三角形全等的判定定理(SAS)
当两个三角形满足六个条件中的三个时,有四种 情况:
(1) 三个角 不能! (2) 三条边 SSS (3) 两边一角 ?
(4) 两角一边
继续探讨三角形全等的条件: 两边一角
思考:已知一个三角形的两条边和一个角,那么这两条边
与这一个角的位置上有几种可能性呢?
A
A
B
C
图一
图2-39
探究
在△ABC和△A’B’C’ 中,∠ABC=∠ A’B’C’ ,AB=A’B’, BC=B’C’ . (3)△ABC和△A’B’C’ 的位置关系如图2-40.
图2-40
探究
在△ABC和△A’B’C’ 中,∠ABC=∠ A’B’C’ ,AB=A’B’, BC=B’C’ .
(4)△ABC和△A’B’C’ 的位置关系如图2-41.
探究
在△ABC和△A’B’C’ 中,∠ABC=∠ A’B’C’ ,AB=A’B’, BC=B’C’ . (1)△ABC和△A’B’C’ 的位置关系如图2-38.
A’
B’
C’
图2-38
探究
在△ABC和△A’B’C’ 中,∠ABC=∠ A’B’C’ ,AB=A’B’, BC=B’C’ . (2)△ABC和△A’B’C’ 的位置关系如图2-39.
Байду номын сангаас证明:在△ACO和△BDO中, AO=BO, ∠AOC=∠BOD(对顶角相等), CO=DO, ∴△ACO≌△BDO(SAS).
图2-42
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
11
结束语
当你尽了自己的最大努力时,失 败也是伟大的,所以不要放弃,