠=∠=∠=∠F C EF BC E B ∴△ABC ≌△DEF(ASA)③"角角边〞定理:两个角和其中一个角的对边对应相等的两个三角形全等。
〔AAS 〕图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC F C E B ∴△ABC ≌△DEF(AAS)图形分析:书写格式:在△ABC 和△DEF 中⎪⎩⎪⎨⎧===EF BC DF AC DE AB ∴△ABC ≌△DEF(AAS)⑤"斜边、直角边〞定理:斜边和一条直角边对应相等的两个直角三角形全等。
〔HL 〕图形分析:书写格式:在△ABC 和△DEF 中⎩⎨⎧==DFAC DEAB∴△ABC ≌△DEF 〔HL 〕一个三角形共有三条边与三个角,你是否想到这样一问题了:除了上述四种识别法,还有其他的三角形全等识别法吗?比方说"SSA 〞、"AAA 〞能成为判定两个三角形全等的条件吗? 两个三角形中对应相等的元素 两个三角形是否全等 反例SSA⨯AAA⨯二、常考典型例题分析第一局部:根底稳固1.以下条件,不能使两个三角形全等的是〔 〕A.两边一角对应相等B.两角一边对应相等C.直角边和一个锐角对应相等D.三边对应相等2.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD〔〕A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3.以下各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是〔〕A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF 的是〔〕A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE5.如图,∠ABC=∠DCB,以下所给条件不能证明△ABC≌△DCB的是〔〕A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 6.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边一样的刻度分别与M,N重合,过角尺顶点C的射线OC便是∠AOB的平分线OC,作法用得的三角形全等的判定方法是〔〕A.SAS B.SSS C.ASA D.HL第二局部:考点讲解考点1:利用"SAS〞判定两个三角形全等1.如图,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且AE ∥BC .求证:△AEF ≌△BCD .2.如图,AB=AC ,AD=AE ,∠BAC=∠DAE .求证:△ABD ≌△ACE .考点2:利用"SAS 〞的判定方法解与全等三角形性质有关的综合问题3.:如图,A 、F 、C 、D 四点在一直线上,AF=CD ,AB ∥DE ,且AB=DE ,求证:FEC CBF ∠=∠考点3:利用"SAS 〞判定三角形全等解决实际问题4.有一座小山,现要在小山A 、B 的两端开一条隧道,施工队要知道A 、B 两端的距离,于是先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,则量出DE 的长,就是A 、B 的距离,你能说说其中的道理吗"考点4:利用"ASA 〞判定两个三角形全等5. 如图,AB=AD ,∠B=∠D ,∠1=∠2,求证:△AEC ≌△ADE .6..jyeoo./math/report/detail/6ffc59c3-43e4-4008-9d1a-6c2c447db1f4如图,∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;考点6:利用"ASA 〞与全等三角形的性质解决问题:7.如图,EC=AC ,∠BCE=∠DCA ,∠A=∠E ;求证:BC=DC考点7:利用"SSS 〞证明两个三角形全等8.如图,A 、D 、B 、E 四点顺次在同一条直线上,AC=DF ,BC=EF ,AD=BE ,求证:△ABC ≌△EDF .考点8:利用全等三角形证明线段〔或角〕相等9.如图,AE=DF ,AC=DB ,CE=BF .求证:∠A=∠D .考点9:利用"AAS 〞证明两个三角形全等10.如图,在△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,求证:△ABD ≌△ACE.考点10:利用"AAS 〞与全等三角形的性质求证边相等11.〔2017秋•娄星区期末〕:如下图,△ABC 中,∠ABC=45°,高AE 与高BD 交于点M ,BE=4,EM=3.〔1〕求证:BM=AC ;〔2〕求△ABC 的面积.考点11:利用"HL 〞证明两三角形全等12.如图,在△ABC 中,D 是BC 边的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,且DE=DF 。
图12.1-1第十二章 全等三角形12.1 全等三角形素读检测1. 叫做全等形.2. 叫做全等三角形.3.一个图形经过平移、翻折、旋转后, 变化了,但 、 都没有改变,即平移、翻折、旋转前后的图形 .4.把两个全等的三角形重合到一起. 叫做对应顶点. 叫做对应边. 叫做对应角.如图12.1-1,△ABC 和△DEF 全等,记作 .记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.其中 , , 是对应顶点, , , 是对应边, , , 是对应角.5.全等三角形的性质: ; .问题思考1.对边和对应边有什么区别?2.如图,指出下列各对全等三角形的对应边和对应角.对应边: 对应边: 对应角: 对应角:DCBAO△AOB ≌△DOCCBEDA△AEB ≌△ADC图12.1-2△ABC ≌△CDA△ABC ≌△AEF对应边: 对应边: 对应角: 对应角:对应边: 对应边: 对应角: 对应角:当堂检测1.下列各图中的两个图形是全等图形的是 .2.如图12.1-6,△ADE ≌△BCF ,(1)若AD =8cm ,CD =6cm ,则BD = (2)若∠B =30°,∠E =80°,则∠ADE =3.如图12.1-7,点A 、B 、C 、D 在一条直线上,△ABF ≌△DCE .你能得出哪些结论?(请写出三个以上的结论)△ABC ≌△DEF△ABN ≌△ACMNMCBA图12.1-4图12.1-5EFDCBA图12.1-6A FBEDC图12.1-7图12.1-7巩固拓展1.如图12.1-8,已知△ABC 是边长为1的正三角形,△BMD ≌△CPD ,△MND ≌△PND ,点P 在AC 的延长线上,求△AMN 的周长.2.如图12.1-9,A 、D 、E 三点在同一直线上,且△BAD ≌△ACE ,试说明: (1)BD =DE +CE ;(2)△ABD 满足什么条件时,BD ∥CE .12.2 .1 三角形全等的判定第一课时素读检测1.如果△ABC ≌△A′B′C ′,那么它们的对应边相等,对应角相等.反过来,如果△ABC 和△A′B′C′满足 , 即这六个条件,就能保证△ABC ≌△A′B′C′.2. 的两个三角形全等(可以简写成“边边边”或“SSS ”).PDNMC BA图12.1-8ACE BD图12.1-9问题思考1.六个条件满足一个条件时,分几种情况考虑?两三角形一定全等吗?(提示:可以用你的学具试一试,也可以用你的作图工具画一画,还可以用其它的方法). 通过上面的操作,可以得出怎样的结论?2.六个条件满足两个条件时,分几种情况考虑?两三角形一定全等吗?(提示:可以用你的学具试一试,也可以用你的作图工具画一画,还可以用其它的方法). 通过上面的操作,可以得出怎样的结论?3.六个条件满足三个条件时,分几种情况考虑?请一一罗列出来.4.已知△ABC ,如何画一个△A′B′C′,使AB =A′B′,BC =B′C′,CA =C′A′,你是怎样画的?可以参照第36页上面画法.并说明画法中第(2)步的意义.5.把画好的△A′B′C′剪下,放到△ABC 上,它们全等吗?此结果反映了什么规律?6.仿照第36页例1的格式,解答下列问题: 如图12.2-2,在四边形ABCD 中,AB =CD ,AD =CB . 求证:∠A =∠C .CBDA 图12.2-2 C BA图12.2-17.已知∠AOB ,求作:∠A′O′B′,使∠A′O′B′=∠AOB .(保留作图痕迹) 想一想为什么这样作出∠A′O′B′和∠AOB 是相等的?当堂检测1.如图12.2-4,AC =BD ,若根据“SSS ”证得△ABC ≌ △BAD ,需要添加的条件是 .2.工人师傅常用角尺平分一个任意角.做法如下:如图12.2-5,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 作射线OC .由此做法得△MOC ≌△NOC 的依据是( ) A. AAS B. SAS C. ASA D. SSS3.如图12.2-6,AD =AC ,BD =BC ,∠DAC =31°,∠D =29°,∠DBE = °.4.如图12.2-7,在△ABC 中,AB =AC ,D 为BC 的中点,那么下面结论正确的有 (填序号).① △ABD ≌ △ACD ;② ∠B =∠C ; ③ AD 是△ABC 的角平分线; ④ AD 是△ABC 的高.巩固拓展如图12.2-8,AD =CB ,E 、F 是AC 上两动点,且有DE =BF .(1)若E 、F 运动至如图①所示的位置,且有AF =CE ,求证:△ADE ≌△CBF .(2)若E 、F 运动至如图②所示的位置,仍有AF =CE ,那么△ADE ≌△CBF 还成立吗?为什么?BOA 图12.2-3图12.2-4CBDA图12.2-6CBEDA图12.2-7CBDA图12.2-5 DFCBAED FCBAE图12.2-812.2.2 全等三角形的判定第二课时素读检测已知:△ABC求作:△A'B'C',使A'B'=AB,A'C'=AC,∠A'=∠A.AB C问题思考1.你画出的△ABC与△A'B'C'满足六个条件中的哪几个条件?把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?你还有其他的检验方法吗?2.两边及其中一边的对角对应相等的两三角形一定全等吗?为什么?3.课本给出了测量池塘两端距离的一种方法,你能说说这种方法的道理吗?A BCE D当堂检测1.如图12.2-9,AD ⊥AB 于A ,BE ⊥AB 于B ,AD =BC ,AC =BE ,则∠DCE = °. 2.如图12.2-10,AB =AC ,要想利用SAS 证明△ABE ≌△ACD ,需要添加的一个条件 是 .3.如图12.2-11,AB =AC ,AD 平分∠BAC ,E 是AD 上一点,写出图中所有的全等 三角形: .4.已知:如图12.2-12,AB =AC ,AD =AE ,∠BAC =∠DAE . 求证:∠B =∠C .巩固拓展1.如图12.2-13,点E,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C . 求证:∠A =∠D .AEDCB图12.2-9AEDCB图12.2-11图12.2-10D AB CE图12.2-9图12.2-10图12.2-11CAB FD图12.2-12ABCDE图12.2-122.已知,如图12.2-14, △ABC 中,AB =AC .求证: ∠B =∠C . 你能用几种方法证明出来? 试着写出来.12.2.3 全等三角形的判定第三课时素读检测已知:△ABC .画出△A 'B 'C ',使A 'B '=AB ,∠A '=∠A ,∠B '=∠B .问题思考1.你画出的△ABC 与△A 'B 'C '满足六个条件中的哪三个条件?把画好的△A 'B 'C '剪下,放到△ABC 上,它们全等吗?你还有其他的验证方法吗?2.两角及其中一角的对边对应相等的两三角形一定全等吗?ASA 与AAS 有什么区别与联系?CBA图12.2-14图12.2-15ABC3.如图12.2-15,AD 是∠BAC 的平分线,∠1=∠2. 求证: BD =CD .当堂检测1.如图12.2-16,∠A =∠D,BC =EF ,还需要添加一个条件 ,使△ABC ≌△DEF ,理由是 . _.2.如图12.2-17,AB ⊥BC ,AD ⊥DC ,∠1=∠2.求证:AB =AD3.如图12.2-18,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB =AC ,∠B =∠C .求证:BD =CE巩固拓展1.如图12.2-19, AB, CD, EF 交于O 点, 且AC =BD , AC ∥DB . 求证:O 是EF 的中点.图12.2-16图12.2-1912图12.2-17CBDA图12.2-17图12.2-18DBEA OC图12.2-182.如图11.2-20, AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC =DF . 求证:AC =EF .12.2.4三角形全等的判定第四课时素读检测1.三角形全等的判定方法有 、 、 、 四种. 它们的共同特点是需要 个条件,这些条件中至少有一个是 的条件.2.由三角形全等的条件可知,对于两个直角三角形,满足一边和一锐角对应相等,可以根据 判定它们全等;满足两直角边对应相等可以根据 判定它们全等.3.直角三角形可以用符号 表示.图12.2-204.已知Rt △ABC .画Rt △A 'B 'C ',使∠C '=90°,B 'C '=BC ,A 'B '=AB .(保留画图痕迹) 画法:(1)画∠MC′N =90°; (2)在射线C′M 上取B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′; (4)连结A′B′.问题思考1.观察所画△ABC 与△A 'B 'C ',它们全等吗?你是怎样验证的?2.由上可以得到的判定两个直角三角形全等的方法是什么?3.怎样利用HL 进行证明?你会用几何语言表示吗? 证明:∵ ∠C =∠ C′=90°,∴△ABC 和△A′B′C′都是直角三角形 在Rt △ABC 和Rt △A′B′C′中 AB = (已知)= B′C′(已知) ∴ △ABC ≌△A′B′C′( )4.你能够用几种方法判定两个直角三角形全等?5.斜边、直角边判定与前面几个判定方法的不同之处是什么?6.阅读课本第14页例4.写出下面题目规范的证明过程.CBA如图12.2-21,AC ⊥BC ,BD ⊥CB ,AB =DC . 求证:∠ABD =∠ACD .当堂检测1.如图12.2-22,BD ⊥AC 于D,CE ⊥AB 于E,BE=CD,则△BEC ≌△CBD 的理由是 .2.如图12.2-23,AC ⊥BD 于点O ,AO =CO ,添加一个条件使△ABO ≌△CDO ,你添加的条件是 .3.如图12.2-24,已知AB =AC ,AD ⊥BC 于D , 且△ABC 的周长是50cm ,△ABD 的周长是40cm ,则AD = .4.如图12.2-25,AB =CD ,DE ⊥AC ,BF ⊥AC ,E 、F 是垂足,DE =BF . 求证:(1)AE =CF . (2)AB ∥CD .巩固拓展1.如图12.2-26,AD 为△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD . 求证:BE ⊥AC .FEDCBA图12.2-25图12.2-21A BCDDCBAOD CBAEDCBA图12.2-22 图12.2-23 图12.2-24图12.2-26F EDCBA图12.2-262.如图12.2-27,△ABC 中,AB =AC . (1)求证:∠B =∠C .(2)你用了几种方法证明?这些方法的基本思路是什么?(3)在证明的过程中你发现了等腰三角形有哪些性质?用简练的语言叙述出来.12.2.5三角形全等习题课问题思考1.如图12.2-28, 90=ACB 中,∠ABC 在△,AC =BC ,BE ⊥CE 于点E .AD ⊥CE 于点D . 求证:△BEC ≌△CDA .图12.2-28图12.2-27CAB图12.2-272.如图12.2-29所示,在△ADF 和△BCE 中,B =A ∠ ,点D ,E ,F ,C 在同一条直线上,有如下三个关系式:①BC =AD ;②CF =DE ;③AF ∥BE .(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写 出命题书写形式,如如果①、②,那么③)(2)选择(1)中你写出的一个命题,说明它正确的理由.3.如图12.2-30,已知AC=BC,EC=CD,BC ⊥AD 于C ,A 、C 、D 三点在同一直线上,连接BD ,AE ,并延长AE 交BD 于F . (1)求证:△ACE ≌△BCD ;(2)请说出AE 与BD 的关系,并证明你的结论.巩固拓展1.如图12.2-31,已知在四边形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F,交BC 于点G ,交AB 的延长线于点E ,且AE =AC . 求证:BG =FG .图12.2-29图图12.2-30 图12.2-31G FEB C DA图12.2-312.如图12.2-32,已知AD∥BC,EA,EB分别平分∠DAB,∠CBA,点E在DC上.求证:AD+BC=AB.12.3.1角的平分线的性质第一课时素读检测1.从一个角的顶点出发,把这个角分成的两个角的,叫做这个角的平分线.2.直线一点到这条直线的,叫做点到直线的距离.3.角的平分线性质: .4.证明一个几何命题的步骤:(1)明确命题中的和 .(2)根据题意,,并用表示和 . (3)经过分析,找出由推出要证的的途径,写出 .3.如图12.3-1是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE 就是角的平分线.你能说明它的道理吗?图12.2-32E CAB D图12.2-32图12.3-1问题思考1.如图12.3-2用直尺和圆规作出∠AOB 的平分线OC .2.射线OC 为什么是∠AOB 的平分线?3.在OC 上任取一点P ,过点P 画出OA ,OB 的垂线,分别记垂足为D ,E ,测量PD ,PE 并作比较,你得到什么结论?在OC 上再取几个点试一试.通过以上的测量,你发现了角的平分线的什么性质?4.用所学的知识证明你猜想的角的平分线的性质.梳理深化:1.角的平分线的画法的依据是 .2.角平分线的性质的应用:①证明两条 相等(比运用全等证明两条 相等更简捷); ②为证明三角形全等准备条件. 3.运用时要注意: ①点要在角的平分线上;②点到角两边的距离是指这点到角两边的 的长度.③解决有关角的平分线的问题时常做的辅助线是过角平分线上的点做角两边的垂线段.当堂检测1.如图12.3-3,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E , DE =3cm ,BC =7cm ,则BD 的长为 .2.如图12.3-1,BE 是∠ABC 的平分线,DE ⊥AB 于D ,S △ABC =90cm 2, AB =18cm ,BC =12cm ,则DE = .ED CBA图 12.3-3EDCBA图12.3-4 AOB 图12.3-23.如图12.3-5,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:BE=CF。
第十二章全等三角形12.1全等三角形1.了解全等形及全等三角形的概念.2.理解全等三角形的性质.重点探究全等三角形的性质.难点掌握两个全等三角形的对应边、对应角的寻找规律,能迅速正确地指出两个全等三角形的对应元素.一、情境导入一位哲人曾经说过:“世界上没有完全相同的叶了”,但是在我们的周围却有着好多形状、大小完全相同的图案.你能举出这样的例子吗?二、探究新知1.动手做(1)和同桌一起将两本数学课本叠放在一起,观察它们能重合吗?(2)把手中三角板按在纸上,画出三角形,并裁下来,把三角板和纸三角形放在一起,观察它们能够重合吗?得出全等形的概念,进而得出全等三角形的概念.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形.2.观察观察△ABC与△A′B′C′重合的情况.总结知识点:对应顶点、对应角、对应边.全等的符号:“≌”,读作:“全等于”.如:△ABC≌△A′B′C′.3.探究(1)在全等三角形中,有没有相等的角、相等的边呢?通过以上探索得出结论:全等三角形的性质.全等三角形的对应边相等,对应角相等.(2)把△ABC沿直线BC平移、翻折,绕定点旋转,观察图形的大小形状是否变化.得出结论:平移、翻折、旋转只能改变图形的位置,而不能改变图形的大小和形状.把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.如△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B 和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.三、应用举例例1如图,△ADE≌△BCF,AD=6 cm,CD=5 cm,求BD的长.分析:由全等三角形的性质可知,全等三角形的对应边相等,找出对应边即可.解:∵△ADE≌△BCF,∴AD=BC.∵AD=6 cm,∴BC=6 cm.又∵CD=5 cm,∴BD=BC-CD=6-5=1(cm).四、巩固练习教材练习第1题.教材习题12.1第1题.补充题:1.全等三角形是()A.三个角对应相等的三角形B.周长相等的三角形C.面积相等的两个三角形D.能够完全重合的三角形2.下列说法正确的个数是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④全等三角形的面积相等.A.1B.2C.3D.43.如图,已知△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EF=5,求∠DFE 的度数与DE的长.补充题答案:1.D2.D3.∠DFE=35°,DE=8五、小结与作业1.全等形及全等三角形的概念.2.全等三角形的性质.作业:教材习题12.1第2,3,4,5,6题.本节课通过学生在做模型、画图、动手操作等活动中亲身体验,加深对三角形全等、对应含义的理解,即培养了学生的画图识图能力,又提高了逻辑思维能力.12.2三角形全等的判定(4课时)第1课时“边边边”判定三角形全等1.掌握“边边边”条件的内容.2.能初步应用“边边边”条件判定两个三角形全等.3.会作一个角等于已知角.重点“边边边”条件.难点探索三角形全等的条件.一、复习导入多媒体展示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形的对应边相等,对应角相等.反之,这六个元素分别相等,这样的两个三角形一定全等.思考:三角形的六个元素分别相等,这样的两个三角形一定全等吗?二、探究新知根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?出示探究1:先任意画出一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′满足上述六个条件中的一个或两个.你画出的△A′B′C′与△ABC一定全等吗?(1)三角形的两个角分别是30°,50°.(2)三角形的两条边分别是4 cm,6 cm.(3)三角形的一个角为30°,一条边为3 cm.学生剪下按不同要求画出的三角形,比较三角形能否和原三角形重合.引导学生按条件画三角形,再通过画一画,剪一剪,比一比的方式得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.出示探究2:先任意画出一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,教师明确已知三边画三角形的方法,并作出△A′B′C′,通过比较得出结论:三边分别相等的两个三角形全等.强调在应用时的简写方法:“边边边”或“SSS”.实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.明确:三角形的稳定性.三、举例分析例1如右图,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:△ABD≌△ACD.引导学生应用条件分析结论,寻找两个三角形的已有条件,学会观察隐含条件.让学生独立思考后口头表达理由,由教师板演推理过程.教师引导学生作图.已知∠AOB,求作∠A′O′B′,使∠A′O′B′=∠AOB.讨论尺规作图法,作一个角等于已知角的理论依据是什么?教师归纳:(1)什么是尺规作图;(2)作一个角等于已知角的依据是“边边边”.四、巩固练习教材第37页练习第1,2题.学生板演.教师巡视,给出个别指导.五、小结与作业回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律.进一步明确:三边分别相等的两个三角形全等.布置作业:教材习题12.2第1,9题.本节课的重点是探索三角形全等的“边边边”的条件;运用三角形全等的“边边边”的条件判别两个三角形是否全等.在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法.通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础.第2课时“边角边”判定三角形全等1.掌握“边角边”条件的内容.2.能初步应用“边角边”条件判定两个三角形全等.重点“边角边”条件的理解和应用.难点指导学生分析问题,寻找判定三角形全等的条件.一、复习引入1.什么是全等三角形?2.全等三角形有哪些性质?3.“SSS”具体内容是什么?二、新知探究已知△ABC ,画一个三角形△A′B′C′,使AB =A′B′∠B =∠B ′,BC =B′C′. 教师画一个三角形△ABC.先让学生按要求讨论画法,再给出正确的画法.操作:(1)把画好的三角形剪下和原三角形重叠,观察能重合在一起吗?(2)上面的探究说明什么规律?总结:判定两个三角形全等的方法:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“SAS ”.三、举例分析多媒体出示教材例2.例2 如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B.连接AC 并延长到点D ,使CD =CA.连接BC 并延长到点E ,使CE =CB.连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?分析:如果证明△ABC ≌△DEC ,就可以得出AB =DE. 证明:在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,∠1=∠2,CB =CE ,∴△ABC ≌△DEC(SAS ). ∴AB =DE.归纳解决实际问题的一般方法是:分析实际问题,按要求画出图形,根据图形及已知条件选择对应的方法.四、课堂练习如图,已知AB =AC ,点D ,E 分别是AB 和AC 上的点,且DB =EC.求证:∠B =∠C.学生先独立思考,然后讨论交流,用规范的书写完成证明过程. 五、小结与作业 1.师生小结:(1)“边角边”判定两个三角形全等的方法.(2)在判定两个三角形全等时,要注意使用公共边和公共角. 2.布置作业:教材习题12.2第3,4题.本节课的重点是让学生认识掌握运用“边角边”判定两个三角形全等的方法,让学生自己动手操作,合作交流,通过学生之间的质疑讨论,发现此定理中角必为夹角,从而得出“边角边”的判定方法.不仅学习了知识,也训练了思维能力,对三角形全等的判定(SAS)掌握的也好,但要强调书写的格式的规范,同时让学生感受到在证明分别属于两个三角形的线段或角相等的问题时,通常通过证明这两个三角形全等来解决.第3课时“角边角”和“角角边”判定三角形全等1.掌握“角边角”及“角角边”条件的内容.2.能初步应用“角边角”及“角角边”条件判定两个三角形全等.重点“角边角”条件及“角角边”条件.难点分析问题,寻找判定两个三角形全等的条件.一、复习导入1.复习旧知:(1)三角形中已知三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判定两三角形全等的方法有几种?各是什么?2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,我们接着探究已知两角一边是否可以判定两三角形全等.二、探究新知1.[师]三角形中已知两角一边有几种可能?[生](1)两角和它们的夹边;(2)两角和其中一角的对边.做一做:三角形的两个内角分别是60°和80°,它们的夹边为4 cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?学生活动:自己动手操作,然后与同伴交流,发现规律.教师活动:检查指导,帮助有困难的同学.活动结果展示:以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”) [师]我们刚才做的三角形是一个特殊三角形,随意画一个△ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B=∠B′,AB=A′B′呢?[生]能.学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解.[生](1)先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长;(2)画线段A′B′,使A′B′=AB;(3)分别以A′,B ′为顶点,A ′B ′为一边作∠DA′B′,∠EB ′A ′,使∠DA′B′=∠CAB ,∠EB ′A ′=∠CBA ;(4)射线A′D 与B′E 交于一点,记为C′.即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等. [师]于是我们发现规律:两角和它们的夹边分别相等的两三角形全等.(可以简写成“角边角”或“ASA ”) 这又是一个判定两个三角形全等的条件. 2.出示探究问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?证明:∵∠A +∠B +∠C =∠D +∠E +∠F =180°, ∠A =∠D ,∠B =∠E , ∴∠A +∠B =∠D +∠E. ∴∠C =∠F.在△ABC 和△DEF 中,⎩⎨⎧∠B =∠E ,BC =EF ,∠C =∠F ,∴△ABC ≌△DEF(ASA ). 于是得规律:两角和其中一个角的对边分别相等的两个三角形全等.(可以简写成“角角边”或“AAS ”) 例 如下图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C.求证:AD =AE.[师生共析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD =AE ,只需证明△ADC ≌△AEB 即可.学生写出证明过程.证明:在△ADC 和△AEB 中,⎩⎨⎧∠A =∠A ,AC =AB ,∠C =∠B ,∴△ADC ≌△AEB(ASA ). ∴AD =AE.[师]到此为止,在三角形中已知三个条件探索两个三角形全等问题已全部结束.请同学们把两个三角形全等的判定方法作一个小结.学生活动:自我回忆总结,然后小组讨论交流、补充.三、随堂练习1.教材第41页练习第1,2题. 学生板演. 2.补充练习图中的两个三角形全等吗?请说明理由.四、课堂小结有五种判定两个三角形全等的方法: 1.全等三角形的定义 2.边边边(SSS ) 3.边角边(SAS ) 4.角边角(ASA ) 5.角角边(AAS )推证两个三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径.五、课后作业教材习题12.2第5,6,11题.在前面研究“边边边”和“边角边”两个判定方法的前提下,本节研究“角边角”和“角角边”对于学生并不困难,让学生通过直观感知、操作确认的方式体验数学结论的发现过程,在这节课的教学中,学生也了解了分类思想和类比思想.第4课时 “斜边、直角边”判定三角形全等1.探索和了解直角三角形全等的条件:“斜边、直角边”. 2.会运用“斜边、直角边”判定两个直角三角形全等.重点探究直角三角形全等的条件.难点灵活运用直角三角形全等的条件进行证明.一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS );方法二:测量没遮住的一条直角边和一个对应的锐角(ASA 或AAS ). 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗? 二、探究新知多媒体出示教材探究5.任意画出一个Rt △ABC ,使∠C =90°.再画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB.把画好的Rt △A ′B ′C ′剪下来,放到Rt △ABC 上,它们全等吗?画一个Rt △A ′B ′C ′,使∠C′=90°,B ′C ′=BC ,A ′B ′=AB. 想一想,怎么样画呢?按照下面的步骤作一作: (1)作∠MC′N =90°;(2)在射线C′M 上截取线段B′C′=BC ;(3)以B′为圆心,AB 为半径画弧,交射线C′N 于点A′;(4)连接A′B′.△A ′B ′C ′就是所求作的三角形吗?学生把画好的△A′B′C′剪下放在△ABC 上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL ”. 多媒体出示教材例5如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD.求证:BC =AD.证明:∵AC ⊥BC ,BD ⊥AD , ∴∠C 与∠D 都是直角.在Rt △ABC 和Rt △BAD 中,⎩⎨⎧AB =BA ,AC =BD , ∴Rt △ABC ≌Rt △BAD(HL ). ∴BC =AD.想一想:你能够用几种方法判定两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.三、巩固练习如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由.学生独立思考完成.教师点评.四、小结与作业1.判定两个直角三角形全等的方法:斜边、直角边.2.直角三角形全等的所有判定方法:定义,SSS,SAS,ASA,AAS,HL.思考:两个直角三角形只要知道几个条件就可以判定其全等?3.作业:教材习题12.2第7题.本节课教学,主要是让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.12.3角的平分线的性质掌握角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.重点角的平分线的性质和判定,能灵活运用角的平分线的性质和判定解题.难点灵活运用角的平分线的性质和判定解题.一、复习导入1.提问角的平分线的定义.2.给定一个角,你能不用量角器作出它的平分线吗?二、探究新知(一)角的平分线的画法教师出示:已知∠AOB.求作:∠AOB的平分线.然后让学生阅读教材第48页上方思考.(教师演示画图)通过对分角仪原理的探究,得出用直尺和圆规画已知角的平分线的方法,师生共同完成具体作法.(二)角的平分线的性质试验:(1)让学生在已经画好的角的平分线上任取一点P;(2)分别过点P作PD⊥OA,PE⊥OB,垂足为D,E;(3)测量PD和PE的长,观察PD与PE的数量关系;(4)再换一个新的位置看看情况怎样?归纳总结得到角的平分线的性质.分析讨论PD=PE的理由.(三)角平分线的判定教师指出:角的内部到角的两边的距离相等的点在角的平分线上.(1)写出已知、求证.(2)画出图形.(3)分析证明过程.巩固应用:解决教材第49页思考(四)三角形的三个内角的平分线相交于一点1.例题:教材第50页例题.2.针对例题的解答,提出:P点在∠A的平分线上吗?通过例题明确:三角形的三个内角的平分线相交于一点.练习:教材第50页练习.三、归纳总结引导学生小组合作交流:(1)本节课学到了哪些知识?(2)你有什么收获?四、布置作业教材习题12.3第1~4题.教学始终围绕着角平分线及其性质、判定的问题而展开,先从出示问题开始,鼓励学生思考,探索问题中所包含的数学知识,让学生经历了知识的形成与应用的过程,从而更好的理解掌握角平分线的性质。