第三章纳米薄膜材料PVD
- 格式:ppt
- 大小:5.34 MB
- 文档页数:62
第三章薄膜制造技术光学薄膜可以采用物理汽相沉积( PVD )和化学液相沉积(CLD )两种工艺来获得。
CLD 工艺简单,制造成 本低,但膜层厚度不能精确控制, 膜层强度差,较难获得多层膜,废水废气对环境造成污染, 已很少使用。
PVD 需要使用真空镀膜机,制造成本高,但膜层厚度能够精确控制,膜层强度好,目前已广泛使用。
PVD 分为热蒸发、溅射、离子镀、及离子辅助镀等。
制作薄膜所必需的有关真空设备的基础知识用物理方法制作薄膜,概括起来就是给制作薄膜的物质加上热能或动量,使它分解为原子、分子或少数几 个原子、分子的集合体(从广义来说,就是使其蒸发),并使它们在其他位置重新结合或凝聚。
在这个过程中,如果大气与蒸发中的物质同时存在,那就会产生如下一些问题: ① 蒸发物质的直线前进受妨碍而形成雾状微粒,难以制得均匀平整的薄膜; ② 空气分子进入薄膜而形成杂质; ③ 空气中的活性分子与薄膜形成化合物;④ 蒸发用的加热器及蒸发物质等与空气分子发生反应形成 化合物,从而不能进行正常的蒸发等等。
因此,必须把空气分子从制作薄膜的设备中排除出去,这个过程称为抽气。
空气压力低于一个大气压的状态称为真空, 而把产生真空的装置叫做真空泵,抽成真空的容器叫做真空室,把包括真空泵和真空室在内的设备叫做真空设备。
制作薄膜最重要的装备是真空设备.真空设备大致可分为两类:高真空设备和超高真空设备。
二 者真空度不同,这两种真空设备的抽气系统基本上是相同 的,但所用的真空泵和真空阀不同,而且用于真空室和抽气系统的材料也不同, 下图是典型的高真空设备的原理图,制作薄膜所用的高真空设备大多都属于这一类。
下图是超高真空设备的原理图,在原理上,它与高真空设备 没有什么不同,但是,为了稍稍改善抽气时空气的流动性, 超高真空设备不太使用管子,多数将超高真空用的真空泵直 接与真空室连接,一般还要装上辅助真空泵(如钛吸气泵) 来辅助超高真空泵。
3.1高真空镀膜机 1•真空系统现代的光学薄膜制备都是在真空下获得的。
薄膜材料的制备及性能研究第一章:薄膜材料的基础知识薄膜材料是指厚度在一个纳米到几微米之间的材料,由于其具有较大的比表面积和界面能,从而表现出了明显的物理和化学性质,应用广泛。
薄膜材料可以制备出各种不同形态和结构的材料,包括单层,多层和复合薄膜。
薄膜可以用于制备各种功能性材料,例如光电材料,传感器,能源材料和生物医学材料等。
因此薄膜材料的制备和性能研究已经成为了材料科学中一个重要的研究方向。
第二章:薄膜制备技术薄膜制备技术可以分为物理气相沉积(PVD),化学气相沉积(CVD),溶液法和电化学法等。
其中PVD主要应用于粘附性要求高的金属材料,CVD是为了制作半导体器件而发展出来的技术。
溶液法和电化学法则可以用来制备具有大面积、低成本和环境友好等特点的薄膜材料,因此是应用最为广泛的制备技术之一。
采用这两种技术制备的薄膜具有谷电导,谷光导和电化学性质等。
第三章:薄膜材料的性能研究具体来说,薄膜材料的性能包括表面化学性质、表面结构、光电性质和力学性质。
如表面化学性质可以通过XPS、FTIR和Tof-SIMS等技术进行表征,表面结构可以利用STM和AFM等技术来研究;光电性质则可以通过光谱测量和电学测试等手段来探究,力学性质则可以通过纳米压痕实验等方法来研究。
另外,薄膜材料的吸湿性、稳定性和生物相容性也是需要考虑的因素。
第四章:薄膜材料的应用领域举例薄膜材料由于其独特的性质,在许多领域中都有着广泛的应用。
以太阳能电池为例,在这种光电器件中,薄膜材料被用来制作光电转换器件和透明电极等部件,这直接关系到其光电性能和机械稳定性。
另外,在生物医学领域中,薄膜材料可以用来制备药物输送系统和人工血管等医学器械,用于有效地传递和释放药物。
第五章:未来展望在未来,薄膜材料将面临更加广泛和深入的应用前景。
例如,在生物医学领域中,薄膜材料可以用于制备智能药物释放系统,这将为治疗慢性疾病提供更有效的途径。
此外,在电子器件中,薄膜材料可以用于制作超薄管道、柔性器件和透明电极等。
光学薄膜技术第三章——薄膜制造技术—-—-———-—--—--———————-—-——--——-—作者:—--—-————-——--—-————-———————-———日期:第三章薄膜制造技术光学薄膜可以采用物理汽相沉积(PVD)和化学液相沉积(CLD)两种工艺来获得.CLD工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,废水废气对环境造成污染,已很少使用.PVD需要使用真空镀膜机,制造成本高,但膜层厚度能够精确控制,膜层强度好,目前已广泛使用。
PVD分为热蒸发、溅射、离子镀、及离子辅助镀等。
制作薄膜所必需的有关真空设备的基础知识用物理方法制作薄膜,概括起来就是给制作薄膜的物质加上热能或动量,使它分解为原子、分子或少数几个原子、分子的集合体(从广义来说,就是使其蒸发),并使它们在其他位置重新结合或凝聚.在这个过程中,如果大气与蒸发中的物质同时存在,那就会产生如下一些问题:①蒸发物质的直线前进受妨碍而形成雾状微粒,难以制得均匀平整的薄膜;②空气分子进入薄膜而形成杂质;③空气中的活性分子与薄膜形成化合物;④蒸发用的加热器及蒸发物质等与空气分子发生反应形成化合物,从而不能进行正常的蒸发等等.因此,必须把空气分子从制作薄膜的设备中排除出去,这个过程称为抽气。
空气压力低于一个大气压的状态称为真空,而把产生真空的装置叫做真空泵,抽成真空的容器叫做真空室,把包括真空泵和真空室在内的设备叫做真空设备.制作薄膜最重要的装备是真空设备.真空设备大致可分为两类:高真空设备和超高真空设备.二者真空度不同,这两种真空设备的抽气系统基本上是相同的,但所用的真空泵和真空阀不同,而且用于真空室和抽气系统的材料也不同,下图是典型的高真空设备的原理图,制作薄膜所用的高真空设备大多都属于这一类.下图是超高真空设备的原理图,在原理上,它与高真空设备没有什么不同,但是,为了稍稍改善抽气时空气的流动性,超高真空设备不太使用管子,多数将超高真空用的真空泵直接与真空室连接,一般还要装上辅助真空泵(如钛吸气泵)来辅助超高真空泵。
大面积纳米级薄膜成膜技术方案
大面积纳米级薄膜成膜技术方案可以采用物理气相沉积(Physical Vapor Deposition,PVD)技术或化学气相沉积(Chemical Vapor Deposition,CVD)技术。
1. 物理气相沉积(PVD):PVD技术是通过在真空环境下将材料以固体的形式蒸发或溅射,形成纳米级薄膜。
典型的PVD技术包括磁控溅射、电子束蒸发和激光脉冲沉积。
这些技术在大面积成膜方面具有较高的可扩展性和成膜速度,并且不需要复杂的化学反应。
2. 化学气相沉积(CVD):CVD技术是通过在适当气氛中将材料的前驱体分解反应生成纳米级薄膜。
常见的CVD技术包括热CVD、低压CVD和气相原子层沉积(Atomic Layer Deposition,ALD)。
这些技术在大面积成膜方面具有较好的可控性和均匀性,适用于复杂多层结构的制备。
以上两种技术可以根据不同的薄膜材料和应用需求选择合适的工艺参数和设备配置。
同时,为了实现大面积成膜,可以使用旋涂、喷雾、滚涂等辅助技术结合PVD或CVD技术,实现连续、均匀的薄膜沉积。
同时,合适的基底处理和薄膜后处理技术也是确保大面积纳米级薄膜质量的重要环节。