一元二次方程学案
- 格式:doc
- 大小:684.00 KB
- 文档页数:26
1、一元二次方程 学案学习目标:1、掌握用配方法解数字系数的一元二次方程;2、理解解方程中的程序化,体会化归思想。
重点:用配方法解数字系数的一元二次方程;难点:配方的过程。
导学流程 一、自主学习1、概念学习:(1)一元二次方程:________________________________________________________________________;(2)一元二次方程的一般形式:______________________________,其中,____是二次项系数, ____ 是一次项系数, ____是常数项。
(3)方程的解:___________________________________________________________________________;(4)解方程:_____________________________________________________________________________.2、自学教科书例题,做到练习本上。
二、精讲点拨我们把方程x 2-4x +3=0变形为(x -2)2=1,它的左边是一个含有未知数的________式,右边是一个_______常数.这样,就能应用直接开平方的方法求解.这种解一元二次方程的方法叫做配方法. 练一练 :配方.填空:(1)x 2+6x +( )=(x + )2;(2)x 2-8x +( )=(x - )2; (3)x 2+23x +( )=(x + )2; 从这些练习中你发现了什么特点?(1)当二次项系数为1时,加的常数是________________________________________________;(2)依据的公式是________________________________________________。
三、合作交流1、用配方法解下列方程:(1)x 2 +2x -3=0; (2)x 2-4x-3=0. (3)x 2 -6x +10=02、总结规律用配方法解二次项系数是1的一元二次方程?有哪些步骤?四、深入探究用配方法解下列方程:(1)011242=--x x (2)03522=--x x这两道题与前面的两道题有何区别?请与同伴讨论如何解决这个问题?请两名同学到黑板展示自己的做法。
一元二次方程知识要点:1.关于一元二次方程:①元的个数是一个,方程是整式方程;②含有未知数的最高次项的次数是二次;③若方程有实数根,则解的个数一定是两个.2.关于配方法解一元二次方程:①首先将二次项系数变为1;②方程两边各加上一次项系数一半的平方,这是配方法的关键的一步,方程左边配成完全平方式,当右边是非负实数时,用开平方法即可求得方程的解.3.一元二次方程ax2+bx+c=0(a≠0)的求根公式:x=(b2-4ac 0) 推导过程:利用配方法4.一元二次方程ax2+bx+c=0(a≠0)根的判别式:Δ=b2-4ac,其作用如下:(1)=b2-4ac>0 方程有两个不相等的实数根(2)=b2-4ac=0 方程有两个相等的实数根(3)=b2-4ac<0 方程没有实数根拓展:韦达定理设x1,x2是方程ax2+bx+c=0(a0)的两个根,x1+x2=- ,x1 x2= ,利用公式法推导,其作用如下:①能运用它由已知方程的一个根,求出另一个根及未知数的系数;②可以利用它求出两根的平方和、立方和、两根倒数和的平方等等;③利用x1+x2和x1·x2的关系可以解特殊的二元二次方程组;④利用根与系数关系判定两根的符号及方程各项系数的符号;⑤利用根与系数的关系,可以造出新的一元二次方程ax2+bx+c=a(x-x1)(x-x2)例题及分析:例1、判断下列方程哪些是一元二次方程:(1)3x2+4x-2=0;(2)x2-2x+3=6x-1;(3)7-x3=x+x2;(4)x2-2xy-4=0;(5)3x2=5-;(6)2-x2+y2=x+m(7)6x2+3x=-3x(3-2x);(8)3(x+1)+3=3x(2x+5)例2、关于x的方程(m+3)x2-mx+1=0是不是一元二次方程的条件?例3、(1)用开平方法解方程(3x-1)2=9(2)用配方法解方程3x2-1=6x(3)用公式法解方程2x2+5x-3=0(4)用因式分解法解方程x2+7x+12=0例4、解关于x的方程x2+mx+2=mx2+3x(m≠1)解:x2-mx2+mx-3x+2=0(1-m)x2+(m-3)x+2=0∵m≠1,∴1-m≠0,∴原方程为一元二次方程∵b2-4ac=(m-3)2-4(1-m)·2=(m+1)2≥0x= =x1=, x2=1例5、已知a、b、c是三角形的三边,求证:方程b2x2+(b2+c2-a2)x+c2=0没有实数根.例6、求证方程(m-1)x2+3mx+m+1=0 (m≠1),必有两个不相等的实数根.证明:∵m≠1∴m-1≠0∴此方程是关于x的一元二次方程△=(3m)2-4(m-1)(m+1)=9m2-4m2+4=5m2+4∵不论m取任何不为1的实数都有5m2≥0∴5m2+4>0即△=5m2+4>0∴方程必有两个不相等的实数根例8、如果关于x的方程mx2-2(m+2)x+m+5=0没有实数根,那么关于x的方程(m-5)x2-2(m+2)x+m=0的实根有几个?例9、解某一元二次方程,甲抄错一次项,得根为-2和-3,乙抄错常数项,得根为6和-1,那么正确的方程应是____.例10、解方程x2-2|x|-1=0.提示:原方程化为|x|2-2|x|-1=0,例11、一个两位数,十位数与个位数字之和是5,把这个数的个位数与十位数字对调后,所得的新两位数与原来的两位数的乘积为736,求原来的两位数.例12、一个长方形,它的长比宽的2倍还多1厘米,它的宽与另一正方形的边长相同,且这个长方形的面积比正方形的面积多72平方厘米,求此长方形与正方形的面积各是多少?例13、已知三个连续奇数的平方和为371,求这三个奇数.例14、有一个直角三角形三边的长为三个连续整数,求三边的长.练习及答案一、选择题1.方程x2=x的解[ ]A.0 B.1 C.0或1 D.0或-12.关于x的一元二次方程(m-1)x2+x+(m2+2m-3)=0有一个根是零,则m的值为[ ]A.1 B.-3 C.1或-3 D.-1或33.如果一元二次方程x2+mx+n=0的两个根是0和-2,则m+n等于[ ]A.2 B.4 C.-2 D.-44.如果方程2x2-x-3m=0与2x2+3x+m=0有一个根相同,则m一定等于[ ]A.0 B.1 C.2 D.0或15.若c是实数,且x2-3x+c=0的一个根的相反数是x2+3x-c=0的一个根,则x2-3x +c=0的解是[ ]A.1,2 B.-1,-2 C.0,3 D.0,-3二、填空题1.方程x(x-4)=4的根是______.2.方程(3x-1)2=(2x-3)2的根是______.3.关于t的方程t2-7mt-18m2=0的根是____.4.关于y的方程y(y+b-1)=b的根是______.5.方程9(x+2)2=16的根是______.6.方程(m2-3)x2-(m+1)x+1=0,当m______时是一元二次方程,其判别式△=_______,m=_______时是一元一次方程.7.已知方程(2a-b)x2+(2b-c)x+2c-a=0有一个根是1,则a+b+c=_______.8.若二次方程k(x-1)2+x=2无实数根,则k的最大整数值是______.三、解答题1.用配方法解方程2x2+7x-4=02.用适当的方法解下列方程(1)4(x+3)2=25(x-2)2;(2)(x-2)(x-3)=1;(3)3x2-7x-6=03.解方程:(2x+1)2+3(2x+1)+2=04.解关于x的方程(a-b)x2+(b-c)x+(c-a)=0(a≠b)5.不解方程,判别下列方程根的情况:(1)x2+5x-1=0;(2)9x2-6x+1=0;(3)2x2+1=-x6.已知两数和为7,积为-6,求两数.思考并总结:a为何值时,方程8x2+(a+1)x+(a-8)=0(1)两根异号(2)两根均为负根(3)有一根为1(4)有一根为0(5)两根互为相反数(6)两根互为倒数,。
一元二次方程一,教学目标1,让学生熟练的掌握一元二次方程的解法及应用二,教学重难点(1)一元二次方程的实际应用,进一步体验到列一元二次方程解应用题的应用价值。
(2)进一步掌握列一元二次方程解应用题的方法和技能。
三,教学过程(一)、一元二次方程的概念在整式方程中只含一个未知数,并且未知数的最高次数是2这样的整式方程叫一元二次方程1.理解并掌握一元二次方程的意义 未知数个数为1,未知数的最高次数为2,整式方程,可化为一般形式 02=++c bx ax ( 0≠a )例:1,已知关于x 的方程()2220m m xx m --+-=:(1) m 为何值时方程为一元一次方程; (2) m 为何值时方程为一元二次方程。
2.正确识别一元二次方程中的各项及各项的系数(1)让学生明确只有当二次项系数0≠a 时,整式方程02=++c bx ax 才是一元二次方程。
(2)各项的确定(包括各项的系数及各项的未知数).其中2ax 是二次项,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。
例:1、(2009·日照中考)若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为 ( ).(A )1 (B )2 (C )-1 (D )-2解析:选D.将n 代入方程,方程两边同时除以n 求解,可得m +n=-2.2、(2008·烟台中考)已知方程20x bx a ++=有一个根是(0)a a -≠,则下列代数式的值恒为常数的是( ) A .ab B .abC .a b +D .a b - 解析:选D.将-a 代入20x bx a ++=中,则a 2-ab+a=0,则a -b+1=0∴a -b=-1(恒为常数)3、(2008·东营中考)若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .0 答案:B4、(2007·荆州中考)若0x =是方程22(2)3280m x x m m -+++-=的解,则m = .答案:2或-4;(3).一元二次方程的解的定义与检验一元二次方程的解。
第二章一元二次方程1.花边有多宽(一)一、活动探究:活动1.一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m。
如果地毯中央长方形图案的面积为18m2,那么花边有多宽?活动2、趣味数学:先观察下面等式:102+112+122=132+142你还能找到其它的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?活动3、梯子移动如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。
如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?问题①如果设花边的宽为x 米,那么地毯中央长方形图案的长为 米,宽为 米。
根据题意,可得方程 。
问题②如果设五个连续整数中的第一个数为x ,那么后面四个数依次可表示为 , , , 。
根据题意,可得方程 。
问题③由勾股定理可知,滑动前梯子底端距墙 m,如果设梯子底端滑动xm ,那么滑动后梯子底端距墙 m 。
根据题意,可得方程 。
二、概括一元二次方程的概念由上面三个问题,我们可以得到三个方程并化简得:(8-2x )(5-2x)=18 即2x 2 - 13x + 11 = 0 x 2+(x +1) 2+(x +2) 2=(x +3) 2+(x +4) 2 即x 2 - 8x - 20=0 (x +6) 2+72=10 2 即x 2 +12 x -15 =0思考:我们曾经学习了—元一次方程,同学们可以类比着它的要点,看看这些方程有什么特点。
一元二次方程定义:只含有一个未知数x 的整式方程,并且都可以化为02=++c bx ax (a 、b 、c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程。
(尤其注意学生容易漏掉的二次项系数不为0的要点)(1)强调三个特征:整式方程;只含一个未知数;未知数的最高次数是2且其系数不为0。
(2)几种不同的表示形式:①ax 2+bx+c=0 (a ≠0,b ≠0,c ≠0)②ax 2+bx=0 (a ≠0,b ≠0,c=0) ③ax 2+c=0 (a ≠0,b=0,c ≠0) ④ax 2=0 (a ≠0,b=0,c=0)(3)相关概念:一元二次方程的一般形式:ax 2+bx +c=0(a,b,c 为常数,a 不等于0)一元二次方程的二次项、一次项、常数项分别为:ax 2、bx 、c 二次项系数为:a 一次项系数为:b三、学以致用1、判一判,下列方程哪些是一元二次方程?(1)7x 2-6x =0 (2)2x 2-5xy +6y =0 (3)2x 2-1/3x-1=0 (4)y 2/2=0 (5)x 2+2x -3=1+x 2 (6)ax 2+bx+c=02、把下列方程化为一元二次方程的形式,并写出它的二次项系数、一次项系数和常数项:3、想一想:⑴关于x的方程(k-3)x2+ 2x-1=0,当k 时,是一元二次方程.⑵当m取何值时,方程(m-1)x∣m∣+I+2mx+3=0是关于x的一元二次方程?活动目的:巩固一元二次方程的定义及其相关概念活动注意事项:问题1可让学生口答,并且说明是与不是的原因;问题2的一般形式不唯一;问题3重点考察一元二次方程的二次项系数不能是0,学生若明确一元二次方程的基本特征,此题不难解决。
第二十二章一元二次方程一、教材内容一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.二、课标要求1、以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念.2、根据化归思想,抓住降次这一策略,掌握配方法,公式法和因式分解法等一元二次方程的基本解法.3、经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用这种重要数学工具的基本能力.三、教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出、分析问题,建立一元二次方程数学模型,并用解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.四、教学重点与难点教学重点:1. 一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3. 利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点:1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.五、课时划分本单元教学时间约需13课时,具体分配如下:22.1 一元二次方程2课时22.2 降次──解一元二次方程5课时22.3 实际问题与一元二次方程3课时教学活动、习题课、小结3课时22.1.1 《一元二次方程(1)》学案学习目标:1、进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;2、正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
豫灵一中九年级数学学案 21.1一元二次方程班级__________ 姓名__________学号________学习目标:1.了解一元二次方程的概念,正确掌握一元二次方程的一般形式。
2.能准确判断一个数是否是一元二次方程的根。
学习重点:一元二次方程的概念及一般形式。
学习难点:正确识别一般形式的“项”及“系数”。
学习过程:一、自主导学1、自学课本P2问题1和问题2,列出方程:思考:这两个方程及方程x 2+2x-4=0都是不是一元一次方程?它们与一元一次方程的区别在哪里?它们有什么共同特点呢?共同特点:_________________________________________________________ 归纳:一元二次方程的定义:等号两边都是______,只含有____个未知数,并且未知数的最高次数是_____的方程,叫做一元二次方程。
2、一元二次方程的一般形式:___________________________________________ 其中ax 2是_____________,a 是_________________;bx 是______________,b 是_________________;C 是_______________。
思考:二次项系数a ≠0是一个重要条件,不能漏掉,为什么?二、交流展示下列方程中哪些是一元二次方程?3523)1(-=+x x 4)2(2=x2112)3(x x x =-+- 3)2)(1()4(=--x x33)5(2=+y x 22)2(4)6(+=-x x 三、点拨例析例:将方程3x (x-1)=5(x+2)化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数。
四、巩固训练1、将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:2(1)6y y = (2)(21)3(2)x x x x ---= (3)(2)(3)8x x -+= 2(4)(3)(34)(2)x x x +-=+2、关于x 的方程(k -3)x 2 + 2x -1=0,当k___________时,是一元二次方程.3、关于x 的方程(k 2-1)x 2 + 2 (k -1) x + 2k + 2=0,当k_____________时,是一元二次方程.当k_____________时,是一元一次方程.自主导学(二)自学课本p3例题上面内容,并完成下列问题:什么是一元二次方程的根?练习:1、下列哪些数是方程2x 2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.五、归整检测1、一元二次方程的概念2、一元二次方程的一般形式3、一元二次方程的根堂清1、下列方程中,是关于x 的一元二次方程的是( )A.31x 2=+B.1x x 2x 22-=+C.0c bx ax 2=++D.)1x (21x 32+=+)(2、将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:(1)x 41x 52=-(2)81x 42=(3)252x x 4=+)( (4)3x 8)1x (2x 3-=+-)( 3、下列哪些数是方程012x x 2=-+的根?-4,-3,-2,-1, 0, 1, 2, 3, 44.关于x 的方程07x 2x 2a a=-+-)(是一元二次方程,则a=_______________ 5.若方程1x m x 1-m 2=+)(是关于x 的一元二次方程,则m 的取值范围是___。
黄冈教育 一元二次方程应用专题学案【知识框架】一元二次方程的实际应用 【预备知识】解下列方程: ()()75.8212512525)1(2=++++x x ()[]{}12%6.190%601)2(=⨯-+-x x()()222456075)3(+=x x ()80005109060140)4(=⎪⎭⎫ ⎝⎛⨯--+x x()()()1101440%101%201530)5(2=--+-x【典例解析】(一)增长率(降低率)问题:【例1】(2009年赤峰市)某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下降到81万元,求平均每月产值下降的百分率.【例2】(2009年常德市)常德市工业走廊南起汉寿县太子庙镇,北至桃源县盘塘镇创元工业园.在这一走廊内的工业企业2008年完成工业总产值440亿元,如果要在2010年达到743.6亿元,那么2008年到2010年的工业总产值年平均增长率是多少?《常德工业走廊建设发展规划纲要(草案)》确定2012年走廊内工业总产值要达到1200亿元,若继续保持上面的增长率,该目标是否可以完成?⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧动点问题数字问题面积问题利润问题增长率(降低率)问题常见类型、答步骤:设、列、解、验【跟踪练习】1. (2012广东湛江)湛江市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .5500(1+x )2=4000 B .5500(1﹣x )2=4000 C .4000(1﹣x )2=5500 D .4000(1+x )2=55002.(2012成都)一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都 是x ,根据题意,下面列出的方程正确的是( )A .100(1)121x +=B 100(1)121x -=C . 2100(1)121x +=D . 2100(1)121x -=3.市政府为了解决市民看病难的问题,决定下调药品的价格。
一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
22.1 « 一元二次方程》(1)学案学习目标:1.通过设置问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义.2. 一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.学习过程:1、温故互查(1)一元一次方程定义 .(2)一元一次方程的一般形式 .2、设问导读合作预习章前页的问题和教材P25-P26问题1和2。
(1 )、问题:上述3个方程是不是一元一次方程?有何共同点?①;②;③。
(2)、一元二次方程的概念:像这样的等号两边都是_____________________ ,只含有个未知数,并且未知数的最高次数是的方程叫做一元二次方程。
(3)任何一个关于x的一元二次方程都可以化为(a,b,c为常数,)的形式,我们把它称为一元二次方程的一般形式。
a为, b为, c为。
(4)、注意点:①一元二次方程必须满足三个条件: a ;b ;c②任何一个一元二次方程都可以化为一般形式: .二次项系数、- 次项系数、常数项都要包含它前面的符号。
③ 二次项系数是一个重要条件,不能漏掉,为什么?3、自我检测(1)、下列列方程中,哪些是关于x的一元二次方程?① 5x2 0 ② V2x2 x V3x ③ J Z 3 0x x④ 3x3x 0 ⑤ x2xy 3 0 (2 )、把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:① 3x2 5x 1 ②(x 2)(x 1) 6 ③ 4 7x2 0(3 )、关于x的方程(a-1 )x2+3x=0是一元二次方程,则a的取值范围是 .学生分小组交流解疑,教师点评升华。
4、巩固练习:课本27页练习1、2题5、拓展延伸(1 )、a满足什么条件时,关于x的方程a (x2+x) =V3x- (x+1)是一元二次方程?(2 )、关于x的方程(2m2+m) x m+1+3x=6可能是一元二次方程吗?为什么?评价1、这节课你学到了什么?2、组长对你这节课的表现进行评价:3 2.1 « 一元二次方程》(2)学案学习目标:1、会进行简单的一元二次方程的试解;2、理解方程的解的概念,发展有条理的思考与表达能力;3、会在简单的实际问题中估算方程的解,理解方程解的实际意义。
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
第二十二章一元二次方程一、教材内容一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.二、课标要求1、以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念.2、根据化归思想,抓住降次这一策略,掌握配方法,公式法和因式分解法等一元二次方程的基本解法.3、经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用这种重要数学工具的基本能力.三、教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出、分析问题,建立一元二次方程数学模型,并用解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.四、教学重点与难点教学重点:1. 一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3. 利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点:1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.五、课时划分本单元教学时间约需13课时,具体分配如下:22.1 一元二次方程2课时22.2 降次──解一元二次方程5课时22.3 实际问题与一元二次方程3课时教学活动、习题课、小结3课时22.1.1 《一元二次方程(1)》学案课型:上课时间:课时:学习目标:1、进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;2、正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
学习过程:一、自主学习:(一)、根据题意列方程:(1)有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒底面积为3600cm2,那么铁皮各角应切去多大的正方形?(2)我校为丰富校园文化氛围,要设计一座2米高的人体雕像,使雕像的上部(腰以上)与全部高度的乘积,等于下部(腰以下)高度的平方,求雕像下部的高度 .(3)要组织一次排球邀请赛,参赛的每两队之间都要比赛一场,依据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,请问全校有多少个队参赛?(二)、探索新知:(1)、问题:上述4个方程是不是一元一次方程?有何共同点?①;②;③。
(2)一元二次方程的概念:像这样的等号两边都是_____,只含有___个未知数,并且未知数的最高次数是___的方程叫做一元二次方程。
(3)任何一个关于x 的一元二次方程都可以化为 (a,b,c 为常数, )的形式,我们把它称为一元二次方程的一般形式。
a 为 ,b 为 ,c 为 。
(三)、注意点:(1)一元二次方程必须满足三个条件:a ;b ; c 。
(2)任何一个一元二次方程都可以化为一般形式: .二次项系数、一次项系数、常数项都要包含它前面的符号。
(3)二次项系数0a ≠是一个重要条件,不能漏掉,为什么?(四)、自我尝试:1、下列列方程中,哪些是关于x 的一元二次方程?(1)250x -= (22x -= (3)21230xx+-=(4)330x x -= (5)230x xy +-=2、把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:(1) 2351x x =- (2) (2)(1)6x x +-= (3) 2470x -=(五)阅读课本,25页到27页,反思自主学习情况。
二、学生分小组交流解疑,教师点评升华。
三、巩固练习:课本27页练习1、2题 四、课堂检测:1、下列方程中,是关于X 的一元二次方程的是( )3= B.2221x x x +=- C.20ax bx c ++= D.23(1)2(1)x x +=+ 2、方程2(1)4(1)x x x -=-的一次项是( ) A. 2x B. 4x C. 6- D. 6x -3、将方程2(21)(3)(21)6x x x -+--=化成一般形式为___________,它的二次项系数为_____,一次项系数为_____,常数项为______。
4、当a_______时,关于X 的方程(a-1)x 2+3x-5=0是一元二次方程。
22.1.2 《一元二次方程(2)》学案课型: 上课时间: 课时:学习目标:1、会进行简单的一元二次方程的试解;2、理解方程的解的概念,发展有条理的思考与表达能力;3、会在简单的实际问题中估算方程的解,理解方程解的实际意义。
学习过程:一、自主学习:(一)复习引入:1、解方程,并说出方程解的定义:3x=2(x+5)2一个面积为120m2的矩形苗圃,它的长比宽多2m ,苗圃的长和宽各是多少? 设苗圃的宽为xm ,则长为_______m . 根据题意,得________. 整理,得_____ _ __.(二)探索新知:1.下面哪些数是上述方程的根?-4,-3,-2,-1,0,1,2,3,4.2、一元二次方程的解也叫做一元二次方程的_____,即使一元二次方程等号左右两边相等的_________的值。
3、判断下列一元二次方程后面括号里的哪些数是方程的解:(1) 2360x -= (-7,-6,-5, 5, 6, 7) (2)231134902,,1,,0,,1,,22222x ⎛⎫-=---- ⎪⎝⎭4、你能用以前所学的知识求出下列方程的根吗?(1) 2250x -= (2) 231x = (3) 29160x -=(三)、注意点:1、使一元二次方程成立的未知数的值,叫做一元二次方程的解,也叫做一元二次方程的根。
2、由实际问题列出方程并得出解后,还要考虑这些解是否是实际问题的解。
(四)、自我尝试:1、下列各未知数的值是方程2320x x +-=的解的是( ) A. 1x = B.1x =- C.2x = D.13x =2、根据表格确定方程287.5x x -+=0的解的范围____________3、已知方程2390x x m -+=的一个根是1,则m 的值是______(五)阅读课本,27页到28页,反思自主学习情况。
二、学生分小组交流解疑,教师点评升华。
三、巩固练习:课本28页练习1、2题 四、课堂检测: 1、把22(1)2xx x x -=++化成一般形式是______________,二次项是____一次项系数是_______,常数项是_______。
2、一元二次方程2x x =的根是__________;方程x (x-1)=2的两根为________ 3、写出一个以2x =为根的一元二次方程,且使一元二次方程的二次项系数为1:__________。
4、已知m 是方程260x x --=的一个根,则代数式2m m -=________。
5.若222x x -=,则2243x x -+=_____________。
6.方程ax (x-b )+(b-x )=0的根是 x 1=______ x 2=___7.已知x=-1是方程ax 2+bx+c=0的根(b ≠0)8.如果x 2-81=0,那么x 2-81=0的两个根分别是x 1=________,x 2=__________.9.已知方程5x 2+mx-6=0的一个根是x=3,则m 的值为________.10.如果x=1是方程ax 2+bx+3=0的一个根,则(a-b )2+4ab 的值为 .11、若关于X 的一元二次方程22(1)10a x x a -++-=的一个根是0,a 的值是几?你能得出这个方程的其他根吗?22.2.1 《用直接开平方法解一元二次方程》学案课型: 上课时间: 课时:学习目标:1、会用开平方法解形如x 2=p 或(mx+n)2=p(p ≥0)的方程;2、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界的数学模型。
学习过程: 一、自主学习(一)、复习引入学生活动:请同学们完成下列各题 问题1.填空(1)x 2-8x+______=(x-______)2;(2)9x 2+12x+_____=(3x+_____)2; (3)x 2+px+_____=(x+______)2.问题2.如图,在△ABC 中,∠B=90°,点P 从点B 开始,沿AB 边向点B 以1cm/s •的速度移动,点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,如果AB=6cm ,BC=12cm ,•P 、Q 都从B 点同时出发,几秒后△PBQ 的 面积等于8cm 2?(二)探索新知:1、36的平方根是________,49的平方根是____________。
2、若24x =,则x =______________;若221x =,则x =__________。
3、请根据提示完成下面解题过程:(1) 由方程 2(21)5x -=, 得 (2) 由方程 2692x x ++=, 得 21x -=_______ (_________)2=2 即 ∴ ______________=_______ 21x -=____,21x -=_____ 即 ____________, ____________ ∴ 1x =_______, 2x =_____ ∴ 1x =_______, 2x =_____ (三)、归纳概括:1、形如2x p =(0)p ≥或2()m x n p +=(0)p ≥的一元二次方程可利用平方根的 定义用开平方的方法直接求解,这种解方程的方法叫做直接开平方法。