应用统计学第 7 章 方差分析
- 格式:ppt
- 大小:2.67 MB
- 文档页数:84
旗开得胜1第七章 假设检验与方差分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。
2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。
3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。
4. 单侧检验:备择假设符号为大于或小于时的假设检验。
5. 显著性水平:原假设为真时,拒绝原假设的概率。
6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. u ,nx σμ0-,标准正态; ),(),(2/2/+∞--∞nz nz σσααY2. 参数检验,非参数检验3. 弃真,存伪4. 方差旗开得胜25. 卡方, F6. 方差分析7. t ,u8. nsx 0μ-,不拒绝9. 单侧,双侧10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r18. 正态,独立,方差齐三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1.B 2.B 3. B 4.A 5.C 6.B 7.C 8.A 9.D 10.A 11.D 12.C四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
1.AC 2.A 3.B 4.BD 5. AD五、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 在任何情况下,假设检验中的两类错误都不可能同时降低。
( ×)样本量一定时2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t检验均可使用,且两者检验结果一致。
第七章方差分析●了解方差分析的概念和作用;●掌握方差分析的基本原理和步骤;●掌握单向分组资料的方差分析;●掌握两向分组和系统分组资料的方差分析。
能力目标:●学会完全随机试验资料进行方差分析;●学会单向分组资料进行方差分析;●学会两向分组和系统分组资料进行方差分析。
对一个或两个样本进行平均数的假设测验,可以采用u测验或t测验来测定它们之间的差异显著性。
而当试验的样本数k≥3时,上述方法已不宜应用。
其原因是当k≥3时,就要进行k(k-1)/2次测验比较,不仅工作量大,而且精确度降低。
因此,对多个样本平均数的假设测验,需要采用一种更加适宜的统计方法,即方差分析法。
方差分析法是科学研究工作的一个十分重要的工具。
第一节方差分析基本原理方差分析(analysis of variance,ANOV A)就是将试验数据的总变异分解为来源于不同因素的相应变异,并作出数量估计,从而发现各个因素在总变异中所占的重要程度。
即将试验的总变异方差分解成各变因方差,并以其中误差方差作为和其他变因方差比较的标准,以推断其他变因所引起变异量是否真实的一种统计分析方法。
一、自由度与平方和分解方差是平方和除以自由度的商。
要将一个试验资料的总变异分解为各个变异来源的相应变异,首先将总平方和与总自由度分解为各个变异来源的相应部分。
因此,平方和与自由度的分解是方差分析的第一步骤。
下面以单因素完全随机试验设计的资料为例说起。
假设有k 个处理,每个处理有n 个观察值,则该试验资料共有nk 个观察值,其观察值的组成如表7-1。
表7-1中,i 代表资料中任一样本;j 代表样本中任一观测值;x ij 代表任一样本的任一观测值;T t 代表处理总和;t x 代表处理平均数;T 代表全部观测值总和;x 代表总平均数。
表7-1 每处理具n 个观测值的k 组数据的符号表处理观察值处理总和T t 处理平均t x 12 … j … n 1 x 11 x i 2 … x 1j … x 1n T t1 1t x 2 x 21 x i 2 … x 2j … x 2n T t2 2t x… … … … … … … … …i x i1 x i 2 … x ij … x in T ti ti x… … … … … … … … …kx k 1x k 2… x kj…x k nT tk tk xT =∑xx在表7-1中,总变异是nk 个观测值的变异,故其自由度v =nk -1,而其平方和SS T 则为: =T SS 221()nk ij x x x C -=-∑∑ (7-1)(7-1)式中的C 称为矫正数:22()x T C nknk==∑ (7-2) 产生总变异的原因可从两方面来分析:一是同一处理不同重复观测值的差异是由偶然因素影响造成的,即试验误差,又称组内变异;二是不同处理之间平均数的差异主要是由处理的不同效应所造成,称处理间变异,又称组间变异。
方差分析简述方差分析也是统计检验的一种。
由英国著名统计学家:R.A.FISHER推导出来的,也叫F检验。
190240290340分组正常钙组中剂量钙(1.0%)高剂量钙(1.5%)1X 2X 3X X(2) 计算检验统计量可根据表7-5的公式来计算出离均差平方和、自由度、均方和F值。
从已知正态总体N(10,52)进行随机抽样,共抽取了k=10组样本,每组样本的样本含量n i=20,可算出各组的均数和标准差,得表7-7的结果。
如果采用t检验作两两比较,其比较次数为(1)10(101)45 222k k km⎛⎫--====⎪⎝⎭从理论上讲10个样本均来自同一正态总体N(10,52),应当无差异,但我们用两样本t检验时,已经规定犯第一类错误的概率不超过α=0.05,本次实验实际犯第一类错误的频率为5/45≈0.11,显然比所要控制的0.05要大。
因此不能直接用前面学过的两样本t检验对多样本均数作两两比较,而应采用专用的两两比较的方法。
(2) 计算检验统计量首先将三个样本均数由大到小排列,并编组次:, =11()2A B A B A B X X A BX X X X q S MS n n νν---==+误差误差(3) 确定值并作出推断结论自由度ν误差和对比组内包含组数a查附表4的q界值表得q界值,将算得的q值与相应q界值进行比较得各组的p值。
(3) 确定P值并作出推断结论自由度ν误差和实验组数 (不含对照组)查附表5.2的Dunnett –t(q, )界值表,得q,临界值,用计算得到的q,与临界值进行比较,得P值 。
(2) 计算检验统计量=11()A B A B A B X X A BX X X X t S MS n n νν---==+误差误差。
统计学方差分析方差分析(Analysis of Variance,缩写为ANOVA)是一种常用的统计学方法,广泛应用于数据分析中。
它的主要目的是用于比较多个样本群体之间的均值是否存在显著差异。
通过方差分析,可以确定因素对于不同组之间的差异程度有无显著影响。
方差分析的基本原理是将数据进行分解,并据此计算各部分之间的均方差(mean square),然后通过比较这些均方差的比值,得出各部分对总体的贡献程度,并进行显著性检验。
在方差分析中,数据通常被分为几个不同的组别,每个组别称为一个因素(factor)。
每个因素可以有不同的水平(level),例如性别因素可以有男和女两个水平。
而一个水平下的所有观测值构成一个处理(treatment)或条件(condition)。
方差分析的基本模型是一种线性模型,假设因变量与自变量之间存在线性关系。
对于单因素方差分析,它的模型可以表示为:Y=μ+α+ε其中,Y表示因变量,μ表示总体的平均值,α表示组别之间的差异,ε表示组内误差。
方差分析的目标是判断组别之间的差异(α)与组内误差(ε)的比值是否显著。
方差分析的核心思想是通过计算均方差,评估不同因素水平之间的差异是否显著。
均方差是方差与其自由度的比值,用于度量数据的离散程度。
通过计算组间均方差(MSTr)和组内均方差(MSE),我们可以得出F值,进而进行显著性检验。
F值是组间均方差与组内均方差的比值F = (MSTr / dfTr) / (MSE / dfE)其中,dfTr表示组间自由度,dfE表示组内自由度。
在统计学中,F值与显著性水平相关。
当F值大于显著性水平对应的临界值时,我们可以拒绝原假设,认为组别之间存在显著差异。
否则,我们不能拒绝原假设,即组别之间的差异不显著。
方差分析不仅可以应用于单因素情况,还可以扩展到多因素情况。
多因素方差分析可以用于研究多个自变量对因变量的影响,并评估这些自变量之间是否存在交互作用。
应用统计单项选择题-第07章-方差分析1.单选题:关于方差分析中的SSA和SSE,正确的说法是()。
A. SSA和SSE反映了随机因素带来的影响B. SSA和SSE反映了系统因素带来的影响C. SSA所表现的是组间差异既包括随机因素,也包括系统因素D. SSE所表现的是组内差异既包括随机因素,也包括系统因素解答: C2.单选题:利用“方差分析表”进行方差分析时,该表不包括的项目有()。
A. 方差来源B. 离差平方和及其分解C. 各离差平方和的自由度D. 原假设的统计判断解答: D3.单选题:下面不属于单因素方差分析中所需的平方和是()。
A. SSTB. SSAC. SSED. SSR解答: D4.单选题:与假设检验相比,方差分析方法可以使犯第I类错误的概率()。
A. 提高B. 降低C. 等于0D. 等于1解答: B5.单选题:方差分析中,错误说法是()。
A. 如果方差分析只针对一个因素进行,称为单因素方差分析B. 如果同时针对多个因素进行,称为多因素方差分C. 方差分析就是通过不同方差的比较,作出接受原假设或拒绝原假设的判断D. 方差分析不可以对若干平均值是否相等同时进行检验解答: D6.单选题:以下对方差分析叙述不正确的是()。
A. 方差分析可以对若干平均值是否相等同时进行检验B. 进行方差分析要求各水平下的样本容量相同C. 离差平方和能分解为组内方差与组间方差的和D. 方差分析方法在社会科学领域也大有用武之地解答: B7.单选题:下列式子错误的是()。
A. F=MSE/MSAB. MSA=SSA/(r-1)C. MSE=SSE/(n-r)D. SST=SSE+SSA解答: A8.单选题:方差分析所研究的是()。
A. 分类型自变量对分类型因变量的影响B. 分类型自变量对数值型自变量的影响C. 分类型因变量对数值型自变量的影响D. 分类型自变量对数值型因变量的影响解答: D9.单选题:若方差分析中,所提出的原假设是H0:μ1=μ2=…=μk,备择假设是()。
第七章方差分析第一节方差分析的基本原理方差分析(Analysis of variance,简称ANOV A)是对多个总体均值是否相等这一假设进行检验的一种方法。
一、方差分析的内容1实例[例] 某饮料生产企业研制出一种新型饮料。
饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。
这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。
现从地理位置相似、经营规模相仿的五家超级市场上收集了前一期该种饮料的销售量情况,见表7—1。
新型饮料在五家超市的销售情况表解:从表7—1中看到20个数据各不相同,什么原因使其不同呢?2产生的原因①是销售地点的影响;②是饮料颜色的影响。
A 有可能是抽样的随机性造成的;B 有可能是由于人们对不同颜色有所偏爱。
可以将上述问题就归结为一个检验问题——检验饮料颜色对销售量是否有影响,即要检验各个水平的均值k μμμ,,21 是否相等。
二、方差分析的原理1基本概念因素:一个独立的变量就称为一个因素。
如,颜色水平:将因素中不同的现象称为水平。
(每一水平也称为一组) 单因素方差分析:方差分析只针对一个因素进行。
多因素方差分析:同时针对多个因素进行分析。
观察值之间的差异产生来自于两个方面:①是由因素中的不同水平造成系统性差异的; ②是由于抽选样本的随机性产生的差异。
方差分析数据结构表7-2在一元情形下假设:ik i2i1X ,,X ,X ,i=1,2…n j ,j=1,2,…k,为来自总体)N(2σ,μ的随机样本。
如果假设k H μμμ=== 210:也可表达为 j j αμμ+=其中j α是第j 个水平的偏差。
如果各水平下均值相等,则可以表述为: 0:210====k H ααα对于第j 个因素有ij j ij X εαμ++=其中()2,0~σεN ij 为独立同分布随机变量。
对于观察值则有)()(j ij j ij x x x x xx -+-+=将式两端减去x 然后平方,得))((2)()()(222j ij j j ij j ij x x x x x x x x x x --+-+-=-等式两边求和,有也即如上例可以建立如下的假设:43210:μμμμ===H ;43211,,,:μμμμH 不全相等。
第七章 方差分析、统计效力方差分析原理:综合的F检验应用:两个以上平均数之间的差异检虚无假设:H0:μ1 = μ2 = μ3方差可分解,实验数据的总变异分解为若干不同来源的分变异,一般分为组内变异和组间变异组内变异:实验误差、被试差异等组间变异:不同实验条件造成的变异考察F = 组间均方/ 组内均方的显著性方差分析的前提总体正态分布变异互相独立各实验条件的方差齐性方差分析的步骤a. 求总和方、组间和方、组内和方b. 求总自由度、组间自由度、组内自由度c. 求组间均方、组内均方d. 计算F观测值e. 列方差分析表f. 查F表求F临界值g. 作判断符号系统K = 处理条件或组的数目n i = 第i 组的被试数目,若每组被试相等,则为n N = Σn i = 总被试数T i = ΣX ij = 每个组分数值的和 G = ΣX ij = 所有分数的总和 P = 每个被试的观察数目 单因素完全随机方差分析例:检验三个不同的学习方法的效应。
将学生随机分配到3个处理组 方法 A :让学生只读课本, 不去上课. 方法 B :上课,记笔记,不读课本.方法 C :不读课本,不去上课, 只看别人的笔记解:虚无假设H 0:μ1 = μ2 = μ3 ,三种方法学习效果没有差异 备择假设:至少有一个组和其他不同G=30, N=15, 215G ==, 2106,3XK ==∑SS 总= ΣX 2 - G 2 / N =106 – 900 / 15 = 106 – 60 = 46 SS 组内= SS 1 + SS 2 + SS 3 = 6 + 6 + 4 = 16SS组间= Σ(T2/n i) - G2/N = 52/5 + 202/5 + 52/5 - 302/15 = 5 + 80 + 5 –60 = 30实际SS组间可以用SS总- SS组内快速求得,但不推荐df总= N – 1 = 15 -1 = 14df组内= N –K = 15 - 3 = 12df组间= K – 1 = 3 – 1 = 2MS组内= SS组内/ df组内= 16/12 = 1.333MS组间= SS组间/ df组间= 30/2 = 15F obs = MS组间/ MS组内= 15 / 1.333 = 11.25F0.05(2, 12) = 3.88F obs = 11.25 > F0.05(2, 12) = 3.88所以拒绝H0,至少有一组和其他不同事后检验N-K检验HSD检验Scheffe检验……注意:不能用两两之间t检验,P = 1 - (1 - α)n,例如本例P = 1 - (1 –0.05)3 = 0.143随机区组设计的方差分析又称重复测量方差分析,单因素组内设计,相关组设计,被试内设计解:G = 305.5,N = 32,ΣX2 = 2934.91,K = 4, n = 8SS总= ΣX2 - G2 / N = 2934.91 –305.52 / 32 = 18.33SS组内= SS1 + SS2 + SS3 + SS4 = 2.8 + 3.14 + 1.535 + 1.429 = 8.894SS组内= SS被试间+ SS误差SS被试间=Σ(P2/K) - G2/N = 1544.49/4 + 1482.25/4 + 1584.04/4 + 1310.44/4 + 1303.21/4 + 1444/4 + 1755.61/4 + 1274.49/4 - 305.52/32 = 8.062SS误差= SS组内- SS被试间= 8.894 - 8.062 = 0.832SS组间= Σ(T2/n i) - G2/N = 80.82/8 + 79.62/8 + 75.42/8 + 69.72/8 –305.52/32 = 816.08 + 792.02 + 710.645 + 607.261 –2916.57 = 9.436df总= N – 1 = 32 -1 = 31df组内= N –K = 32 - 4 = 28df组间= K – 1 = 4 – 1 = 3df被试= n – 1 = 8 – 1 = 7df误差= df组内–df被试= 28 –7 = 21MS误差= SS误差/ df误差= 0.832/21 = 0.040MS组间= SS组间/ df组间= 9.436/3 = 3.145F obs = MS组间/ MS误差= 3.145 / 0.040 = 78.63F0.01(3, 21) = 4.87F obs = 78.63 > F0.01(3, 21) = 4.87所以拒绝H0,至少有一组和其他不同事后检验:略协方差分析在某些实际问题中,有些因素在目前还不能控制或难以控制,如果直接进行方差分析,会因为混杂因素的影响而无法得出正确结论。
方差分析公式(2012—06—26 11:03:09)转载▼标签:分类:统计方法杂谈方差分析方差分析(analysis of variance,简写为ANOV或ANOVA)可用于两个或两个以上样本均数的比较。
应用时要求各样本是相互独立的随机样本;各样本来自正态分布总体且各总体方差相等。
方差分析的基本思想是按实验设计和分析目的把全部观察值之间的总变异分为两部分或更多部分,然后再作分析。
常用的设计有完全随机设计和随机区组设计的多个样本均数的比较。
一、完全随机设计的多个样本均数的比较又称单因素方差分析。
把总变异分解为组间(处理间)变异和组内变异(误差)两部分。
目的是推断k个样本所分别代表的μ1,μ2,……μk是否相等,以便比较多个处理的差别有无统计学意义。
其计算公式见表19-6。
表19-6 完全随机设计的多个样本均数比较的方差分析公式变异来源离均差平方和SS 自由度v 均方MS F 总ΣX2—C* N—1组间(处理组间) k-1 SS组间/v组间MS组间/MS组间组内(误差)SS总—SS组间N-k SS组内/v组内*C=(ΣX)2/N=Σni,k为处理组数表19—7 F值、P值与统计结论αF值P值统计结论0。
05 <F0。
05(v1.V2)>0。
05 不拒绝H0,差别无统计学意义0.05 ≥F0.05(v1.V2)≤0.05 拒绝H0,接受H1,差别有统计学意义0.01 ≥F0。
01(v1。
V2)≤0.01 拒绝H0,接受H1,差别有高度统计学意义方差分析计算的统计量为F,按表19—7所示关系作判断。
例19.9 某湖水不同季节氯化物含量测量值如表19-8,问不同季节氯化物含量有无差别?表19-8 某湖水不同季节氯化物含量(mg/L)X ij春夏秋冬22。
6 19.1 18。
9 19.022。
8 22.8 13。
6 16.921。
0 24.5 17.2 17.616。
9 18。
0 15。
1 14.820.0 15。