解一元二次方程公式法学案(修改版)
- 格式:doc
- 大小:51.50 KB
- 文档页数:4
用公式法解一元二次方程学习目标1.使学生理解一元二次方程的求根公式的推导过程。
2.引导学生熟记求根公式并理解公式中的条件3.使学生能熟练地运用求根公式解一元二次方程。
学习重点:1.掌握一元二次方程的求根公式。
2.熟练地运用求根公式解一元二次方程。
学习难点:求根公式的推导教学过程(一)复习引入我们学过了一元二次方程的两种解法,它们是1.直接开平方法:2.配方法:(提问步骤)(二)探索新知1.学生尝试用配方法推导一元二次方程的求根公式:2.交流讨论:分析公式的特点,记忆公式。
3.例题学习例1、解方程(学生自主解答,教师点拨)小结:方程满足一般式,确定、、后代入求根公式,即可求出方程的根。
例2、解方程(小组交流合作完成)小结:方程不是一般式,先化为一般形式后再求方程的根。
例3、解方程(自主完成,小组交流)小结:方程的二次项系数为负数,通常先把它化为正数,再求根较好,而且<0可以用算术平方根的意义得到方程没有实数根。
4.反馈练习(1)(2)(3)(4)(学生先练习,老师后点评)(三)课堂总结:(1)要牢记一元二次方程的求根公式(2)利用求根公式求一元二次方程的根的步骤:①化方程为一般形式②确定方程中的、、的值③算出的值④代入求根公式求方程的根(3)求根公式是在时求方程的根,如果<0时,则方程在实数范围内无解。
(四)拓展练习(1)用公式法解方程得到方程的根是。
(2)已知能使的值等于的值的值是。
(3)若代数式与的值是互为相反数,则的值为。
(4)关于的一元二次方程的常数项为0,则关于的一元二次方程的一般式为。
一元二次方程的解法(公式法)一、教学目标:1.理解一元二次方程求根公式的推导过程;2.会利用求根公式解简单数字系数的一元二次方程;3.经历探索求根公式的过程,发展学生合情合理的推理能力;4.通过运用公式法解一元二次方程,提高学生的运算能力,并让学生在学习活动中获得成功的体验,建立学好数学的自信心。
二、教学重难点:1、重点:求根公式的推导和公式法的应用2、难点:一元二次方程求根公式的推导三、教学过程(一) 创设情境,导入新课:前面我们己学习了用配方法解一元二次方程,想不想再探索一种比配方法更简单,更直接的方法? 大家一定想,那么这节课我们一同来研究。
下面我们先用配方法解下列一元二次方程1.01422=--x x 2.x x 35.12-=+完成后小组内进行交流,并进行反馈矫正。
引导学生总结用配方法解一元二次方程的步骤教师板书:(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为()n m x =+2的形式; (5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.问题:通过以上四个方程的求解,你能试着猜想一下上述问题的求解的一般规律吗?学生独立思考(二)新知探索作进一步引导,如果每一个一元二次方程都通过配方法解,那么计算就较繁杂,针对于一般的一元二次方程02=++c bx ax (0≠a ) 能否也用配方法导出一般求解模式呢?动手试一试。
学生动手亲自解方程02=++c bx ax (0≠a ) 找一名同学板演。
现在我们大家共同观察黑板上的探索过程02=++c bx ax (0≠a )c bx ax -=+2移项ac x a b x -=+2 将二次项的系数化为1 22222⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛++a b a c a b x a b x 即 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+ 配方 a ac b a b x 2422-±=+ 开平方运算思考:有条件限制吗?当04422≥-aac b 时,才可以开平方 问题1:在什么2244b aca -才能大于或等于0?学生(思考、回答)因为0≠a 所以042>a ,如果使 04422≥-a ac b ,那么只有 042≥-ac b问题2:如果 042<-ac b 时,可以进行开平方运算吗?不可以,因为负数没有平方根那么我们来总结一下,在用配方法解02=++c bx ax (0≠a )时,需注意什么?归纳总结:对于02=++c bx ax (0≠a ),当042≥-ac b 时,在这里我们把称 为一元二次方程的求根公式,用公式可以直接解一元二次方程。
第二章一元二次方程3.用公式法求解一元二次方程(一)一、学生知识状况分析学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力.二、教学任务分析公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。
所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。
其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。
为此,本节课的教学目标是:①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。
②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。
④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力三、教学过程分析本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:探究新知;第三环节:巩固新知;第四环节:收获与感悟;第五环节:布置作业。
第一环节;回忆巩固活动内容:①用配方法解下列方程:(1)2x 2+3=7x (2)3x 2+2x+1=0全班同学在练习本上运算,可找位同学上黑板演算②由学生总结用配方法解方程的一般方法:第一题: 2x2+3=7x解:将方程化成一般形式: 2x2-7x +3=0两边都除以一次项系数:2 023272=+-x x配方:加上再减去一次项系数一半的平方 0231649)47(2722=+-+-x x即: 01625)47(2=--x1625)47(2=-x两边开平方取“±” 得:4547±=-x 4547±=x写出方程的根 ∴ x1=3 , x2=21第二题: 3x2+2x+1=0解:两边都除以一次项系数:3 031322=++x x配方:加上再减去一次项系数一半的平方 02391)31(3222=+-++x x即: 01825)31(2=++x1825)31(2-=+x ∵01825<-∴原方程无解活动目的:(1)进一步夯实用配方法解方程的一般步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。
徐闻县和安中学◆九年级数学导学案◆◆我们的约定:我的课堂我作主!执笔:林朝清7.3用公式法解一元二次方程导学案(二)1.不解一元二次方程,判断一元二次方程根的情况。
2.通过一元二次方程根的情况,求字母系数的值.3.通对一元二次方程根情况的探究,培养学生从一般到特殊数学思想.1.用公式法解一元二次方程(1).2x2-x-1=0(2).x2-6x+9=0(3).3x2-x+1=02.通过上面三个方程的求解,你们观察到b2-4ac的值有何不同?它的根又有什么特点?二、新课导学※学习探究1.在一元二次方程a x2+bx+c=0(a≠0)中,△=b2-4ac①.若△>0,则____________________。
②.若△=0,则_____________________。
③.若△>0,则____________________。
2.在一元二次方程a x2+bx+c=0(a≠0)中,△=b2-4ac()22004ax bx c a b ac++=≠-在一元二次方程中,△=①.若方程有两个不相等的实数根,则_______________________________。
②.若方程有两个不相等的实数根,则_______________________________。
③.若方程有两个不相等的实数根,则_______________________________。
3.定理与逆定理的用途不同①.定理的用途是:不解方程的情况下,根据△值的符号,用定理来判断方程根的情况。
②.逆定理的用途是:用逆定理确定△值的符号,进而求出系数中某些字母的取值范围。
③.注意运用定理和逆定理时,方程必须为______________ (a )。
※例题剖析例1:不解方程,判断下列方程根的情况:(1)2x2-x-1 =0 (2)2x2+1= 7x (3)3x2-43x =-4 (4)x2-x+41=0例2:求证关于x的方程(m2+1)x2-2x+(m2+4)= 0没有实数根例3:已知关于x的一元二次方程(k-1)x2+2kx+k+3=0.k取什么值时,(1)方程有两个不相等的实数根? (2)方程有两个相等的实数根? (3)方程没有实数根?。
第二十一章一元二次方程21.2解一元二次方程公式法教学设计一、教学目标1.探索利用公式法解一元二次方程的一般步骤.2.能够利用公式法解一元二次方程.二、教学重点及难点重点:用公式法解一元二次方程.难点:用公式法解一元二次方程三、教学用具多媒体课件。
四、相关资源《复习配方法解一元二次方程》动画。
五、教学过程【温故知新,提出问题】XE燃解方程s h+2s+c=0此图片是动画绪略图,此处插入交互动画《【数学探完】一元二次方程的儿何解法》,可以通过几何的方法展现一元二次方程的解法。
问题1你能用配方法解卜列方程吗?(1)m+ll=O;(2)9/=12x+14.解:<1)移项,得x2 -7入=一11.配方,得x2-7a-+^|J=-11+r2>7即七2=5 3开方,得x—;=±g.7-757+必所以X]=—-—•^2=—5-(2)移项,得9F-12x=14・,414系数化为1,得『一二工二方.配方,得广一§+仲卜?+停).即厂:<--2=2.开方,得x-|=±>/2,所以“甲®夸问题2用配方法解一元二次方程的步骤?化:把原方程化成r+p.x+q=O的形式.移项:把常数项移到方程的右边,如F+px=迫.配方:方程两边都加上一次项系数一半的平方,如/+px+(W)2=-g+(S(x+S=F+(9求解:解一元一次方程.定解:写出原方程的解.师生活动:学生独立完成,复习归纳。
(X潞瘢配方法任何一个一元二次方程都可以写成一般形式十取-c-m z=0),能否用配方法俾出能否用配方法街出or2me=O(aMO)的观]一元二次方程M+既13(/0)的二次坎系救u,—次敏卒致b以及常敏项c.<1>移项;将方程中含有耒知数的氐移对方程的左边.巧常数璜玛勤方程的右边.ar2—fez=—cQ)二次项系散化为卜若二次项的系敢不为1.划在方程两边同时序以二次项的系敷.将二次项的系敖化为I.X2+-Z=—-a aU>配方,方程的两边鄙加上一次咬系?I一半的平方鸟方程靛左遮配成一个完全平方式・/十打十(粉2=弋十(粉2flHk整电饵(工+y=静因为a*0.4a2>0,代数式62-iac来决定一元二次方程+hx+c=Oia^O)根的唁况.此图片是动画垸略图,此处插入交互动画《【教学探究】配方法》,可以逐步展现配方法的步曜.设计意图:通过复习,巩固旧知,钠垫新知,设置问题,引出新课.【合作探究,形成知识】问题2—元二次方程的一般形式是什么?你能否也用配方法解出方程的根呢?杯+皈+^=0(醇0)己知a『+M+c=0(再0),请用配方法推导出它的两个根.解:移项,得ar2+fer=-c.K c二次项系数化为1,得《?+-X=——.a a配方,得+-X+(A)2=-£+(A)2…gp(X+=)2=\二"(JI).a la a2a2。
第一篇:一元二次方程公式法、配方法一元二次方程公式法、配方法【主体知识归纳】4.直接开平方法形如x=a(a≥0)的方程,因为x是a的平方根,所以x=±,即x1=a,x2=-a.这种解一元二次方程的方法叫做直接开平方法.2b2b4ac25.配方法将一元二次方程ax+bx+c=0(a≠0)化成(x+)=的形式后,当b-4ac≥0时,用直22a4a22接开平方法求出它的根,这种解一元二次方程的方法叫做配方法.用配方法解已化成一般形式的一元二次方程的一般步骤是:(1)将方程的两边都除以二次项的系数,把方程的二次项系数化成1;(2)将常数项移到方程右边;(3)方程两边都加上一次项系数一半的平方;(4)当右边是非负数时,用直接开平方法求出方程的根.b24ac26.公式法用一元二次方程ax+bx+c=0(a≠0)的求根公式x=(b-4ac≥0),这种解一元二2a2次方程的方法叫做公式法.【例题精讲】2例1:用配方法解方程2x+7x-4=0.剖析:此题考查对配方法的掌握情况.配方法最关键的步骤是:(1)将二次项系数化为1;(2)将常数项与二次项、一次项分开在等式两边;2(3)方程两边都加上一次项系数一半的平方,即可化为(x+a)=k的形式,然后用开平方法求解.解:把方程的各项都除以2,得x+即(x+277772728122x-2=0.移项,得x+x=2.配方,得x+x+()=2+()=,22244167281)=.416817791=±,x+=±.即x1=,x2=-4.164442解这个方程,得x+说明:配方法是一种重要的数学方法,除了用来解一元二次方程外,还在判断数的正、负,代数式变形、恒等式22的证明中有着广泛的应用,例如证明不论x为何实数,代数式2x-4x+3的值恒大于零,可以做如下的变形:2x-224x+3=2x-4x+2+1=2(x-1)+1.例6:用公式法解下列方程:2(1)2x+7x=4;2解:(1)方程可变形为2x+7x-4=0.22∵a=2,b=7,c=-4,b-4ac=7-4×2×(-4)=81>0,77242(4)791∴x=.∴x1=,x2=-4.2 242【同步达纲练习】1.选择题(1)下列方程中是一元二次方程的是()x2x=0B.23(2)下列方程不是一元二次方程的是()24A.2=0xxA.C.x+2xy+1=0D.5x=3x-112x=1B.0.01x2+0.2x-0.1=0C.2 x2-3x=02(3)方程3x-4=-2x的二次项系数、一次项系数、常数项分别为()D.121x-x=(x2+1) 22A.3,-4,-2B.3,2,-4C.3,-2,-4D.2,-2,0(4)一元二次方程2x-(a+1)x=x(x-1)-1的二次项系数为1,一次项系数为-1,则a的值为() A.-1B.1C.-2D.222(5)若方程(m-1)x+x+m=0是关于x的一元二次方程,则m的取值范围是()A.m≠0B.m≠1C.m≠1且m≠-1D.m≠1或m≠-1 (6)方程x(x+1)=0的根为()A.0B.-1C.0,-1D.0,1(7)方程3x-75=0的解是()A.x=5B.x=-5C.x=±5D.无实数根(8)方程(x-5)=6的两个根是() A.x1=x2=5+6B.x1=x2=-5+6 D.x1=5+6,x2=5-6C.x1=-5+6,x2=-5-6(9)若代数式x-6x+5的值等于12,那么x的值为()A.1或5B.7或-1C.-1或-5(10)关于x的方程3x-2(3m-1)x+2m=15有一个根为-2,则m的值等于() A.2B.-D.-7或112C.-2D.1 22.把下列方程化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项:(1)4x+1=9x;(2)(x+1)(x-3)=2x-3;(3)(x+3)(x-3)=2(x-3);(4)3y-2y=2y-3y+5.223.当m满足什么条件时,方程(m+1)x-4mx+4m-2=0是一元二次方程?当x=0时,求m的值.4.用直接开平方法解下列方程:(1)x=229;4(2)x=1.96;(5)(x-1)=144;(3)3x-48=0;(6)(6x-7)-9=0.(4)4x-1=0;5.用配方法解下列方程:(1)x+12x=0;(4)9x+6x-1=0;(2)x+12x+15=0(3)x-7x+2=0;(5)5x-2=-x;(6)3x-4x=2.6.用公式法解下列方程:(1)x-2x+1=0;(5)4x-1=0;22(2)x(x+8)=16;(3)x-x=2;3(4)0.8x+x=0.3;(6)x=7x;(7)3x+1=23x;(8)12x+7x+1=0.7.(1)当x为何值时,代数式2x+7x-1与4x+1的值相等?22(2)当x为何值时,代数式2x+7x-1与x-19的值互为相反数?8.已知a,b,c均为实数,且a22a1+|b+1|+(c+3)=0,解方程ax+bx+c=0.9.已知a+b+c=0.求证:1是关于x的一元二次方程ax+bx+c=0的根.10.用配方法证明:22(1)3y-6y+11的值恒大于零;(2)-10x-7x-4的值恒小于零.2211.证明:关于x的方程(a-8a+20)x+2ax+1=0,不论a为何实数,该方程都是一元二次方程.参考答案【同步达纲练习】1.(1)B (2)D (3)B (4)B (5)C (6)C(7) C (8)D (9)B (10)D2.(1)9x2-4x-1=0,9,-4,-1;(2)x2-4x=0,1,-4,0;(3)x2-12x+27=0,1,-12,27;(4)(-2)y2+(-2)y-5=0,-2,3-2,-.3.m≠-1,m=4.(1)x1=,x2=-;(2)x1=-1.4,x2=1.4;(3)x1=-4,x2=4;(4)x1=-,x2=;(5)x1=13,x2=-11;(6)x1=,x2=.5.(1)x1=0,x2=-12;(2)x1=-6-21,x2=-6+21;741741,x2=;22121 2(4)x1=,x2=;33141141(5)x1=,x2=;101022(6)x1=,x2=.33323212122353(3)x1=6.(1)x1=x2=1;(2)x1=-4-42,x2=-4+42;597513,x2=;(4)x1=,x2=-;664211(5)x1=,x2=-;(6)x1=0,x2=7;22(7)x1=x2=;311(8)x1=-,x2=-.347.(1)x=-2或x=;25(2)x=-4或x=.(3)x1=8.x1=11,x2=.229把1代入ax2+bx+c中,得ax2+bx+c=a+b+c=0∴1是方程ax2+bx+c=0的一个根.10(1)∵3y2-6y+11=3y2-6y+3+8=3(y-1)2+8又(y-1)2≥0,∴3(y-1)2+8>0.即3y2-6y+11的值恒大于零.(2)∵-10x2-7x-4=-10(x2+72111)+]400207111=-10(x+)2-.20407又-10(x+)2≤0,201117∴-10(x+)2-<0.402074x+) 1010=-10[(x+即-10x2-7x-4的值恒小于零.11∵a2-8a+20=(a-4)2+4>0∴该方程是一元二次方程第二篇:用配方法和公式法解一元二次方程用配方法和公式法解一元二次方程一.教学内容:用配方法和公式法解一元二次方程1.知道配方法的意义及用配方法解一元二次方程的主要步骤,能够熟练地用配方法解系数较简单的一元二次方程.2.理解用配方法推导出一元二次方程的求根公式,了解求根公式中的条件b2-4ac≥0的意义,知道b2-4ac的值的符号与方程根的情况之间的关系.3.能熟练地运用求根的公式解简单的数字系数的一元二次方程.二. 知识要点:1.形如x2=p或(mx+n)2=p(p≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程.通过配方,方程的左边变形为含x的完全平方形式(mx+n)=p(p≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法.3.用配方法解一元二次方程的步骤:(1)把二次项系数化为1;(2)移项,方程的一边为二次项和一次项,另一边为常数项;(3)方程两边同时加上一次项系数一半的平方;(4)用直接开平方法求出方程的根.2(3)当b-4ac<0时,方程没有实数根.2三. 重点难点:本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解.例2. 用配方法解方程:(1)x2+2x-5=0;(2)4x2-12x-1=0;(3)(x+1)2-6(x+1)2-45=0.分析:方程(1)是一元二次方程的一般形式,且二次项系数为1,所以直接移项、配方、求解即可;方程(2)要先把二次项系数化为1;方程(3)不要急于打开括号,可把(x+1)2看成一个整体合并,可避免重复配方.(3)将方程整理得(x+1)2-6(x+1)2=45,-5(x+1)2=45,(x+1)2=-9,由于x取任意实数时(x+1)2≥0,则上式都不成立,所以原方程无实数根.评析:配方法作为一种求解的方法,与其他方法比显得复杂些,为此,除非题目有特别指明用配方法解外,一般不用这种方法,但配方法是一种重要的数学方法,应用很广,应力争掌握好.例4. 不解方程判断下列方程根的情况.(1)4x2-11x=2;(2)4x2-x+5=0;(3)y2+14y+49=0;(4)x2+(m+2)x+m=0.分析:判断一元二次方程的根的情况应先把方程转化成一般形式,再计算b2-4ac的值.解:(1)原方程化为4x2-11x-2=0,a=4,b=-11,c=-2,b2-4ac=(-11)2-4×4×(-2)=153>0,所以原方程有两个不相等的实数根.(2)a=4,b=-1,c=5,b2-4ac=(-1)2-4×4×5=-79<0,所以原方程没有实数根.(3)a=1,b=14,c=49,b2-4ac=142-4×1×49=0,原方程有两个相等的实数根.(4)a=1,b=m+2,c=m,b2-4ac=(m+2)2-4×1×m=m2+4m+4-4m=m2+4,无论m取何值,m2+4>0,∴b2-4ac >0,原方程有两个不相等的实数根.评析:(1)b2-4ac是对一元二次方程一般形式而言的,计算前必须把方程化成一般形式;(2)当讨论含有字母系数的方程根的情况时,通常把计算结果化成(通过配方)(m+n)2+p的形式,由平方数的非负性说明它的符号.例5. 先用配方法说明:不论x取何值,代数式x2-5x+7的值总大于0.再求出当x取何值时,代数式x2-5x+7的值最小?最小值是多少?分析:准确配方,利用完全平方公式的非负性确定值的非负性及最小值.解:x2-5x+7=(x-2.5)2+0.75>0.当x=2.5时,代数式x2-5x+7的值最小,最小值是例6. 某农场要建一个矩形的养鸭场,养鸭场的一边靠墙,竹栏长为40m.(1)养鸭场的面积能达到150m2吗?能达到200m2吗?(2)能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.分析:根据题意列出方程,利用配方法或求根公式解方程,义,则满足要求,否则,不能满足要求.解:设与墙垂直的一边长为x m,则另一边长(40(1)当面积为150m2时,x(40-2x)=150,整理得:x2-20x+75=0,即(x-10)2=25.解得x1=5,x2=15.此时的设计方案为:与墙垂直的一边长为5m,另一边长为15m,另一边长为10m.而当面积为200m2时,x(40-2x)=200,解得x1=x2=10.此时的设计方案为:与墙垂直的边长为10m,另一边长为(2)当面积为250m2时,x(40-2x)=250,此方程无解.所以养鸭场的面积不能达到250m2.0.75.墙长25m,另三边用竹栏围成,如果方程有解且符合实际意2x)m.30m,或与墙垂直的边长为20m.-【预习导学】(用因式分解法解一元二次方程)一. 预习前知1. 想一想,因式分解有几种方法?2. 分解因式:(1)25(7x-3)2-16;(2)5x(2x+7)-3(2x+7);(3)x2-4x+4;(4)(x-1)2+2x(x-1).二. 预习导学1. 根据“ab=0,则a=0或b=0”解下列方程.(1)(x-1)(2x+3)=0;(2)x(x+1)=0;(3)(x-2)(x+1)=0.2. 用因式分解法解下列方程.(1)x2+x=0;(2)(3x-1)2-1=0;(3)x2-2x+1=0.反思:(1)用因式分解法适合解什么样的一元二次方程?(2)用因式分解法解一元二次方程的基本步骤是什么?【模拟试题】(答题时间:60分钟)一. 选择题1. 下列方程不能用开平方法求解的是()A. x2-6x+9=0B. (x-5)2=7C. 4x2=1D. 2y2+4y+4=0 3. 用配方法解方程x+3=4x时,这个方程可化为()2A. (x-2)2=7 B. (x+2)2=1 C. (x-2)2=1 D. (x+2)2=2 *4. 方程x2+x-1=0的根精确到0.1的近似值是()A. 0.6,1.6B. 0.6,-1.6C. -0.6,1.6D. -0.6,-1.6 5. 一元二次方程x2-2x-3=0的根是()A. x1=1,x2=3B. x1=-1,x2=3C. x1=-1,x2=-3D. x1=1,x2=-3 *6. 用配方法解方程时,下列配方错误的是()*7. 下列关于x的一元二次方程中有两个不相等的实数根的是()A. x2+1=0B. x2+2x+1=0C. x2+2x+3=0D. x2+2x-3=0 **8. 若x2-2(k+1)x+k2+5是一个完全平方式,则k等于()A. -1B. 2C. 1D. -2 二. 填空题1. 如果(x-2)2=9,则x=__________.2. 方程(2y+1)2-16=0的根是__________.3. 方程(x+m)2=n有解的条件是__________.4. 填空:(1)x2+10x+__________=(x+__________)2;(2)m2-8m+__________=(m-__________)2;(3)x2+3x+__________=(x+__________)2;(4)x2+1/2x+__________=(x+__________)2;(5)x2-mx+__________=(x-__________)2.*5. 把下列各式化为(x+m)2+n的形式:(1)x2-4x+7=__________;(2)x2+2x-3=__________;6. 方程x+5x+3=0中,b-4ac=_______,由求根公式可得方程的根是x1=_______,x2=_______.7. 如果关于x的方程x2+4x+a=0有两个相等的实数根,那么a=__________.三. 解答题1. 用直接开平方法解下列一元二次方程:(1)(x-1)2=4;(2)4m2-4m=-1;(3)3(4x-1)2=48;(4)y2-2y-8=0.2. 用配方法解方程:(1)x2-6x-7=0;(2)x2-2x-1=0;(3)2x2+x=0;(4)(x+1)2=x-1.3. 关于x的二次三项式x2+2mx+4-m2是一个完全平方式,求m的值.4. 如图,一个5m长的梯子斜靠在墙上,梯子的顶端距离地面3m,如果顶端下滑1m,那么,梯子的底端也将滑动1m吗?请你用所学知识来解释.25. 若关于x的方程x+(2k-1)x+k-7/4=0有两个相等的实数根,求k的值.6. 方程x2+kx-6=0的一个根是2,试求另一个根及k的值.7. 用100m长的铁丝围成一个长方形,面积是600m2,长、宽分别是多少?能否再围成一个面积是800m2的长方形呢?22第三篇:初三数学一元二次方程解法练习题配方法公式法分解因式法配方法1、x22x802、x242x3、3y26y2404、4x27x205、12x22x906、2x23x507、2x25x308、用配方法证明:方程x2x10无解9、用配方法证明:方程x2x10的值恒大于零公式法1、32t24t102、x23、x23x1104、2x23x 185、3x212x6、已知x23x40的根为x1,x2,求x1x2,x1x2,1122x,x1x2 1x2配方法1、4x2x32x2、9x26x103、x2 293x124、2x2 24x25、92x3 242x5 24x1207、4x3 254x3608、2x1x13x1x19、x x1x20第四篇:配方法解一元二次方程“配方法解一元二次方程”说课于晓静:北京市十一学校中学高级一、教材的地位和作用配方法是以配方为手段、以平方根定义为依据解一元二次方程的一种基本方法,其中所涉及的完全平方式、求一个非负数的平方根以及解一元一次方程等都是学生已有的知识与技能,为本节课的学习奠定了知识技能方面的基础。
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1学习目标1、一元二次方程的求根公式的推导2、会用求根公式解一元二次方程.3、通过运用公式法解一元二次方程的训练,提高学生的运算能力,养成良好的运算习惯学习重、难点重点:一元二次方程的求根公式.难点:求根公式的条件:b2 -4ac≥0学习过程:一、自学质疑:1、用配方法解方程:2x2-7x+3=0.2、用配方解一元二次方程的步骤是什么?3、用配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、交流展示:刚才我们已经利用配方法求解了一元二次方程,那你能否利用配方法的基本步骤解方程ax2+bx+c=0(a≠0)呢?三、互动探究:一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是用求根公式解一元二次方程的方法称为公式法由此我们可以看到:一元二次方程ax2+bx+c=0(a≠0)的根是由方程的系数a、b、c确定的.因此,在解一元二次方程时,先将方程化为一般形式,然后在b2-4ac≥0的前提条件下,把各项系数a、b、c的值代入,就可以求得方程的根.注:(1)把方程化为一般形式后,在确定a、b、c时,需注意符号.(2)在运用求根公式求解时,应先计算b2-4ac的值;当b2-4ac≥0时,可以用公式求出两个不相等的实数解;当b2-4ac<0时,方程没有实数解.就不必再代入公式计算了.四、精讲点拨:例1、课本例题总结:其一般步骤是:(1)把方程化为一般形式,进而确定a、b,c的值.(注意符号)(2)求出b2-4ac的值.(先判别方程是否有根)(3)在b2-4ac≥0的前提下,把a、b、c的直代入求根公式,求出的值,最后写出方程的根.例2、解方程:(1)2x2-7x+3=0 (2) x2-7x-1=0(3) 2x2-9x+8=0 (4) 9x2+6x+1=0五、纠正反馈:做书上第P90练习。
公式法解一元二次方程导学案主备人: 组长: 包科领导:学习目标:1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.学会利用求根公式解简单数字系数的一元二次方程学习重点:求根公式的推导,公式的正确使用学习难点:求根公式的推导预 习 案1、用配方法解下列方程(1)6x 2-7x+1=0 (2)4x 2-3x=522、如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根?分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解: 移项,得: ,二次项系数化为1,得配方,得: 即∵a ≠0,∴4a 2>0,式子b 2-4ac 的值有以下三种情况:(1) b 2-4ac >0,则2244b ac a ->0直接开平方,得: 即x=2b a-± ∴x 1= ,x 2=(2) b 2-4ac=0,则2244b ac a -=0此时方程的跟为 即一元二次程ax 2+bx+c=0(a ≠0)有两个 的实根。
(3) b 2-4ac <0,则2244b ac a -<0,此时(x+2b a )2 <0,而x 取任何实数都不能使(x+2b a )2 <0,因此方程 实数根。
探 究 案一、由预习可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a 、b 、c 代入式子b 2-4ac <0,方程没有实数根。
(2)ax 2+bx+c=0(a ≠0)的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有 实数根。
当b 2-4ac >0时,一元二次方程有 的实数根;当b 2-4ac=0时,一元二次方程有 的实数根;当b 2-4ac <0,一元二次方程 实数根。
3.3用公式法解一元二次方程(1)学习目标:1.会用配方法解方程推导出一元二次方程的求根公式。
2.能利用一元二次方程根的判别式判断根的情况。
3.学会运用公式法解一元二次方程。
学习过程:一.拓通准备:1.配方法解一元二次方程的步骤:2.运用配方法解方程ax2+bx+c=0 (a,b,c都是常数,且a≠0)归纳总结:1.根据上题,得出一元二次方程的求根公式_________________________________________.2.什么叫做公式法:_______________________________.3.一元二次方程根的判别式:________________________.4.根据判别式,怎样判断一元二次方程ax2+bx+c=0根的情况:当b2-4ac>0,方程_____________________.当b2-4ac=0, 方程________________________. 当b2-4ac<0, 方程_______________________.二.自我尝试:不解方程,根据判别式,判断一元二次方程根的情况。
(1)x2(2)x2-x+1=0 (3)4x2-4x+1=0三. 典型例题:用公式法解方程:(1)2x2+5x-3=0 (2)4x2=9x四.自我训练:用公式法解方程(1) x 2+6x+5=0 (2)6Y2-13Y-5=0 (3) x2-3x-4=0 (4)2x2+1=3x五.小结:六.当堂检测:1.一元二次方程ax2+bx+c=0 (a,b,c都是常数,且a≠0)的求根公式:___________________________.用求根公式的前提条件是____ _________2.一元二次方程x2+2= 其中a=____,b=____,c=___,b2-4ac=___.它的根是:________.3.下列一元二次方程中,没有实数根的是(_____)A: x2+2x-1=0 B: x2x+1=0 C: x2x+2=0 D: -x2+x+2=04.解下列方程:(1)2x2+11x+5=0 (2)5x23.3用公式法解一元二次方程(2)学习目标:1.会熟练地把一元二次方程化成一般形式。
21.2一元二次方程的解法教学目标:1、 理解一元二次方程求根公式的推导过程。
2、 会用公式法解一元二次方程。
教学重难点:重点:本节教学的重点是用公式法解一元二次方程。
难点:一元二次方程的求根公式的推导过程比较复杂,涉及多方面的知识和能力,是本节教学的难点。
教学过程: 一、复习引入请你用配方法解下列一元二次方程: 08922=+-x x学生先独立完成,由一名学生板演,师生共同评价。
师:如果是02004200620052=+-x x 呢?你能用配方法来解吗? 生:可能会说,能,但比较麻烦。
师:对于任意的一个一元二次方程02=++c bx ax (0≠a )是不是有一种万能的方法,都能求出一元二次方程的解呢?下面我们一起研究02=++c bx ax 的特点。
引出课题:用公式求一元二次方程的解 二、授新课 1、 探究活动学生完成33p 怎样用配方法解用一般形式表示的一元二次方程02=++c bx ax (0≠a )。
请完成下面的填空: 1)化1:把二次项系数化为1: 2)移项:把常数项移到方程的右边: 3)配方:方程两边都加上一次项系数绝对值一半的平方:4)变形:方程左分解因式,右边合并同类:5)开方:根据平方根意义,方程两边开平方: 6)求解:解一元一次方程: 7)定解:写出原方程的解。
.0:2=++ac x a b x 解.2a cx a b x -=+.22222a ca b a b x a b x -⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++.442222a acb a b x -=⎪⎭⎫ ⎝⎛+,042时当≥-ac b .2422aac b a b x -±=+().04.2422≥--±-=∴ac b aac b b x想一想:为什么0,042≠≥-a ac b ?如果042≤-ac b 一元二次方程有没有实数根?(学生思考后由一名优生回答) 2、给出求根公式一般地,对于一元二次方程 02=++c bx ax (0≠a ): 板书:1)上面这个式子称为一元二次方程的求根公式。
一元二次方程教案(教案)一元二次方程的解法第1篇第2篇第3篇第4篇第5篇更多顶部第一篇:配方法解一元二次方程的教案第二篇:一元二次方程复习教案(正式)第三篇:4.2.3一元二次方程的解法(教案)第四篇:教案一元二次方程的应用第五篇:一元二次方程根的分布教案更多相关范文第一篇:配方法解一元二次方程的教案配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。
一、教学目标(一)知识目标1、理解求解一元二次方程的实质。
2、掌握解一元二次方程的配方法。
(二)能力目标1、体会数学的转化思想。
2、能根据配方法解一元二次方程的一般步骤解一元二次方程。
(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。
二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。
四、知识考点运用配方法解一元二次方程。
五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
2、引入:二次根式的意义:若x2=a(a为非负数),则x叫做a的平方根,即x=±√a。
实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。
通过问题吸引学生的注意力,引发学生思考。
问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。
这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm2列出方程:60x2=1500x2=25x=±5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。
公式法解一元二次方程学案学习目标:1.经历求根公式的推导过程.2.会用公式法解一元二次方程.3.理解并会计算一元二次方程根的判别式.4.会用判别式判断一元二次方程的根的情况.重点:运用公式法解一元二次方程.难点:一元二次方程求根公式的推导.一、知识链接如何用配方法解方程2x 2+4x -1=0?二、要点探究探究点1:求根公式的推导合作探究 任何一个一元二次方程都可以写成一般形式ax 2+bx +c =0(a ≠0),能否也用配方法得出它的解呢? 问题1 用配方法解一元二次方程ax 2+bx +c =0(a ≠0).解:移项,得ax 2+bx =-c ,二次项系数化为1,得x 2+ x =c a配方,得x 2+ x +( )2=( )2c a即(x +2b a)2=2244b ac a ①问题2 对于方程①接下来能直接开平方解吗?要点归纳:∵a ≠0,∴4a 2>0.要注意式子b 2-4ac 的值有大于0、小于0和等于0三种情况.探究点2:一元二次方程根的判别式 22= b 2-4ac .0 0按要求完成下列表格33x 的值例1 已知一元二次方程x2+x=1,下列判断正确的是( )A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定例2 不解方程,判断下列方程的根的情况.(1)3x2+4x-3=0;(2) 4x2=12x-9;(3) 7y=5(y2+1).方法总结:现将方程变形为一般形式ax2+bx+c=0,再根据根的判别式求解即可.例3 若关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q≤4B.q≥4C.q<16D.q>16【变式题】二次项系数含字母若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是( )A.k>-1B.k>-1且k≠0C.k<1D.k<1且k≠0方法总结:当一元二次方程二次项系数为字母时,一定要注意二次项系数不为0,再根据根的判别式求字母的取值范围.【变式题】删除限制条件“二次”若关于x的方程kx2-2x-1=0有实数根,则k的取值范围是( )A.k≥-1B.k≥-1且k≠0C.k<1D.k<1且k≠0探究点3:用公式法解方程由上可知,当≥0时,方程ax2+bx+c=0 (a≠0)的实数根可写为242b b acxa的形式,这个式子叫做一元二次方程ax2+bx+c=0的求根公式.用求根公式解一元二次方程的方法叫做公式法.p11例2)用公式法解下列方程:(1)x2-4x-7=0;(2) 2x2-+1=0;(2)5x2-3x=x+1;(4) x2+17=8x.要点归纳:公式法解方程的步骤:1.变形:化已知方程为一般形式;2.确定系数:用a,b,c写出各项系数;3.计算:b2-4ac的值;4.判断:若b2-4ac≥0,则利用求根公式求出;若b2-4ac<0,则方程没有实数根.课堂检测1.不解方程,判断下列方程的根的情况.(1) 2x2+3x-4=0;(2) x2-x+14=0;(3) x2-x+1=0.2.解方程:x2 +7x–18 = 0.3.解方程:(x-2) (1-3x) = 6.4.解方程:2x2- + 3 = 0.5.(1)关于x的一元二次方程220x x m有两个实根,则m的取值范围是;(2)若关于x的一元二次方程(m-1)x2-2mx+m=2有实数根.求m的取值范围.6.不解方程,判别关于x的方程22220x kx k的根的情况.能力提升:在等腰△ABC中,三边分别为a,b,c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.参考答案自主学习一、知识链接解:方程整理得212.2x x 配方,得23+12x .直接开平方,得6+1x ,∴126611x x ,.课堂探究二、要点探究 探究点1:求根公式的推导问题1 b a b a 2b a 2b a问题2 不能,需要注意右边式子有大于0,等于0,小于0三种情况.探究点2:一元二次方程根的判别式两个不相等实数根 两个相等实数根 没有实数根 两个实数根练一练 从上往下,从左到右依次为0,13,4,有两个相等实数根,没有实数根,有两个不相等的实数解析:原方程变形为x 2+x -1=0.∵b 2-4ac =1-4×1×(-1)=5>0,∴该方程有两个不相等的实数根,故选B.例2 解:(1)3x 2+4x -3=0,a =3,b =4,c =-3,∴b 2-4ac =42-4×3×(-3)=52>0.∴方程有两个不相等的实数根.(2)方程化为:4x 2-12x +9=0,∴b 2-4ac =(-12)2-4×4×9=0.∴方程有两个相等的实数根.(3)方程化为:5y 2-7y +5=0,∴b 2-4ac =(-7)2-4×5×5=-51<0.∴方程无实数根.例3 C 解析:由根的判别式知,方程有两个不相等的实数根,则b 2-4ac >0,即82-4q >0.解得q <16,故选C.【变式题】B 解析:方程有两个不相等的实数根,则b 2-4ac >0,即(-2)2+4k >0.又二次项系数不为0,可得k >-1且k ≠0,故选B.【变式题】A 思路分析:分k =0或k ≠0两种情况进行分类讨论.探究点3:用公式法解方程例4 解:(1)a =1,b =-4,c =-7,b 2-4ac =(-4)2-4×1×(-7)=44>0.方程有两个不相等的实数根24(4)44211.221b b acx a 即12211211x x ,.(2)a =2,b =22,c =1,b 2-4ac =(22)2-4×1×2=0.方程有两个相等的实数根,即212422022222b b ac x x a . (3)方程化为5x 2-4x -1=0,a =5,b =-4,c =-1,b 2-4ac =(-4)2-4×5×(-1)=36>0.方程有两个不相等的实数根24(4)3646.22510b b acx a 即12115x x ,. (4)方程化为x 2-8x +17=0,a =1,b =-8,c =17,b 2-4ac =(-8)2-4×1×17=-4<0.方程无实数根.当堂检测1.解:(1)a =2,b =3,c =-4,b 2-4ac =32-4×2×(-4)=41>0.方程有两个不相等的实数根.(2)a =1,b =-1,c =14,b 2-4ac =(-1)2-4×1×14=0.方程有两个相等的实数根.(3)a=1,b=-1,c=1,b2-4ac=(-1)2-4×1×1=-3<0.方程无实数根.2.解:这里a=1,b=7,c=-18,b2-4ac=72-4×1×(-18)=121>0.∴247121711.2212b b acxa1292x x,.3.解:去括号,得x-2-3x2 + 6x = 6,化为一般式为3x2-7x + 8 = 0,这里a=3,b=-7,c=8,b2-4ac= (-7)2–4×3×8 =49-96=-47<0.∴原方程无实数根.4.这里a=2,b=33,c=3,b2-4ac=(33)2-4×2×3=3>0.∴24333.24b b acxa1233x x,.5.(1)m≤1(2)解:化为一般式(m-1)x2-2mx+m-2=0.Δ=4m2−4(m−1)(m−2)≥0,且m-1≠0,解得23m且m≠1.6.解:222222241844k k k k k,∵20k,∴240k,∴0.∴方程有两个实数根. 能力提升解:关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,所以Δ=b2-4ac=(b-2)2-4(6-b)=b2+8b-20=0.所以b=-10或b=2.将b=-10代入原方程得x2-8x+16=0,x1=x2=4;将b=2代入原方程得x2+4x+4=0,x1=x2=-2(舍去);所以△ABC的三边长为4,4,5,其周长为4+4+5=13.。
解一元二次方程公式法学案(修改版)
班级 姓名 学号 学习目标
1、经历推导求根公式的过程,加强推理技能训练,进一步发展逻辑思维能力;
2、会用公式法解简单系数的一元二次方程;
3进一步体验类比、转化、降次的数学思想方法。
重点:用公式法解简单系数的一元二次方程;
难点:推导求根公式的过程。
导学流程
复习提问:
1、用配方法解一元二次方程的步骤有哪些?
2、用配方法解方程3x 2-6x-8=0;
3、你能用配方法解下列方程吗?请你和同桌讨论一下.
ax 2
+bx +c =0(a ≠0).
推导公式
用配方法解一元二次方程ax 2+bx +c =0(a ≠0).
因为a ≠0,方程两边都除以a ,得 _____________________=0.
移项,得 x 2+
a
b x =________, 配方,得 x 2+a b x +______=______-a
c , 即 (____________) 2=___________
因为 a ≠0,所以4 a 2>0,当b 2-4 ac ≥0时,直接开平方,得 _____________________________.
所以 x =_______________________
即 x =_________________________ 由以上研究的结果,得到了一元二次方程ax 2 +bx +c =0的求根公式:
精讲点拨
利用这个公式,我们可以由一元二次方程中系数a 、b 、c 的值,直接求得方程的解,这种解方程的方法叫做公式法. 合作交流
b 2-4 a
c 为什么一定要强调它不小于0呢?如果它小于0会出现什么情况呢?
展示反馈
学生在合作交流后展示小组学习成果。
① 当b 2-4ac >0时,方程有__个________的实数
根;(填相等或不相等)
② 当b 2-4ac =0时,方程有___个____的实数根 x 1=x 2=________
③ 当b 2-4ac <0时,方程______实数根.
巩固练习
1、做一做:
(1)方程2x 2-3x+1=0中,a=( ),b=( ),c=( )
(2)方程(2x-1)2=-4中,a=( ),b=( ),c=( ).
(3)方程3x 2-2x+4=0中,ac b 42-=( ),则该一元二次方程( )
实数根。
(4)不解方程,判断方程x2-4x+4=0的根的情况。
2、应用公式法解下列方程:
(1) 2 x2+x-6=0; (2) x2+4x=2;
(3) 5x2-4x-12=0; (4) 4x2+4x+10=1-8x. 解(1)这里a=___,b=___,c=______,
b2-4ac=____________ =_________
所以x=
a ac
b b
2
4 2-
±
-
=_________=____________
即原方程的解是 x
1=_____,x
2
=_____
(2)将方程化为一般式,得_________________=0. 因为 b2-4ac=_________
所以 x=_____________=_______________
原方程的解是 x
1=________,x
2
=_____
(3)因为 ___________________,
所以 x=____________=__________=__________
原方程的解是 x
1=________,x
2
=__________.
(4)整理,得_______________=0. 因为 b2-4ac=_________,
所以 x
1=x
2
=________
课堂小结
1、一元二次方程的求根公式是什么?
2、用公式法解一元二次方程的步骤是什么?
达标测评
(A)1、应用公式法解方程:
(1) x2-6x+1=0; (2)2x2-x=6;
(3)4x2-3x-1=x-2; (4)3x(x-3) =2(x-1) (x+1). (5)(x-2)(x+5)=8;(6)(x+1)2=2(x+1).
(B)2、某农场要建一个矩形的养鸭场,养鸭场的一边靠墙,墙长25m,另三边用篱笆围成,篱笆长为40m.
(1)养鸭场的面积能达到150m2吗?能达到200 m2吗?
(2)能达到250 m2吗?
拓展提高
m取什么值时,关于x的方程2x2-(m+2)x+2m-2=0
有两个相等的实数根?。