逻辑函数化简公式大全
- 格式:doc
- 大小:12.41 KB
- 文档页数:2
逻辑函数化简公式逻辑函数化简是一种将复杂的逻辑表达式简化为更简洁形式的方法。
通过化简,我们可以减少逻辑电路的复杂性,提高电路的性能和效率。
公式化简的过程涉及到逻辑运算的规则和性质。
下面是一些常见的逻辑函数化简公式:1. 同一律:A + 0 = A,A * 1 = A。
这表示在逻辑表达式中,与0相或的结果是原始信号本身,与1相与的结果是原始信号本身。
2. 吸收律:A + A * B = A,A * (A + B) = A。
这表示当一个信号与另一个信号的与运算结果相或,或者一个信号的与运算结果与另一个信号相与时,结果都是原始信号本身。
3. 分配律:A * (B + C) = A * B + A * C,A + (B * C) = (A + B) * (A + C)。
这表示在逻辑表达式中,可以将与运算分配到相或的运算中,或者将相或的运算分配到与运算中。
4. 德摩根定律:(A + B)' = A' * B',(A * B)' = A' + B'。
这表示在逻辑表达式中,如果一个信号取反后与另一个信号相与,或者一个信号取反后与另一个信号相或,相当于原始信号分别与另一个信号取反后的结果相或相与。
通过运用这些公式,我们可以逐步将复杂的逻辑表达式进行化简,从而得到更简洁的形式。
这有助于我们设计更简单、更高效的逻辑电路,并且减少电路的成本和功耗。
然而,化简过程也需要谨慎进行,需要根据具体情况来选择最优的化简策略。
有时候,过度地化简可能会导致逻辑电路的复杂性增加,或者引入一些错误。
因此,在进行逻辑函数化简时,我们需要充分理解逻辑运算的规则和性质,并结合具体的应用场景来进行合理化简。
逻辑函数的代数(公式)化简法代数化简法的实质就是反复使用逻辑代数的基本公式和常用公式消去多余的乘积项和每个乘积项中多余的因子,以求得函数式的最简与或式。
因此化简时,没有固定的步骤可循。
现将经常使用的方法归纳如下:①吸收法:根据公式A+AB=A 可将AB 项消去,A 和B 同样也可以是任何一个复杂的逻辑式。
()F A A BC A BC D BC =+⋅⋅+++例:化简()()()()()()F A A BC A BC D BCA A BC A BC D BCA BC A BC A BC D A BC=+⋅⋅+++=+++++=+++++=+解:现将经常使用的方法归纳如下:②消因子法:利用公式A+AB=A +B 可将AB 中的因子A 消去。
A 、B 均可是任何复杂的逻辑式。
1F A AB BEA B BE A B E=++=++=++例:2()F AB AB ABCD ABCDAB AB AB AB CDAB AB AB ABCDAB AB CD=+++=+++=+++=++现将经常使用的方法归纳如下:③合并项法(1):运用公式A B +AB=A 可以把两项合并为一项,并消去B 和B 这两个因子。
根据代入规则,A 和B 可以是任何复杂的逻辑式。
例:化简F BCD BCD BCD BCD=+++()()()()F BCD BCD BCD BCDBCD BCD BCD BCD BC D D BC D D BC BC B=+++=+++=+++=+=现将经常使用的方法归纳如下:③合并项法(2):利用公式A+A=1可以把两项合并为一项,并消去一个变量。
例:1()1F ABC ABC BCA A BC BCBC BC =++=++=+=现将经常使用的方法归纳如下:③合并项法(2):利用公式A+A=1可以把两项合并为一项,并消去一个变量。
例:2()()()()F A BC BC A BC BC ABC ABC ABC ABCAB C C AB C C AB AB A=+++=+++=+++=+=现将经常使用的方法归纳如下:例:1()()()()()(1)(1)()F AB AB BC BCAB AB C C BC A A BCAB ABC ABC BC ABC ABCAB ABC BC ABC ABC ABC AB C BC A AC B B AB BC AC=+++=+++++=+++++=+++++=+++++=++④配项法:将式中的某一项乘以A+A 或加A A ,然后拆成两项分别与其它项合并,进行化简。
一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消因子。
常用方法有:①并项法利用公式AB+AB’=A 将两个与项合并为一个,消去其中的一个变量。
②吸收法利用公式A+AB=A 吸收多余的与项。
③消因子法利用公式A+A’B=A+B 消去与项多余的因子④消项法利用公式AB+A’C=AB+A’C+BC 进行配项,以消去更多的与项。
⑤配项法利用公式A+A=A,A+A’=1配项,简化表达式。
二、卡诺图化简法逻辑函数的卡诺图表示法将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。
逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。
1.表示最小项的卡诺图将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,每一个方格对应变量的一个取值组合。
具有逻辑相邻性的最小项在位置上也相邻地排列。
用卡诺图表示逻辑函数:方法一:1、把已知逻辑函数式化为最小项之和形式。
2、将函数式中包含的最小项在卡诺图对应的方格中填1,其余方格中填0。
方法二:根据函数式直接填卡诺图。
用卡诺图化简逻辑函数:化简依据:逻辑相邻性的最小项可以合并,并消去因子。
化简规则:能够合并在一起的最小项是2n个。
如何最简:圈数越少越简;圈内的最小项越多越简。
注意:卡诺图中所有的1 都必须圈到,不能合并的1 单独画圈。
说明,一逻辑函数的化简结果可能不唯一。
合并最小项的原则:1)任何两个相邻最小项,可以合并为一项,并消去一个变量。
2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。
3)任何8个相邻最小项,可以合并为一项,并消去3个变量。
卡诺图化简法的步骤:画出函数的卡诺图;画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合);画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小项仅被圈过一次,以免出现多余项。
逻辑函数化简公式大全
逻辑函数化简是在布尔代数中常用的一种方法,它通过应用逻辑运算规则和布尔代数定律,将复杂的逻辑函数简化为更简洁的形式。
这种简化可以减少逻辑电路的复杂性,提高计算机系统的效率。
以下是一些常见的逻辑函数化简公式大全:
1. 与运算的化简:
- 与运算的恒等律:A∧1 = A,A∧0 = 0
- 与运算的零律:A∧A' = 0,A∧A = A
- 与运算的吸收律:A∧(A∨B) = A,A∧(A∧B) = A∧B
- 与运算的分配律:A∧(B∨C) = (A∧B)∨(A∧C)
- 与运算的交换律:A∧B = B∧A
2. 或运算的化简:
- 或运算的恒等律:A∨1 = 1,A∨0 = A
- 或运算的零律:A∨A' = 1,A∨A = A
- 或运算的吸收律:A∨(A∧B) = A,A∨(A∨B) = A∨B
- 或运算的分配律:A∨(B∧C) = (A∨B)∧(A∨C)
- 或运算的交换律:A∨B = B∨A
3. 非运算的化简:
- 非运算的双重否定律:(A) = A
- 非运算的德摩根定律:(A∧B) = A∨B,(A∨B) = A∧B
4. 异或运算的化简:
- 异或运算的恒等律:A⊕0 = A,A⊕1 = A
- 异或运算的自反律:A⊕A = 0
- 异或运算的结合律:A⊕(B⊕C) = (A⊕B)⊕C
- 异或运算的交换律:A⊕B = B⊕A
5. 条件运算的化简:
- 条件运算的恒等律:A→1 = 1,A→0 = A
- 条件运算的零律:A→A' = 0,A→A = 1
- 条件运算的反转律:A→B = A∨B
- 条件运算的分配律:A→(B∧C) = (A→B)∧(A→C)这些公式是逻辑函数化简中常用的基本规则,通过灵活应用它们,可以将复杂的逻辑表达式简化为更简单的形式。
使用这些规则,我们可以提高逻辑电路的效率和简洁性,并降低硬件成本。