应用统计学第 7 章 方差分析
- 格式:ppt
- 大小:2.67 MB
- 文档页数:84
旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。
第七章方差分析●了解方差分析的概念和作用;●掌握方差分析的基本原理和步骤;●掌握单向分组资料的方差分析;●掌握两向分组和系统分组资料的方差分析。
能力目标:●学会完全随机试验资料进行方差分析;●学会单向分组资料进行方差分析;●学会两向分组和系统分组资料进行方差分析。
对一个或两个样本进行平均数的假设测验,可以采用u测验或t测验来测定它们之间的差异显著性。
而当试验的样本数k≥3时,上述方法已不宜应用。
其原因是当k≥3时,就要进行k(k-1)/2次测验比较,不仅工作量大,而且精确度降低。
因此,对多个样本平均数的假设测验,需要采用一种更加适宜的统计方法,即方差分析法。
方差分析法是科学研究工作的一个十分重要的工具。
第一节方差分析基本原理方差分析(analysis of variance,ANOV A)就是将试验数据的总变异分解为来源于不同因素的相应变异,并作出数量估计,从而发现各个因素在总变异中所占的重要程度。
即将试验的总变异方差分解成各变因方差,并以其中误差方差作为和其他变因方差比较的标准,以推断其他变因所引起变异量是否真实的一种统计分析方法。
一、自由度与平方和分解方差是平方和除以自由度的商。
要将一个试验资料的总变异分解为各个变异来源的相应变异,首先将总平方和与总自由度分解为各个变异来源的相应部分。
因此,平方和与自由度的分解是方差分析的第一步骤。
下面以单因素完全随机试验设计的资料为例说起。
假设有k 个处理,每个处理有n 个观察值,则该试验资料共有nk 个观察值,其观察值的组成如表7-1。
表7-1中,i 代表资料中任一样本;j 代表样本中任一观测值;x ij 代表任一样本的任一观测值;T t 代表处理总和;t x 代表处理平均数;T 代表全部观测值总和;x 代表总平均数。
表7-1 每处理具n 个观测值的k 组数据的符号表处理观察值处理总和T t 处理平均t x 12 … j … n 1 x 11 x i 2 … x 1j … x 1n T t1 1t x 2 x 21 x i 2 … x 2j … x 2n T t2 2t x… … … … … … … … …i x i1 x i 2 … x ij … x in T ti ti x… … … … … … … … …kx k 1x k 2… x kj…x k nT tk tk xT =∑xx在表7-1中,总变异是nk 个观测值的变异,故其自由度v =nk -1,而其平方和SS T 则为: =T SS 221()nk ij x x x C -=-∑∑ (7-1)(7-1)式中的C 称为矫正数:22()x T C nknk==∑ (7-2) 产生总变异的原因可从两方面来分析:一是同一处理不同重复观测值的差异是由偶然因素影响造成的,即试验误差,又称组内变异;二是不同处理之间平均数的差异主要是由处理的不同效应所造成,称处理间变异,又称组间变异。
方差分析简述方差分析也是统计检验的一种。
由英国著名统计学家:R.A.FISHER推导出来的,也叫F检验。
190240290340分组正常钙组中剂量钙(1.0%)高剂量钙(1.5%)1X 2X 3X X(2) 计算检验统计量可根据表7-5的公式来计算出离均差平方和、自由度、均方和F值。
从已知正态总体N(10,52)进行随机抽样,共抽取了k=10组样本,每组样本的样本含量n i=20,可算出各组的均数和标准差,得表7-7的结果。
如果采用t检验作两两比较,其比较次数为(1)10(101)45 222k k km⎛⎫--====⎪⎝⎭从理论上讲10个样本均来自同一正态总体N(10,52),应当无差异,但我们用两样本t检验时,已经规定犯第一类错误的概率不超过α=0.05,本次实验实际犯第一类错误的频率为5/45≈0.11,显然比所要控制的0.05要大。
因此不能直接用前面学过的两样本t检验对多样本均数作两两比较,而应采用专用的两两比较的方法。
(2) 计算检验统计量首先将三个样本均数由大到小排列,并编组次:, =11()2A B A B A B X X A BX X X X q S MS n n νν---==+误差误差(3) 确定值并作出推断结论自由度ν误差和对比组内包含组数a查附表4的q界值表得q界值,将算得的q值与相应q界值进行比较得各组的p值。
(3) 确定P值并作出推断结论自由度ν误差和实验组数 (不含对照组)查附表5.2的Dunnett –t(q, )界值表,得q,临界值,用计算得到的q,与临界值进行比较,得P值 。
(2) 计算检验统计量=11()A B A B A B X X A BX X X X t S MS n n νν---==+误差误差。
统计学方差分析方差分析(Analysis of Variance,缩写为ANOVA)是一种常用的统计学方法,广泛应用于数据分析中。
它的主要目的是用于比较多个样本群体之间的均值是否存在显著差异。
通过方差分析,可以确定因素对于不同组之间的差异程度有无显著影响。
方差分析的基本原理是将数据进行分解,并据此计算各部分之间的均方差(mean square),然后通过比较这些均方差的比值,得出各部分对总体的贡献程度,并进行显著性检验。
在方差分析中,数据通常被分为几个不同的组别,每个组别称为一个因素(factor)。
每个因素可以有不同的水平(level),例如性别因素可以有男和女两个水平。
而一个水平下的所有观测值构成一个处理(treatment)或条件(condition)。
方差分析的基本模型是一种线性模型,假设因变量与自变量之间存在线性关系。
对于单因素方差分析,它的模型可以表示为:Y=μ+α+ε其中,Y表示因变量,μ表示总体的平均值,α表示组别之间的差异,ε表示组内误差。
方差分析的目标是判断组别之间的差异(α)与组内误差(ε)的比值是否显著。
方差分析的核心思想是通过计算均方差,评估不同因素水平之间的差异是否显著。
均方差是方差与其自由度的比值,用于度量数据的离散程度。
通过计算组间均方差(MSTr)和组内均方差(MSE),我们可以得出F值,进而进行显著性检验。
F值是组间均方差与组内均方差的比值F = (MSTr / dfTr) / (MSE / dfE)其中,dfTr表示组间自由度,dfE表示组内自由度。
在统计学中,F值与显著性水平相关。
当F值大于显著性水平对应的临界值时,我们可以拒绝原假设,认为组别之间存在显著差异。
否则,我们不能拒绝原假设,即组别之间的差异不显著。
方差分析不仅可以应用于单因素情况,还可以扩展到多因素情况。
多因素方差分析可以用于研究多个自变量对因变量的影响,并评估这些自变量之间是否存在交互作用。