详解三相四线制系统中零线的重要作用
- 格式:doc
- 大小:33.50 KB
- 文档页数:4
三相四线制是一种电力系统的供电方式,它包括三个相线和一个零线。
在这种电力系统中,三相交流电源通过三根相线分别供电给负载,同时还需要一根零线用来连接各个负载的返回电流。
在三相四线制中,零线的截面积一般相对较小,而相线的截面积则较大。
让我们来了解一下三相四线制的电路结构。
在三相四线制中,电源由三个相位构成,分别是A相、B相和C相,它们之间相位相差120度,通过三相电流的周期性变化,负载可以得到稳定的电源。
而零线则起到连接各个负载的返回电流的作用,它是为了保证整个电路的平衡而存在的。
在设计三相四线制的电力系统时,要合理确定零线和相线的截面积,以保证系统的稳定和安全。
接下来,我们来探讨一下为什么三相四线制中零线的截面积一般相对较小。
零线所承受的电流要小于相线,因为它只是用来连接负载的返回电流,并不承担像相线那样的直接供电功能。
零线在正常情况下并不会承受额外的负荷,因为它主要是为了平衡三相负载而存在的,所以在设计时可以适当减小零线的截面积,以节约材料和成本。
然而,需要注意的是,尽管零线的截面积一般相对较小,但在一些特殊情况下,如短路或故障时,零线可能会承受额外的电流负荷,因此在实际设计电力系统时,也需要考虑这些特殊情况,并在必要时适当增加零线的截面积,以确保电力系统的安全运行。
三相四线制中零线的截面积一般相对较小,这是因为零线所承受的电流较小,而且在正常情况下并不会承受额外的负荷。
然而,在设计电力系统时,也要注意考虑零线可能承受的特殊情况,确保系统的安全运行。
在实际应用中,需要根据具体情况合理确定零线和相线的截面积,以保证电力系统的稳定和安全。
在共享个人观点和理解时,我认为三相四线制的电力系统是一种非常成熟和稳定的供电方式,它能够为各种大型工业和民用设施提供稳定可靠的电源。
在设计和建设三相四线制电力系统时,合理确定零线和相线的截面积,既能够满足负载的需要,又能够兼顾电力系统的安全和稳定运行。
合理确定零线和相线的截面积是保证电力系统稳定运行的重要环节,也是电力领域工程师们需要认真思考和处理的问题。
在三相电中零线有啥作用,与火线是什么关系:
1.在三相四线制系统中,如果能够保证三相负载完全的对称,那么零线就可有
可无;但是对于大多数场合基本不可能做到三相完全平衡,那么零线就出现了;
2.三相电中的零线的作用是给负荷侧的中性点也就是星点提供一个零电位,开
避免出现三项的不平衡问题;
3.如果没有零线或者是零线断了,那么三相负荷的中性点点位就会位移,中性
点点位位移造成的后果就是三相电压不平衡,有可能烧毁电器甚至引起火灾,另一方面是很多电器都不能使用;
4.所以,在三相电中,零线的作用就是防止三相不平衡造成危害。
三相四线制中零线带电原因分析及预防【摘要】零线在电气系统运行中起着非常重要的作用,零线带电将会严重威胁系统的安全运行。
本文就零线带电原因进行了仔细分析,并简要指出预防措施。
关键词零线中点位移不对称电路三相四线制在生活区箱变及配电室中,变压器均采用直接接地,零线与大地同电位,一般情况下,零线不带电,在三相四线制供电线路中,由于有了零线(中性线),所以不论三相负荷是否平衡,负载各相电压始终是相等的,均在220V左右,因此家用电器在正常电压下工作是安全可靠的。
但是,在某些情况下,零线上会出现危险的电压,在过去的几年中,生活区曾发生过多起家用电器烧坏事故,给用户造成上千元的经济损失。
那么,零线上为什么会出现电压呢?究竟该怎样预防呢?下面就这个问题做一具体分析。
1. 零线带电原因1.1 三相负荷严重不平衡在生活区中,由于单相负荷较多,所以电源侧的三相负荷就不可能平衡,此时,零线(中性线)便有较大的电流流过,变压器中性点工作接地处虽然电压为零,但离中性点越远的的零线上,零线越长,其阻抗越大,电压也就越高,此时,如果有人靠近负荷侧的零线上,就有可能导致触电,发生触电事故。
1.2 零线断路或接触不良在通常情况下,在负载为三相负荷时,三相电路基本是平衡的,这种电路称为对称电路。
但是在生活区中,由于大部分民用负荷均为单相负荷,所以由变压器送出的ABC 三相线路上的负荷是不平衡的,有的相负载轻,有的相负载重,这种电路称为不对称三相电路。
例如,对称三相电路的某一条端线断开,或某一相负载发生短跑或开路,它就失去了对称性,成为不对称电路。
图1所示的Y-Y 连接电路中三相电源是对称的,但负载不对称。
当开关S 打开(即不接中线)时,由于负载不对称,一般情况下,U NN `≠0,即N 和N`点电位不同。
从图中可看出,N 和N`重合,这一现象称为中点位移,也称之为零点漂移。
当位移较大时,会造成负载端的电压严重不对称,从而使负载的工作不正常。
零线、地线、中性线
,中性线,地线的区别
零线即此线上电压为零;中线即此线电势处于其它线的中间或中心,如三相交流电的一根中线;地线就是接大地的线, 也就是用电线连接一块400平方厘米以上,埋入地下一米以上的金属板.
零线和中性线在三相四线中实际上是同一根线,但对于三相线中的其中一根相线来说也就是单相电路来说,它是提供这根相线的电流的回路线,如果在中性点不接地系统中它的对地电压不为零的。
中性线是指在星形接法的三相交流电路中,三根相线的连接时的一根公共线,在严格的绝对平衡的三相交流负载中,这根中性线是零电位,也就是电压为零。
但是为了防止负载不平衡而使中性线带电,则要将中性线接地。
而接地线则不是指电流回路中的线,它是一根保护线,零线接地,中性线接地,设备外壳保护接地等都是指这根线,它不参与设备的运行,正常时不提供电流回路。
简单说,中性线和零线都是从电源的中性点引出来的导线。
中性点接地后引出来的导线叫零线,中性点没有接地因出来的导线叫中性线。
和大地接通的导线叫地线。
中性点与零点、中性线与零线的区别
当电源侧(变压器或发电机)或者负载侧为星形接线时,三相线圈的首端(或尾端)连接在一起的共同接点称为中性点,简称中点。
中性点分电源中性点和负载中性点。
由中性点引出的导线称为中性线,简称中线。
如果中性点与接地装置直接连接而取得大地的参考零电位,则该中性。
三相三线制内容预览:three-phase three-wire system 不引出中线的三相输电方式。
只适用于三相对称负载,如三相电力变压器、三相电动机等。
通常用于高压输电系统。
——摘自《安全工程大辞典》(1995年11月化学工业出版社出版)……三相四线制内容预览:three-phase four-wire system 在电力系统中,具有中线的三相输电方式。
中线是由电气设备中性点引出的导线,又称为中性线。
三相四线制输电方式能获得线、相两种电压,能消除负载不对称产生的中性点位移。
常用于低压配电系统中。
三相四线制中线不允许断开。
若中线断开,则由于三相负载不……三相四线制系统中零线的重要作用在低压供电系统中,大多数采用三相四线制方式供电,因为这种方式能够提供两种不同的电压——线电压(380V)和相电压(220V),可以适应用户不同的需要。
在三相四线制系统中,如果三相负载是完全对称的(阻抗的性质和大小完全相同,即阻抗三角形是全等三角形),则零线可有可无,例如三相异步电动机,三相绕组完全对称,连接成星形后,即使没有零线,三相绕组也能得到三相对称的电压,电动机能照常工作。
但是对于宅楼、学校、机关和商场等以单相负荷为主的用户来说,零线就起着举足轻重的作用了。
尽管这些地方在设计、安装供电线路时都尽可能使二相负荷接近平衡,但是这种平衡只是相对的,不平衡则是绝对的,而且每时每刻都在变化。
在这种情况下,如果零线中断了,三相负荷中性点电位就要发生位移了。
中性点电位位移的直接后果就是三相电压不平衡了,有的相电压可能大大超过电器的额定电压(在极端情况下会接近380V),轻则烧毁电器,重则引起火灾等重大事故;而有的相电压大大低于电器的额定电压(在极端情况下会接近0V),轻则使电器无法工作,重则也会烧毁电器(因为电压过低,空调、冰箱和洗衣机等设备中的电动机无法起动,时间长了也会烧毁)。
由于三相负荷是随机变化的,所以电压不平衡的情况也是随机变化的。
浅谈零线的重要性众所周知,我国的三相交流发电机及三相电力变压器副边,基本上都是星形连接(也称Y形连接)。
所谓星形连接,就是将发电机(或电力变压器副边)三相绕组的三个末端X、Y、Z联接在一起,形成一个公共点“0”,再由三个起始端分别列出三根连接线,叫火线。
这种连接方式叫三相电源的星形(Y形)连接,如图1所示:一般情况下,发电机及变压器的三相绕组总是对称的,所以这个公共点的电位为0,故称为中性点,由中性点引出的线叫中性线。
通常情况下,发电机及变压器的中性点是通过接地极直接接地的(称工作接点),这时的中性点就叫做零点,由零点引出的线便是我们所说的零线与中性线是有区别的,零线就是接地的中性线。
这样,供电线路除了A、B、C三根火线外,又添了一根零线,这就是通常所说的三相四线制中性点接地的供电系统。
一、零线的作用在三相对称的星形接地电路中,零点电位为零,零线中无电流通过,取消零线也不会影响电路的正常工作。
例如,三相交流电动机的供电线就只需三根火线即可。
这就是容易给人们一个“零线无关紧要”的假象,殊不知零线在安全保护中起到至关重要的作用。
1.有了中性点接地的零线,可以对整个供电系统中的用电设备进行保护接零,保障人身及设备安全所谓保护接零,就是将与电气设备带电部分绝缘的金属外壳或金属构架与中性点直接接地供电系统中的零线紧密相联接,如图2所示。
这样,当用电设备(如图2中的电机D)某相发生碰壳短路事故时,短路相便通过事故设备的外壳与零线相通,形成很大的火线对零线的短路电流,使通过事故设备上的保护装置(如熔断器或空气开关)迅速动作,切断事故电源,消除可能发生的设备和人身事故。
2.生产或生活众多单相用电设备的电源(相电压)的取得离不开零线例如,220V单相电压,就是从一根火线和一根零线中取得的。
当然,从理论上说,相电压也可以通过火线和地线取得,但那样做很危险,安全规程不允许这种接线方式。
也可以将线电压通过一个变压器换成相电压值,如加入一个变比为380/220V的变压器,就可以得到220V的电压,这样将大大增加投资,而且也增加了保护系统的复杂性。
三相四线制系统中零线电位升高的原因及安全管理摘要:在三相四线制供电系统中必须认真对待零线的设计、运行、维护工作,从某种意义上看零线较相线更为重要,因为一旦发生相线断线只会致使该相线停电,对用电设备和人不会造成大的危害,而一旦发生零线断线则会造成严重的用电设备损坏事故并危急人身安全,可见零线的设计、运行、维护工作是一个不可忽视的问题。
本文将对上述情况进行具体分析,并提出建议。
关键词:零线我检修段低压用电一般采用380/220V三相四线制供电系统,其中的零线是接地的,在通常情况下零线与大地电位相等,因而人体接触零线是安全的。
但在实际生活中,经常发生人体因接触零线而触电的事故。
这说明零线电位并不为零。
造成零线电位升高的原因,主要有以下几个方面:1.电流在零线阻抗上引起的电压降在通常情况下,零线截面较相线截面小。
零线阻抗较大,当零线上有电流流过时,零线两端的电位显然不等,由于零线通常在电源端接地,这样如果人体接触了靠近负荷的某点,那么加在人体上的电压为:(1)式中:I0—流过零线的电流;ZO'—人体接触点至电源接地点一段零线的电阻。
流过零线的电流大小与供电方式、负载及电源不平衡程度有关。
1.单相供电。
如图1,流过零线的电流等于负电荷电流IH则零线上负载端O'的电位为UO'=IHZo。
1.两相供电。
如图2,零线上的电流为 (2)如果电源对称,负载对称电流的向量如图2(b),则IO =IA+IB,即零线上的电流等于相线电流。
在某些情况下,IO可能很大,甚至远远超过相线上的电流。
例如,在下列极端情况下:ZA 为感性负载阻抗,ZB容性负载阻抗,、达到如图2(c)的相位关系时,= + 1.三相四线供电。
当电源对称,负载平衡时,零线上是没有电流的,但实际情况并非能实现这一点,零线上往往有较大的电流。
如图3所示,流过零线的电流为:(3)其中, (4)分别电源相电压;YA YBYC分别为三相负载导纳,YO为零线导纳。
三相四线制零线断线的危害在低压供电系统中,大多数采用三相四线制方式供电,因为这种方式能够提供两种不同的电压--线电压(380V)和相电压(220V),可以适应用户不同的需要。
在三相四线制系统中,如果三相负载是完全对称的(阻抗的性质和大小完全相同,即阻抗三角形是全等三角形),则零线可有可无,例如三相异步电动机,三相绕组完全对称,连接成星形后,即使没有零线,三相绕组也能得到三相对称的电压,电动机能照常工作。
但是对于宅楼、学校、机关和商场等以单相负荷为主的用户来说,零线就起着举足轻重的作用了。
尽管这些地方在设计、安装供电线路时都尽可能使二相负荷接近平衡,但是这种平衡只是相对的,不平衡则是绝对的,而且每时每刻都在变化。
在这种情况下,如果零线中断了,三相负荷中性点电位就要发生位移了。
中性点电位位移的直接后果就是三相电压不平衡了,有的相电压可能大大超过电器的额定电压(在极端情况下会接近380V),轻则烧毁电器,重则引起火灾等重大事故;而有的相电压大大低于电器的额定电压(在极端情况下会接近0V),轻则使电器无法工作,重则也会烧毁电器(因为电压过低,空调、冰箱和洗衣机等设备中的电动机无法起动,时间长了也会烧毁)。
由于三相负荷是随机变化的,所以电压不平衡的情况也是随机变化的。
对于没有零线时中性点电位发生位移这个问题,很多同学甚至一些电工无法理解,而理论计算又涉及到较深的电工基础知识(如电动势和阻抗的复数表示法以及复数的四则运算等),特别是当负载不是纯电阻时,计算相当繁琐,学生也难以弄懂,在大多数情况下也没有必要去计算。
在三相四线制供电时,三相交流电源的三个线圈采用星形(Y形)接法,即把三个线圈的末端X、Y、Z连接在一起,成为三个线圈的公用点,通常称它为中点或零点,并用字母O表示。
供电时,引出四根线:从中点O引出的导线称为中线或零线;从三个线圈的首端引出的三根导线称为A线、B线、C线,统称为相线或火线。
在星形接线中,如果中点与大地相连,中线也称为地线。
火线,零线,地线各自颜色和作用火线又称相线,它与零线共同组成供电回路。
在低压电网中用三相四线制输送电力,其中有三根相线一根零线。
为了保证用电安全,在用户使用区改为用三相五线制供电,这第五根线就是地线,它的一端是在用户区附近用金属导体深埋于地下,另一端与各用户的地线接点相连,起接地保护的作用。
火线是带电的,地线和零线是不带的,家用两插孔的插座里有一根火线,一根零线,用电笔能测出带电来的是火线,不带电的是零线,三插孔的插座里才有地线,地线要连接在用电器的外壳上,以防止电器漏电使人触电伤亡。
另外,家用插座里各孔的接线位置是有规定的,如果拆开插座可以看到,标有L标记的点是接火线的,N标记的是接零线的,地线有个专门的接地符号。
不懂的人千万还要乱接(特别是地线的位置),否则可能造成严重后果。
地线是作为电路电位基准点的等电位体。
这个定义是不符合实际情况的。
实际地线上的电位并不是恒定的。
如果用仪表测量一下地线上各点之间的电位,会发现地线上各点的电位可能相差很大。
正是这些电位差才造成了电路工作的异常。
电路是一个等电位体的定义仅是人们对地线电位的期望。
HENRY 给地线了一个更加符合实际的定义,他将地线定义为:信号流回源的低阻抗路径。
这个定义中突出了地线中电流的流动。
按照这个定义,很容易理解地线中电位差的产生原因。
因为地线的阻抗总不会是零,当一个电流通过有限阻抗时,就会产生电压降。
因此,我们应该将地线上的电位想象成象大海中的波浪一样,此起彼伏。
照明电路里的两根电线,一根叫火线,另一根则叫零线。
火线和零线的区别在于它们对地的电压不同:火线的对地电压等于220V;零线的对地的电压等于零(它本身跟大地相连接在一起的)。
所以当人的一部分碰上了火线,另一部分站在地上,人的这两个部分这间的电压等于220V,就有触电的危险了。
反之人即使用手去抓零线,如果人是站在地上的话,由于零线的对地的电压等于零,所以人的身体各部分之间的电压等于零,人就没有触电的危险。
低压电能计量装置中零线的重要性低压电能计量装置中零线的重要性益阳电业局-------周长吾摘要:单相、三相四线低压电能计量装置中,零线的连接有严格的规定,但实际中往往被忽略,本文例举了单相、三相四线计量装置中常见的错接、漏接零线的几种现象,分析了零线对电能计量的影响,提出了改进措施。
关键词:计量装置零线重要性正文:单相、三相四线低压电能计量装置,普遍应应于城乡居民生活用电、公变台区下非普工业用电及315kVA 及以下专变用电。
其计量装置数量巨大,分布范围广,安装运行维护工作量大。
在实际中存在着许多零线接线不规范的现象,造成计量装置接线错误,影响电能计量,下面例举几种情况进行分析。
一、单相感应有功机械的零线接线分析单相有功感应电能表最普遍、最常见、应用最广泛,其正确接线如下图1-1所示:(a) (b)图1-1单相电能表正确接线(a)、单相电能表接线实物图(b)、单相电能表接线图在实际中往往有许多安装人员按图1-2和图1-3进行接线。
图1-2火线与零线对调了,由于零线进最左边的电流接线柱,电压线圈首端也是零电位,使电流磁通及电压磁通全部反相,虽然其三者的超前滞后关系没有变化,计量基本正确。
但客户如果照图方法断开负载零线,当单相负荷只接火线,采用一线一地用电时,就可以实现窃电,造成电能表停转。
图1-3,采用三线法,电压线圈的零线只从主线上并接了一根,主零线直接接负荷开关,这种接线从原理上没有问题,计量正确,但存在两个隐患:1、当表计并接的零线在M点发生断线时,客户用电不受任何影响,但表计电压线圈失压,电压磁通消失,表计停转,不能计量。
2、如果客户在表计零线上串接一个电阻R,表计电压线圈与R串联接在线路额定电压上,电阻R将分掉一部分电压,造成表计电压线圈的承受的电压低于额定电压而少计量。
二、单相防窃电电子表的零线接线分析某客户向95598投诉,其生活小区进行一户一表计量改造后,安装了防窃电电子表,投运后所有防窃电电子表橙色异常报警灯亮起,部分用户反映表计电量不正常,不用电也计量。
三相电中零线的作用
在三相电中,零线的作用非常关键,主要体现在以下几个方面:
形成工作回路:在三相四线制系统中,零线是构成单相设备、电器正常工作回路的一部分。
如果没有零线,单相设备、电器无法正常工作。
保持相电压稳定:零线的作用是保证电源的中性点与负载的中性点电位相等,从而使单相设备、电器获得稳定的相电压。
这样可以确保设备正常运行,提高工作效率和延长设备的使用寿命。
消除中性点位移:当三相电流不对称时,中性点会位移。
而零线的作用是消除中性点的位移,使各相的电压保持对称,即各相负载的相电压等于电源相电压。
这样可以避免因电流的不对称导致设备损坏或运行异常。
提供接地保护:零线可以作为接地保护的参考点。
当发生漏电时,零线可以将漏电电流引入地下,从而保护人员的安全。
构成三相四线制系统:在三相电中,零线是构成三相四线制系统的一部分。
通过三根火线和一根零线,可以提供更加灵活和稳定的电力供应。
这种系统适用于各种不同的电力需求和应用场景。
综上所述,零线在三相电中起着至关重要的作用。
在实际应用中,应该注意保护零线,避免其受到损坏或断裂,以确保电力系统的正常运行和安全。
同时,对于电力系统的设计和安装,应该遵循相关规定和标准,确保零线的正确使用和安装。
电力零线和接地线的作用分析1.零线的作用及断路的危害当前我国低压配电网广泛采用三相四线制中性点直接接地的供电方式,由中性点引出中性线即零线。
其作用:①保证电源的中性点与负载的中性点电位相等,使单相用电设备获得稳定的相电压。
②可作电气设备的保护线用,将电气设备的外壳保护线与零线相接,在发生设备碰壳漏电故障时,可使线路产生短路电流(相线与保护中性线短路),使熔丝很快熔断或使保护装置动作切断电源,从而起到保护作用。
在三相四线低压配电网中,零线断路故障时有发生,导致在三相负荷不平衡时负荷中性点产生偏移,负荷轻的端电压升高,负荷重的端电压降低,从而导致用户的用电设备烧坏。
另外,零线断路的危害还使断路点后的电气设备丧失保护接零的保护作用。
当零线断路,而断路点后面某一电气设备发生碰壳漏电时,接在断路点后的所有电气设备外壳都会带上相当于相电压的对地电压,一旦人体接触这些电气设备外壳,就会造成触电伤亡,这是很危险的。
2.预防零线断路的措施2.1按标准要求选择零线的材质和截面,对特殊用户或特殊地段可适当加大线径。
2.2零线上不能装设开关和熔断器,以防开关人为或机械误动,造成零线断路。
2.3对零线实行重复接地。
一旦零线断路,因有重复接地,不平衡负荷电流可经接地装置流回电源中性点,从而抑制了负荷中性点的偏移,使受电设备的端电压不致偏差过大,从而减轻了电压波动造成的危害。
2.4在密集居民区,尽量减少楼栋、胡同下线共用一条零线的接线方法,以免一处零线断路,危及一片。
3.何为接地人们使用的各种电气装置和电气系统都需取某一点的电位作为其参考电位,但人和装置、系统通常都离不开大地,因此一般以大地的电位为零电位而取它为参考电位,为此需要与大地做电气连接以取得大地电位,这被称作接地。
但大地不是像电气设备那样配置有连接导线的接线端子的,为此需在大地内埋入接地极引出接地极引线来实现与大地的连接。
所以接地极及时用作大地相连接的接线端子。
所不同的是电气设备接线端子的接触电阻很小,以若干mΩ或μΩ计;而作为与大地连接用的接地极与大地间的接地电阻(即接地电阻)则大得多,以若干Ω计,所以和与设备连接相比,与大地连接的接触电阻要大得多,连接效果差得多。
一、电气工作人员应知道的基本常识1、电气工作人员必须具备的条件是什么?经医生鉴定身体健康,无妨碍工作的病症(如心脏病、神经病、癫痫症、色盲等);具备必要的电气知识,按其职务和工作的性质,掌握相关的规程、专业技术及安全操作技术,并经考试合格;熟练掌握触电急救方法;2、电工应怎样遵守职业道德?电工是直接为生茶或者生活服务的。
电工素质的高低,不仅体现为知识的全面、技术的娴熟,职业道德风范是否优良也是一个重要的方面,因此,我们应有严于律己的精神,遵守电工职业道德规范。
电工职业道德规范主要包括以下几个方面:忠于职业责任;遵守职业纪律;交流电工专业技术和安全操作技术;团结协作。
3、变(配)电所的值班工作有哪些要求?供电电压6KV 及以上,容量在560KVA 及以上的用电单位,普通应配备电气运行值班电工。
运行值班电工的条件应符合电气安全工作规程的规定。
变(配)电所的值班人员,必须熟悉本站设备的性能及运行方式,掌握操作技术。
值班负责人和单独值班人员应由有实际工作经验的人员担任,并经领导批准。
变(配)电所的值班人员,普通不少于两人。
对于设备简单和不重要的变(配) 电所,可由单人值班。
高压设备由单人值班时,必须具备下列条件:(1) 室内高压设备的隔离室设有遮栏,其高度应为1.7m 以上。
遮栏应安装坚固,门应加锁;(2)室内高压开关的操作机构,用墙或者金属板与开关隔离,或者装有远离操作机构;(3)单人值班时,不应进行高压设备清扫或者检修工作,也不能进行装设接地线工作。
4、高压供电的单位应配备哪些安全用具?高压绝缘杆,绝缘夹钳;高压验电器及低压试电笔;绝缘手套,绝缘靴、鞋及绝缘台、垫;有足够数量的暂时接地线;各种标识牌(应满足最大范围使用的需要量);各种登高作业时的安全用具,包括安全带、绝缘绳、安全帽等;有色护目眼镜等二、电工技术基础1、什么是三相交流电?如何表示?在日常生活中,我们接触较多的是单相交流电,但在实际工作中,我们接触更多的是三相交流电。
三相四线工作零线截面三相四线制系统是一种常见的电力供应系统,它由三个相位导线和一个中性导线组成。
在这种系统中,三个相位导线分别连接到三相电源,而中性导线一般用作返回路径和连接接地电极。
在这种系统中,工作零线是用来提供三相电源之间的平衡和对称的。
本文将详细介绍三相四线系统中工作零线的截面要求。
工作零线的截面大小是根据电气负载和三相不平衡来确定的。
在一般情况下,工作零线的截面大小应该与相位导线的截面大小相同,以确保在负载不平衡时仍能提供足够的容量来传输电流。
根据国家标准和规范,工作零线的截面大小应该满足系统中最大负载电流的要求,并考虑到负载的三相不平衡情况。
工作零线的截面大小还需要考虑系统的过载能力和短路电流。
在正常运行情况下,工作零线需要承载额定负载电流,并且需要具有足够的过载能力来应对短期的过载情况。
在确定工作零线截面大小时,需要考虑到工作环境的实际情况,并采用合适的安全系数来确保系统的安全可靠运行。
工作零线的截面大小还需要满足系统的电气性能和耐受能力要求。
在一些特殊的工作环境中,如高温、高湿、腐蚀等情况下,工作零线的截面大小需要满足对应的电气性能和耐受能力要求,以确保系统在恶劣条件下的可靠运行。
根据国家标准和规范的要求,工作零线的截面大小需要符合相关的技术规范和标准要求,以确保系统的安全可靠运行。
工作零线的截面大小还需要根据具体的工程设计和施工要求进行合理确定,并且需要经过专业的电气工程师的计算和确认。
三相四线系统中工作零线的截面大小是根据电气负载、三相不平衡、过载能力、短路电流、电气性能、耐受能力以及国家标准和规范的要求来确定的。
在工程设计和施工中,需要根据实际情况和要求,合理确定工作零线的截面大小,以确保系统的安全可靠运行。
三相四线制系统中零线的重要作用
在低压供电系统中,大多数采用三相四线制方式供电,因为这种方式能够提供两种不同的电压——线电压(380V)和相电压(220V),可以适应用户不同的需要。
在三相四线制系统中,如果三相负载是完全对称的(阻抗的性质和大小完全相同,即阻抗三角形是全等三角形),则零线可有可无,例如三相异步电动机,三相绕组完全对称,连接成星形后,即使没有零线,三相绕组也能得到三相对称的电压,电动机能照常工作。
但是对于宅楼、学校、机关和商场等以单相负荷为主的用户来说,零线就起着举足轻重的作用了。
尽管这些地方在设计、安装供电线路时都尽可能使三相负荷接近平衡,但是这种平衡只是相对的,不平衡则是绝对的,而且每时每刻都在变化。
在这种情况下,如果零线中断了,三相负荷中性点电位就要发生位移了。
中性点电位位移的直接后果就是三相电压不平衡了,有的相电压可能大大超过电器的额定电压(在极端情况下会接近380V),轻则烧毁电器,重则引起火灾等重大事故;而有的相电压大大低于电器的额定电压(在极端情况下会接近0V),轻则使电器无法工作,重则也会烧毁电器(因为电压过低,空调、冰箱和洗衣机等设备中的电动机无法起动,时间长了也会烧毁)。
由于三相负荷是随机变化的,所以电压不平衡的情况也是随机变化的。
对于没有零线时中性点电位发生位移这个问题,很多同学甚至一些电工无法理解,而理论计算又涉及到较深的电工基础知识(如电动势和阻抗的复数表示法以及复数的四则运算等),特别是当负载不是纯电阻时,计算相当繁琐,学生也难以弄懂,在大多数情况下也没有必要去计算。
下面仅举个特例来帮助同学们理解没有零线时各相负载两端电压的变化。
现在我们假定某住宅楼为三层,三相电源分别送入一楼、二楼和三楼住户。
而零线正常时,各层楼的住户用电互不相干。
而零线中断后情况就不一样了。
为了分析方便,我们假定一楼住户都不用电,二楼住户只开了一只灯,三楼住户开了三只同样的灯(如图所示),不难看出,三楼的三只灯并联后再与一只灯串联,接到了380V的电压上,由于二楼负载的电阻就是三楼负载电阻的三倍,所以380V,电压的四分之三(285V)都降落在二楼灯泡上了,灯泡必烧无疑,而三楼灯泡两端电压则只有95V,自然不能正常发光。
而二楼的灯泡烧毁(开路)后,三楼的灯泡也就不能构成回路了,都不工作了。
等到某一时刻,一楼住户的电饭锅投入使用(假定电饭锅的额定功率大大高于三楼的三个灯泡的功率),三楼的灯泡自然也要烧毁了。
另外如果某些电器采用接零保护(外壳接在零线上),零线中断后,就失去了接零保护,还有可能发生触电事故。
综上所述,在三相四线制系统中零线是非常重要的。
本文来自: 电工之家() 详细出处参考:
/article/dgjc/2010/0913/9706.html
零线的作用
我国普遍采用TN低压配电系统,从变压器中性点引出的线叫中性线,又叫零线,主要作用有,用来接单相220V的负载,传载单相电流和三相不平衡电流。
减小负载的中性点电位漂移。
在TN-C TN-C-S中还有接地和接零保护的功能。
总零线一旦断线,会造成严重后果,特别是发生单相短路时,后果最严重。
经常有报道因零线断开造成烧毁数台家电的事故,特别是农村。
大家可以说一下遇到
的问题,和防范的措施。
大家相互学习讨论
最简单的区别在于:火线与火线之间的电压是380。
0线与火线之间的电压是220。
在低压控制线路中,可以用接地线代替0线。
地线最基本的功能是保护,防止漏电而造成人身伤害或者引起其它的事故。
现在的电机电路图中画有双重保护,就是电机外壳接地,0线也接地。
最容易理解的解释是:1按照国标规定,二者相互绝缘;2零线是从变压器中型点直接引出的,地线是按照标准在大地中作的。
这种系统为三相五线制供电系统。
3零线可以进开关,地线不能4地线可以进行重复接地;4二者绝对不可以互换,否则,有触电危险
1、结构的区别:
零线(N):从变压器中性点接地后引出主干线。
地线(PE):从变压器中性点接地后引出主干线,根据标准,每间隔20-30米重复接地。
2、原理的区别:
零线(N):主要应用于工作回路,零线所产生的电压等于线阻乘以工作回路的电流。
由于长距离的传输,零线产生的电压就不可忽视,作为保护人身安全的措施就变得不可靠。
地线(PE):不用于工作回路,只作为保护线。
利用大地的绝对“0”电压,当设备外壳发生漏电,电流会迅速流入大地,即使发生PE线有开路的情况,也会从附近的接地体流入大地
只有重复接地的零线才可以用来做保护用
一般是不许可的,如果三相移位的话,零线就会有电位,而且偏移越大电位也越高。
三相五线制的做法一般有二种:一是将变压器的中性线接地引出地面,分成二根,一根为工作零线并保持绝缘,一根为保护接零与外壳相接。
这就是所说的TN-S系统。
另一种做法是将变压器中性点接地引出地面,采用三相四线制的方式,送到用电点将零线重新接地,后分成二根:一根为工作零线,并保持绝缘。
另一根则为保护零线,与外壳相接。
这就是所说的TN-C-S系统。
这二根线实际上是更好的接零保护方式,它结合了保护接零和保护接地的优点。
即它能够免除由于三相负荷不平衡造成的接零设备的带电现象,又能限制漏电电压于安全范围。
它的关键是从一开始分线后就不能相连。
一相连就又变为接零保护方式。
接地和接零本来就很复杂。
我曾就这个问题请教过一位设计院的老专家,他说来说去最后自己都糊涂了。
谈论这个问题必须保持清醒的头脑,否则最后肯定迷糊,并不是一句两句就能说明白的。
零线并不是单纯的用来‘工作’,在TN系统中,就有保护接零,即设备外壳接零线,用于保护。
TN-S系统有专用的保护零线,即保护零线和工作零线分开,而TN-C则是工作零线和保护零线在一起(PEN),TN-C-S 时前端公用,后边分开;TT系统中的零线才是工作零线,在TT系统中,设备外壳接地,属于保护接地;总之,保护接地用于不接地系统中,而保护接零则一般用于接地系统中,这是我的理解,不对之处望指正。