【步步高】2015届高三数学人教B版【配套文档】 常考题型强化练——不等式、推理与证明
- 格式:doc
- 大小:125.00 KB
- 文档页数:7
【走向高考】2015届高考数学一轮总复习 7-2基本不等式课后强化作业 新人教B 版基础巩固强化一、选择题1.(2013·某某一中月考)已知a 、b 是实数,则“a >1,b >1”是“a +b >2且ab >1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 [答案]A[解析]∵a >1,b >1,∴a +b >2,且ab >1;当a =103,b =910时,a +b >2且ab >1,但“a >1,b >1”不成立,故选A.2.已知函数f (x )=log a x (a >0且a ≠1),若x <0时,有a x >1,则不等式f (1-1x )>1的解集为( )A .(11-a ,+∞)B .(1,1a )C .(-∞,11-a )D .(1,11-a) [答案]D[解析]依题意得0<a <1,于是由f (1-1x )>1得log a (1-1x )>log a a,0<1-1x <a ,由此解得1<x <11-a ,因此不等式f (1-1x )>1的解集是(1,11-a),选D.3.(文)已知a ≥0,b ≥0,且a +b =2,则( ) A .ab ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤3 [答案]C[解析]∵2=a +b ≥2ab ,∴ab ≤1,排除A 、B ; ∴a 2+b 2=(a +b )2-2ab =4-2ab ≥2,排除D ,选C.[点评] 用特值检验法易得.令a =1,b =1排除A ;令a =2,b =0,排除B 、D ,故选C.(理)(2014·枣阳一中诊断)已知2x +8y =1(x >0,y >0),则x +y 的最小值为( )A .12B .14C .16D .18 [答案]D[解析]x +y =(x +y )(2x +8y )=2+8+2y x +8xy≥10+22y x ·8xy=18. 当且仅当x =6,y =12时取等号.故选D.4.(文)(2013·某某鱼台一中质检)若a >b >0,则下列不等式一定不成立的是( ) A.1a <1bB .log 2a >log 2bC .a 2+b 2≤2a +2b -2D .b <ab <a +b2<a[答案]C[解析]y =1x 在(0,+∞)上单调递减,a >b >0,∴1a <1b ,故A 成立;∵y =log 2x 在(0,+∞)上单调递增,∴log 2a >log 2b ,∴B 成立;∵a >b >0,∴a =2a 2>a +b2>ab >b 2=b ,∴D 成立;∵a 2+b 2-2a -2b +2=(a -1)2+(b -1)2>0,∴a 2+b 2>2a +2b -2,∴C 不成立.(理)若正实数a ,b 满足a +b =1,则( ) A.1a +1b有最大值4 B .ab 有最小值14C.a +b 有最大值 2 D .a 2+b 2有最小值22[答案]C[解析]由基本不等式,得ab ≤a 2+b 22=(a +b )2-2ab 2=12-ab ,所以ab ≤14,故B 错;1a +1b =a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2≤a +b2=12,即a +b ≤2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故D 错.故选C.5.(2013·某某市检测)已知向量a =(x -1,2),b =(4,y ),若a ⊥b ,则9x +3y 的最小值为( )A .2B .2 3C .6D .9 [答案]C[解析]由题意知a ·b =4(x -1)+2y =0,∴2x +y =2,∴9x +3y =32x +3y ≥232x +y =6,等号成立时,x =12,y =2,故选C.6.(2013·某某二模)在R 上定义运算:⎝ ⎛⎭⎪⎫ab cd =ad -bc .若不等式⎝ ⎛⎭⎪⎫x -1a -2a +1x ≥1对任意实数x 恒成立,则实数a 的最大值为()A .-12B .-32C.13D.32 [答案]D[解析]原不等式等价于x (x -1)-(a -2)(a +1)≥1,即x 2-x -1≥(a +1)(a -2)对任意实数x 恒成立,∵x 2-x -1=(x -12)2-54≥-54,∴-54≥a 2-a -2,∴-12≤a ≤32.故选D.二、填空题7.(文)设圆x 2+y 2=1的一条切线与x 轴、y 轴分别交于点A ,B ,则AB 的最小值为______. [答案]2[解析]由条件知切线在两轴上的截距存在,且不为零,故设切线方程为x a +yb =1,则ab a 2+b 2=1,∴a 2b 2=a 2+b 2≥2ab ,切线与两轴交于点A (a,0)和(0,b ),不妨设a >0,b >0,∴ab ≥2,则AB =|AB |=a 2+b 2≥2ab ≥2.(理)已知c 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的半焦距,则ca +b 的取值X 围是________.[答案][22,1)[解析]由题设条件知,a +b >c ,∴ca +b <1,∵a 2+b 2=c 2,∴(c a +b )2=c 2a 2+b 2+2ab ≥c 22(a 2+b 2)=12, ∴c a +b ≥22,22≤c a +b <1.8.(2013·某某)已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则a =________.[答案]36[解析]∵f (x )=4x +ax≥24x ·ax=4a , 当且仅当4x =ax ,即4x 2=a 时f (x )取得最小值.又∵x =3,∴a =4×32=36.9.(文)(2013·豫西五校联考)已知a ,b ∈R ,且ab =50,则|a +2b |的最小值是________. [答案]20[解析]依题意得,a ,b 同号,于是有|a +2b |=|a |+|2b |≥2|a |·|2b |=22|ab |=2100=20,当且仅当|a |=|2b |=10时取等号,因此|a +2b |的最小值是20.(理)在等式“1=1()+9()”的两个括号内各填入一个正整数,使它们的和最小,则填入的两个数是________.[答案]4和12[解析]设两个括号中的正整数分别为x ,y ,则x >0,y >0,1x +9y =1,x +y =(x +y )(1x +9y )=10+y x +9xy≥10+2y x ·9x y =16,等号在y x =9x y,即y =3x 时成立,由⎩⎪⎨⎪⎧1x +9y=1y =3x解得⎩⎪⎨⎪⎧x =4,y =12. 三、解答题10.若直线ax +by +1=0(a >0,b >0)平分圆x 2+y 2+8x +2y +1=0,求1a +4b 的最小值.[解析]由x 2+y 2+8x +2y +1=0得(x +4)2+(y +1)2=16, ∴圆的圆心坐标为(-4,-1), ∴-4a -b +1=0,即4a +b =1, ∴1a +4b =b +4a ab =1ab, 由1=4a +b ≥24ab =4ab ,得ab ≤116,∴1ab ≥16,∴1a +4b的最小值为16. 能力拓展提升一、选择题11.(文)已知-1<a <0,A =1+a 2,B =1-a 2,C =11+a,比较A 、B 、C 的大小结果为( ) A .A <B <C B .B <A <C C .A <C <B D .B <C <A [答案]B[解析]不妨设a =-12,则A =54,B =34,C =2,由此猜想B <A <C .由-1<a <0得1+a >0,A -B =(1+a 2)-(1-a 2)=2a 2>0得A >B ,C -A =11+a -(1+a 2)=-a (a 2+a +1)1+a=-a ⎣⎡⎦⎤⎝⎛⎭⎫a +122+341+a>0,得C >A ,∴B <A <C .(理)(2012·某某一模)若实数x 、y 满足4x +4y =2x +1+2y +1,则t =2x +2y 的取值X 围是( ) A .0<t ≤2 B .0<t ≤4 C .2<t ≤4 D .t ≥4 [答案]C[解析]设a =2x ,b =2y ,则a >0,b >0,由条件得a 2+b 2=2(a +b ),∵a 2+b 2≥(a +b )22,∴(a +b )2≤4(a +b ),∴a +b ≤4, 又(a +b )2-2(a +b )=2ab >0,∴a +b >2,∴2<a +b ≤4.12.(文)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .9 [答案]D[解析]f ′(x )=12x 2-2ax -2b =0的一根为x =1,即12-2a -2b =0. ∴a +b =6,∴ab ≤(a +b2)2=9,当且仅当a =b =3时“=”号成立.(理)已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为( ) A.32B.53 C.256D .不存在 [答案]A[解析]由已知a n >0,a 7=a 6+2a 5,设{a n }的公比为q ,则a 6q =a 6+2a 6q ,∴q 2-q -2=0,∵q >0,∴q =2,∵a m a n =4a 1,∴a 21·q m +n -2=16a 21,∴m +n -2=4, ∴m +n =6,∴1m +4n =16(m +n )⎝⎛⎭⎫1m +4n =16⎣⎡⎦⎤5+n m +4m n ≥16⎝⎛⎭⎫5+2n m ·4m n =32,等号在n m =4m n ,即n =2m =4时成立.13.(2013·江南十校联考)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是( )A .3B .4C .5D .6 [答案]B[解析]由已知得ab =1,m +n =a +b +1a +1b =2(a +b )≥4ab =4,当且仅当a =b =1时,m +n 取得最小值4.故选B.二、解答题 14.(文)某住宅小区为了使居民有一个优雅、舒适的生活环境,计划建一个正八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200 m 2的十字型区域.现计划在正方形MNPQ 上建一花坛,造价为4200元/m 2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m 2,再在四个空角上铺草坪,造价为80元/m 2.(1)设总造价为S 元,AD 的长为x m ,试建立S 关于x 的函数关系式; (2)计划至少投入多少元,才能建造这个休闲小区. [解析](1)设DQ =y ,则x 2+4xy =200,∴y =200-x 24x .S =4200x 2+210×4xy +80×4×12y 2=38000+4000x 2+400000x 2(0<x <102).(2)S =38000+4000x 2+400000x 2≥38000+216×108=118000,当且仅当4000x 2=400000x 2,即x =10时,S min =118000(元),答:计划至少要投入11.8万元才能建造这个休闲小区.(理)某企业准备投入适当的广告费对产品进行促销,在一年内预计销售量Q (万件)与广告费x (万元)之间的函数关系为Q =3x +1x +1(x ≥0).已知生产此产品的年固定投入为3万元,每生产1万元此产品仍需再投入32万元,若每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试将年利润W (万元)表示为年广告费x (万元)的函数;(2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少?[解析](1)由题意可得,产品的生产成本为(32Q +3)万元,每万件销售价为32Q +3Q ×150%+xQ×50%, ∴年销售收入为(32Q +3Q ×150%+xQ ×50%)·Q=32(32Q +3)+12x , ∴年利润W =32(32Q +3)+12x -(32Q +3)-x=12(32Q +3-x )=-x 2+98x +352(x +1)(x ≥0). (2)令x +1=t (t ≥1),则W =-(t -1)2+98(t -1)+352t =50-⎝⎛⎭⎫t 2+32t . ∵t ≥1,∴t 2+32t≥2t 2·32t=8,即W ≤42, 当且仅当t 2=32t ,即t =8时,W 有最大值42,此时x =7.即当年广告费为7万元时,企业利润最大,最大值为42万元. 15.(文)已知α、β都是锐角,且sin β=sin αcos(α+β). (1)当α+β=π4,求tan β的值;(2)当tan β取最大值时,求tan(α+β)的值. [解析](1)∵由条件知,sin β=22sin ⎝⎛⎭⎫π4-β, 整理得32sin β-12cos β=0,∵β为锐角,∴tan β=13.(2)由已知得sin β=sin αcos αcos β-sin 2αsin β, ∴tan β=sin αcos α-sin 2αtan β, ∴tan β=sin αcos α1+sin 2α=sin αcos α2sin 2α+cos 2α=tan α2tan 2α+1=12tan α+1tan α≤122=24.当且仅当1tan α=2tan α时,取“=”号,∴tan α=22时,tan β取得最大值24, 此时,tan(α+β)=tan α+tan β1-tan αtan β= 2.(理)函数f (x )对一切实数x 、y 均有f (x +y )-f (y )=(x +2y +1)x 成立,且f (1)=0. (1)求f (0); (2)求f (x );(3)当0<x <2时,不等式f (x )>ax -5恒成立,求a 的取值X 围. [解析](1)令x =1,y =0,得f (1+0)-f (0)=(1+2×0+1)·1=2, ∴f (0)=f (1)-2=-2.(2)令y =0,f (x +0)-f (0)=(x +2×0+1)·x =x 2+x , ∴f (x )=x 2+x -2.(3)f (x )>ax -5化为x 2+x -2>ax -5, ax <x 2+x +3,∵x ∈(0,2), ∴a <x 2+x +3x =1+x +3x.当x >0时,1+x +3x ≥1+23,当且仅当x =3x ,即x =3时取等号,∵3∈(0,2),∴(1+x +3x)min =1+2 3.∴a <1+2 3.考纲要求1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题. 补充材料1.证明不等式常用的方法:比较法(作差法和作商法)、综合法、分析法、反证法、放缩法、换元法(三角代换法)、单调性法、判别式法、几何法(利用几何意义).2.条件最值是基本不等式的一个重要应用.应用基本不等式求最值时,①通过对所给式进行巧妙分拆、变形、组合、添加系数使之能够出现定值是解题的关键.②必须指出等号成立的条件.利用基本不等式求最值时,要注意其必须满足的三个条件:一正二定三相等 . (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的两个因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.基本不等式的常见变式及有关结论 (1)a 2+b 2≥2ab (a 、b ∈R ); a 2+b 2≥(a +b )22(a 、b ∈R );ab ≤⎝⎛⎭⎫a +b 22(a 、b ∈R )⎝⎛⎭⎫a +b 22≤a 2+b 22(a 、b ∈R ),以上各等号在a =b 时成立. (2)a b +b a ≥2(a 、b 同号),特别地1a +a ≥2(a >0),1a +a ≤-2(a <0). a 2+b 22≥a +b 2≥ab ≥21a +1b (a 、b ∈R +). 备选习题1.已知R 1、R 2是阻值不同的两个电阻,现分别按图①②连接,设相应的总阻值分别为R A 、R B ,则R A 与R B 的大小关系是( )A .R A >RB B .R A =R BC .R A <R BD .不确定 [答案]A[解析]R A =R 1+R 22,R B =2R 1R 2R 1+R 2,R A -R B =R 1+R 22-2R 1R 2R 1+R 2=(R 1+R 2)2-4R 1R 22(R 1+R 2)=(R 1-R 2)22(R 1+R 2)>0,所以R A >R B . 2.(2013·某某模拟)已知a >0,b >0,若不等式2a +1b ≥m 2a +b恒成立,则m 的最大值等于( )A .10B .9C .8D .7[答案]B[解析]由条件知m ≤(a +2b )(2a +b )ab恒成立, ∵(a +2b )(2a +b )ab =2(a 2+b 2)+5ab ab≥4ab +5ab ab=9. 等号在a =b 时成立,∴m ≤9,故选B.3.若不等式x 2+ax +1≥0对一切x ∈⎝⎛⎦⎤0,12成立,则a 的最小值为( ) A .0 B .-2 C .-52D .-3 [答案]C[分析] 将不等式进行变形,变为不等式的一边为参数,另一边为含x 的代数式a ≥-x-1x ,x ∈⎝⎛⎦⎤0,12,a 只要大于或等于y =-x -1x,x ∈⎝⎛⎦⎤0,12的最大值就满足题设要求. [解析]若x 2+ax +1≥0,x ∈⎝⎛⎦⎤0,12恒成立,则a ≥-x -1x,x ∈⎝⎛⎦⎤0,12恒成立. 令y =-x -1x ,x ∈⎝⎛⎦⎤0,12,则y ′=-1+1x 2,当x ∈⎝⎛⎦⎤0,12时y ′>0, ∴y =-x -1x ,x ∈⎝⎛⎦⎤0,12为增函数,∴y max =y ′|x =12=-52, 当a ≥-52时,a ≥-x -1x恒成立, 即x 2+ax +1≥0,x ∈⎝⎛⎦⎤0,12恒成立,∴选C.4.(2013·某某调研)若两个正实数x ,y 满足2x +1y=1,并且x +2y >m 2+2m 恒成立,则实数m 的取值X 围是( )A .(-∞,-2)∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)[答案]D[解析]x +2y =(x +2y )(2x +1y )=2+4y x +x y +2≥8,当且仅当4y x =x y,即y =2,x =4时等号成立.∵x +2y >m 2+2m 恒成立,∴m 2+2m <8,∴m 2+2m -8<0,解得-4<m <2,故选D.5.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b,0),a >0,b >0,O 为坐标原点,若A 、B 、C 三点共线,则1a +2b的最小值是________. [答案]8[解析]AB →=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2),∵AB →与AC →共线,∴2(a -1)+b +1=0,即2a +b =1.∵a >0,b >0,∴1a +2b =(1a +2b )(2a +b )=4+b a +4a b≥4+2b a ·4a b =8,当且仅当b a =4a b,即b =12,a =14时等号成立.。
第2讲 一元二次不等式及其解法一、选择题 1.不等式x -2x +1≤0的解集是( ) A .(-∞,-1)∪(-1,2] B .(-1,2] C .(-∞,-1)∪[2,+∞)D .[-1,2] 解析 ∵x -2x +1≤0⇔⎩⎪⎨⎪⎧x +x -,x +1≠0⇔⎩⎪⎨⎪⎧-1≤x ≤2,x ≠-1,∴x ∈(-1,2]. 答案 B2. 若集合{},{}x A x x B xx-2=-1≤2+1≤3=≤0,则A B ⋂=( ) A. {}x x -1≤<0 B. {}x x 0<≤1 C. {}x x 0≤≤2 D.{}x x 0≤≤1解析 因为集合{},{}A x x B x x =-1≤≤1=0<≤2,所以A B ⋂={}x x 0<≤1,选B. 答案 B3.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c = ( ). A .1∶2∶3 B .2∶1∶3 C .3∶1∶2D .3∶2∶1解析 ∵-c <ax +b <c ,又a >0,∴-b +c a <x <c -ba. ∵不等式的解集为{x |-2<x <1},∴⎩⎪⎨⎪⎧ -b +ca =-2,c -b a =1,∴⎩⎪⎨⎪⎧b =a2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a2=2∶1∶3.答案 B4.不等式(x 2-2)log 2x >0的解集是( ).A .(0,1)∪(2,+∞)B .(-2,1)∪(2,+∞)C .(2,+∞)D .(-2,2)解析 原不等式等价于⎩⎪⎨⎪⎧ x 2-2>0,log 2x >0或⎩⎪⎨⎪⎧x 2-2<0,log 2x <0.∴x >2或0<x <1,即不等式的解集为(0,1)∪(2,+∞). 答案 A5.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为 ( ).A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)解析 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,∴-32<a <-56,又a ∈Z ,∴a =-1,不等式f (x )>1即为-x 2-x >0, 解得-1<x <0. 答案 C6.设函数f (x )=⎩⎪⎨⎪⎧-2,x >0,x 2+bx +c ,x ≤0,若f (-4)=f (0),f (-2)=0,则关于x 的不等式f (x )≤1的解集为( ).A .(-∞,-3]∪[-1,+∞)B .[-3,-1]C .[-3,-1]∪(0,+∞)D .[-3,+∞)解析 当x ≤0时,f (x )=x 2+bx +c 且f (-4)=f (0),故其对称轴为x =-b2=-2,∴b =4.又f (-2)=4-8+c =0,∴c =4,当x ≤0时,令x 2+4x +4≤1有-3≤x ≤-1;当x >0时,f (x )=-2≤1显然成立,故不等式的解集为 [-3,-1]∪(0,+∞). 答案 C 二、填空题7.已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,则不等式-cx 2+2x -a >0的解集为________.解析 由ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12知a <0,且-13,12为方程ax 2+2x +c =0的两个根,由根与系数的关系得-13+12=-2a ,-13×12=c a ,解得a =-12,c =2,∴-cx 2+2x -a >0,即2x 2-2x -12<0,其解集为(-2,3). 答案 (-2,3)8.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由函数f (x )的图象可知(如下图),满足f (1-x 2)>f (2x )分两种情况:①⎩⎪⎨⎪⎧1-x 2≥0,x ≥0,1-x 2>2x⇒0≤x <2-1.②⎩⎪⎨⎪⎧1-x 2>0,x <0⇒-1<x <0.综上可知:-1<x <2-1. 答案 (-1,2-1)9.已知函数f (x )=-x 2+2x +b 2-b +1(b ∈R ),若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是________.解析 依题意,f (x )的对称轴为x =1,且开口向下, ∴当x ∈[-1,1]时,f (x )是增函数.若f (x )>0恒成立,则f (x )min =f (-1)=-1-2+b 2-b +1>0,即b 2-b -2>0,∴(b -2)(b +1)>0,∴b >2或b <-1. 答案 (-∞,-1)∪(2,+∞)10.设a ∈R ,若x >0时均有[(a -1)x -1](x 2-ax -1)≥0,则a =________. 解析 显然a =1不能使原不等式对x >0恒成立,故a ≠1且当x 1=1a -1,a ≠1时原不等式成立.对于x 2-ax -1=0,设其两根为x 2,x 3,且x 2<x 3,易知x 2<0,x 3>0.当x >0时,原不等式恒成立,故x 1=1a -1满足方程x 2-ax -1=0,代入解得a =32或a =0(舍去). 答案 32三、解答题11.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ), 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a,∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .12.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }, (1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.解 (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系,得⎩⎪⎨⎪⎧1+b =3a,1×b =2a.解得⎩⎪⎨⎪⎧a =1,b =2.(2)由(1)知不等式ax 2-(ac +b )x +bc <0为x 2-(2+c )x +2c <0,即(x -2)(x -c )<0. ①当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c };②当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2};③当c =2时,不等式(x -2)(x -c )<0的解集为∅. 综上所述:当c >2时,不等式的解集为{x |2<x <c }; 当c <2时,不等式的解集为{x |c <x <2}; 当c =2时,不等式的解集为∅.13.已知抛物线y =(m -1)x 2+(m -2)x -1(x ∈R ). (1)当m 为何值时,抛物线与x 轴有两个交点?(2)若关于x 的方程(m -1)x 2+(m -2)x -1=0的两个不等实根的倒数平方和不大于2,求m 的取值范围.解 (1)根据题意,m ≠1且Δ>0,即Δ=(m -2)2-4(m -1)(-1)>0,得m 2>0, 所以m ≠1且m ≠0.(2)在m ≠0且m ≠1的条件下,⎩⎪⎨⎪⎧x 1+x 2=m -21-m,x 1·x 2=11-m,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=⎝ ⎛⎭⎪⎫1x 1+1x 22-2x 1x 2=(m -2)2+2(m -1)≤2. 得m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}. 14.设函数f (x )=a 2ln x -x 2+ax ,a >0. (1)求f (x )的单调区间;(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立. 注 e 为自然对数的底数.解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0,所以f ′(x )=a 2x -2x +a =-x -a x +ax.由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞). (2)由题意得,f (1)=a -1≥e-1,即a ≥e. 由(1)知f (x )在[1,e]内单调递增, 要使e -1≤f (x )≤e 2,对x ∈[1,e]恒成立,只要⎩⎪⎨⎪⎧f=a -1≥e-1,f =a 2-e 2+a e≤e 2,解得a =e.。
§9.1 直线的方程1. 平面直角坐标系中的基本公式(1)两点间的距离公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),则d (A ,B )=(x 2-x 1)2+(y 2-y 1)2. (2)中点公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x =x 1+x 22,y =y 1+y 22. 2. 直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x 轴平行或重合的直线的倾斜角为零度角. (2)倾斜角的范围:[0°,180°). 3. 直线的斜率(1)定义:直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线斜率不存在; (2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1 (x 1≠x 2).若直线的倾斜角为θ (θ≠π2),则k =tan_θ.4. 直线方程的形式及适用条件1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)根据直线的倾斜角的大小不能确定直线的位置. ( √ ) (2)坐标平面内的任何一条直线均有倾斜角与斜率. ( × ) (3)直线的倾斜角越大,其斜率就越大. ( × ) (4)直线的斜率为tan α,则其倾斜角为α.( × ) (5)斜率相等的两直线的倾斜角不一定相等.( × ) (6)经过定点A (0,b )的直线都可以用方程y =kx +b 表示. ( × ) (7)不经过原点的直线都可以用x a +yb=1表示.( × )(8)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示.( √ ) 2. 如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限答案 C解析 由已知得直线Ax +By +C =0在x 轴上的截距-C A >0,在y 轴上的截距-CB >0,故直线经过一、二、四象限,不经过第三象限.3. 若直线斜率的绝对值等于1,则直线的倾斜角为_____________.答案 45°或135°解析 由|k |=|tan α|=1,知:k =tan α=1或k =tan α=-1.又倾斜角α∈[0°,180°),∴α=45°或135°.4. 直线l 经过A (2,1),B (1,m 2)(m ∈R )两点,则直线l 的倾斜角的取值范围为_________.答案 ⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π 解析 直线l 的斜率k =m 2-11-2=1-m 2≤1.若l 的倾斜角为α,则tan α≤1. 又∵α∈[0,π),∴α∈⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π. 5. 过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为____________.答案 x +y +1=0或4x +3y =0 解析 ①若直线过原点,则k =-43,∴y =-43x ,即4x +3y =0.②若直线不过原点.设x a +ya =1,即x +y =a .∴a =3+(-4)=-1,∴x +y +1=0.题型一 直线的倾斜角与斜率例1 经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.思维启迪 本题考查斜率求解公式以及k 与α的函数关系,解题关键是在求倾斜角时要对其分锐角、钝角的讨论. 答案 [-1,1] [0,π4]∪[3π4,π)解析 如图所示,结合图形:为使l 与线段AB 总有公共点,则k P A ≤k ≤k PB ,而k PB >0,k P A <0,故k <0时,倾斜角α为钝角,k =0时,α=0,k >0时,α为锐角. 又k P A =-2-(-1)1-0=-1,k PB =-1-10-2=1,∴-1≤k ≤1. 又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈[0,π4]∪[3π4,π).思维升华 直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分⎣⎡⎭⎫0,π2与⎝⎛⎭⎫π2,π两种情况讨论.由正切函数图象可以看出当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0).(1)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为 ( )A.13 B .-13 C .-32 D.23(2)直线x cos α+3y +2=0的倾斜角的范围是 ( )A.⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,5π6B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6 D.⎣⎡⎦⎤π6,5π6答案 (1)B (2)B解析 (1)依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.(2)由x cos α+3y +2=0得直线斜率k =-33cos α. ∵-1≤cos α≤1,∴-33≤k ≤33. 设直线的倾斜角为θ,则-33≤tan θ≤33. 结合正切函数在⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫π2,π上的图象可知, 0≤θ≤π6或5π6≤θ<π.题型二 求直线的方程例2 根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.思维启迪 本题考查直线方程的三种形式,解题关键在于设出正确的方程形式. 解 (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0<α<π), 从而cos α=±31010,则k =tan α=±13.故所求直线方程为y =±13(x +4).即x +3y +4=0或x -3y +4=0.(2)由题设知截距不为0,设直线方程为x a +y12-a =1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线方程为4x -y +16=0或x +3y -9=0. (3)当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +(10-5k )=0.由点线距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.思维升华 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件.用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍. 解 (1)设直线l 在x 、y 轴上的截距均为a , 若a =0,即l 过点(0,0)和(3,2), ∴l 的方程为y =23x ,即2x -3y =0.若a ≠0,则设l 的方程为x a +ya=1,∵l 过点(3,2),∴3a +2a =1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为2x -3y =0或x +y -5=0.(2)由已知:设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34. 又直线经过点A (-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0. 题型三 直线方程的综合应用例3 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程. 思维启迪 先求出AB 所在的直线方程,再求出A ,B 两点的坐标, 表示出△ABO 的面积,然后利用相关的数学知识求最值. 解 方法一 设直线方程为x a +yb =1 (a >0,b >0),点P (3,2)代入得3a +2b=1≥26ab,得ab ≥24, 从而S △AOB =12ab ≥12,当且仅当3a =2b 时等号成立,这时k =-b a =-23,从而所求直线方程为2x +3y -12=0.方法二 依题意知,直线l 的斜率k 存在且k <0. 则直线l 的方程为y -2=k (x -3) (k <0), 且有A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), ∴S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+(-9k )+4(-k ) ≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4(-k )=12×(12+12)=12. 当且仅当-9k =4-k,即k =-23时,等号成立.即△ABO 的面积的最小值为12. 故所求直线的方程为2x +3y -12=0.思维升华 直线方程综合问题的两大类型及解法(1)与函数相结合的问题:解决这类问题,一般是利用直线方程中的x ,y 的关系,将问题转化为关于x (或y )的函数,借助函数的性质解决.(2)与方程、不等式相结合的问题:一般是利用方程、不等式的有关知识(如方程解的个数、根的存在问题,不等式的性质、均值不等式等)来解决.已知直线l :kx -y +1+2k =0(k ∈R ).(1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程. (1)证明 直线l 的方程是k (x +2)+(1-y )=0,令⎩⎪⎨⎪⎧ x +2=01-y =0,解得⎩⎪⎨⎪⎧x =-2y =1, ∴无论k 取何值,直线总经过定点(-2,1).(2)解 由方程知,当k ≠0时直线在x 轴上的截距为-1+2k k ,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-21+2k ≥1,解之得k >0; 当k =0时,直线为y =1,符合题意,故k ≥0. (3)解 由l 的方程,得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4 ≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12,∴S min =4,此时直线l 的方程为x -2y +4=0.分类讨论思想在求直线方程中的应用典例:(5分)与点M (4,3)的距离为5,且在两坐标轴上的截距相等的直线方程为________. 思维启迪 解答本题应抓住直线在两坐标轴上的截距相等,分类设出直线的方程求解.解析 当截距不为0时,设所求直线方程为x a +ya =1,即x +y -a =0,∵点M (4,3)与所求直线的距离为5,∴|4+3-a |2=5,∴a =7±5 2.∴所求直线方程为x +y -7-52=0或x +y -7+52=0. 当截距为0时,设所求直线方程为y =kx , 即kx -y =0. 同理可得|4k -3|1+k 2=5,∴k =-43.∴所求直线方程为y =-43x ,即4x +3y =0.综上所述,所求直线方程为x +y -7-52=0或x +y -7+52=0或4x +3y =0. 答案 x +y -7-52=0或x +y -7+52=0或4x +3y =0 温馨提醒 在选用直线方程时常易忽视的情况有(1)选用点斜式与斜截式时忽视斜率不存在的情况; (2)选用截距式时,忽视截距为零的情况; (3)选用两点式时忽视与坐标轴垂直的情况.方法与技巧1. 要正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”.3. 求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法. 失误与防范1. 求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2. 根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性. 3. 利用一般式方程Ax +By +C =0求它的方向向量为(-B ,A )不可记错,但同时注意方向向量是不唯一的.A 组 专项基础训练 (时间:40分钟)一、选择题1. 如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.2. 已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1 答案 D解析 由题意得a +2=a +2a,∴a =-2或a =1.3. 已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为( )A. 3 B .- 3 C .0 D .1+ 3 答案 A解析 直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所求直线的倾斜角为60°,tan 60°= 3.4. 两条直线l 1:x a -y b =1和l 2:x b -ya=1在同一直角坐标系中的图象可以是 ( )答案 A解析 化为截距式x a +y -b =1,x b +y-a=1.假定l 1,判断a ,b ,确定l 2的位置,知A 项符合.5. 设直线l 的方程为x +y cos θ+3=0 (θ∈R ),则直线l 的倾斜角α的范围是 ( )A .[0,π) B.⎣⎡⎭⎫π4,π2C.⎣⎡⎦⎤π4,3π4 D.⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4答案 C解析 当cos θ=0时,方程变为x +3=0,其倾斜角为π2;当cos θ≠0时,由直线方程可得斜率k =-1cos θ.∵cos θ∈[-1,1]且cos θ≠0,∴k ∈(-∞,-1]∪[1,+∞), 即tan α∈(-∞,-1]∪[1,+∞),又α∈[0,π), ∴α∈⎣⎡⎭⎫π4,π2∪⎝⎛⎦⎤π2,3π4.综上知,倾斜角的范围是⎣⎡⎦⎤π4,3π4,故选C. 二、填空题6. 直线l 与两直线y =1,x -y -7=0分别交于P 、Q 两点,线段PQ 中点是(1,-1),则l的斜率是________. 答案 -23解析 设P (m,1),则Q (2-m ,-3), ∴(2-m )+3-7=0,∴m =-2,∴P (-2,1), ∴k =1+1-2-1=-23.7. 直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________________.答案 (-∞,-12)∪(0,+∞)解析 当a =-1时,直线l 的倾斜角为90°,符合要求;当a ≠-1时,直线l 的斜率为-a a +1,只要-a a +1>1或者-a a +1<0即可,解得-1<a <-12或者a <-1或者a >0.综上可知,实数a 的取值范围是(-∞,-12)∪(0,+∞).8. 若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________.答案 16解析 根据A (a,0)、B (0,b )确定直线的方程为x a +yb =1,又C (-2,-2)在该直线上,故-2a +-2b=1,所以-2(a +b )=ab .又ab >0,故a <0,b <0. 根据均值不等式ab =-2(a +b )≥4ab ,从而ab ≤0(舍去)或ab ≥4,故ab ≥16,当且仅当a =b =-4时取等号.即ab 的最小值为16. 三、解答题9. 已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.解 (1)设直线l 的方程是y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫-4k -3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0. (2)设直线l 在y 轴上的截距为b ,则直线l 的方程是 y =16x +b ,它在x 轴上的截距是-6b , 由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.如图,射线OA 、OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA 、OB 于A 、B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在y =12x 上,且A 、P 、B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.B 组 专项能力提升 (时间:30分钟)1. 直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来位置,那么l 的斜率为( )A .-13B .-3 C.13 D .3答案 A解析 结合图形可知选A.2. 直线2x -my +1-3m =0,当m 变动时,所有直线都通过定点( )A.⎝⎛⎭⎫-12,3 B.⎝⎛⎭⎫12,3 C.⎝⎛⎭⎫12,-3 D.⎝⎛⎭⎫-12,-3 答案 D解析 ∵(2x +1)-m (y +3)=0恒成立, ∴2x +1=0,y +3=0,∴x =-12,y =-3,定点为(-12,-3).3. 经过点P (1,4)的直线的两坐标轴上的截距都是正的,且截距之和最小,则直线的方程为( )A .x +2y -6=0B .2x +y -6=0C .x -2y +7=0D .x -2y -7=0答案 B解析 方法一 直线过点P (1,4),代入选项,排除A 、D , 又在两坐标轴上的截距均为正,排除C.方法二 设所求直线方程为x a +yb =1(a >0,b >0),将(1,4)代入得1a +4b=1,a +b =(a +b )(1a +4b )=5+(b a +4ab)≥9,当且仅当b =2a ,即a =3,b =6时,截距之和最小, ∴直线方程为x 3+y6=1,即2x +y -6=0.4. 已知A (3,0),B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.答案 3解析 直线AB 的方程为x 3+y4=1,设P (x ,y ),则x =3-34y ,∴xy =3y -34y 2=34(-y 2+4y )=34[-(y -2)2+4]≤3. 即当P 点坐标为⎝⎛⎭⎫32,2时,xy 取最大值3.5. 设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________.答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].6. 直线l 过点P (1,4),分别交x 轴的正方向和y 轴的正方向于A 、B 两点.(1)当|P A |·|PB |最小时,求l 的方程; (2)当|OA |+|OB |最小时,求l 的方程. 解 依题意,l 的斜率存在,且斜率为负. 设l :y -4=k (x -1)(k <0).令y =0,可得A (1-4k ,0);令x =0,可得B (0,4-k ). (1)|P A |·|PB |=(4k)2+16·1+k 2 =-4k (1+k 2)=-4(1k +k )≥8.(注意k <0)∴当且仅当1k =k 且k <0即k =-1时,|P A |·|PB |取最小值. 这时l 的方程为x +y -5=0.(2)|OA |+|OB |=(1-4k )+(4-k )=5-(k +4k)≥9.∴当且仅当k =4k 且k <0,即k =-2时,|OA |+|OB |取最小值.这时l 的方程为2x +y -6=0.。
§1.1集合1.元素与集合(1)集合中元素的两个特性:确定性、互异性.(2)元素与集合的关系有属于和不属于两种,表示符号为∈和∉.(3)集合的表示方法有列举法、描述法和维恩(Venn)图法.(4)常见集合的符号表示A B或B A∅⊆A,∅B(B≠∅)并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)A={x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.(×)(2){1,2,3}={3,2,1}.(√)(3)∅={0}.(×)(4)若A∩B=A∩C,则B=C. (×)(5)已知集合M={1,2,3,4},N={2,3},则M∩N=N. (√)(6)若全集U={-1,0,1,2},P={x∈Z|x2<4},则∁U P={2}.(√) 2.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B等于() A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}答案 B解析∵-1,0∈B,1∉B,∴A∩B={-1,0}.3.(2013·山东)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3 C.5 D.9答案 C-2,-1,0,1,2.解析x-y∈{}4.(2013·课标全国Ⅱ)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N等于() A.{0,1,2} B.{-1,0,1,2}C.{-1,0,2,3} D.{0,1,2,3}答案 A解析化简集合M得M={x|-1<x<3,x∈R},则M∩N={0,1,2}.5.设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是________. 答案 ⎣⎡⎭⎫34,43解析 A ={x |x 2+2x -3>0}={x |x >1或x <-3},因为函数y =f (x )=x 2-2ax -1的对称轴为x =a >0,f (0)=-1<0, 根据对称性可知要使A ∩B 中恰含有一个整数, 则这个整数为2, 所以有f (2)≤0且f (3)>0,即⎩⎪⎨⎪⎧4-4a -1≤0,9-6a -1>0,所以⎩⎨⎧a ≥34,a <43.即34≤a <43.题型一 集合的基本概念例1 (1)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.思维启迪 解决集合问题首先要理解集合的含义,明确元素的特征,抓住集合的“两性”.答案 (1)D (2)2解析 (1)由x -y ∈A ,及A ={1,2,3,4,5}得x >y , 当y =1时,x 可取2,3,4,5,有4个; 当y =2时,x 可取3,4,5,有3个; 当y =3时,x 可取4,5,有2个; 当y =4时,x 可取5,有1个. 故共有1+2+3+4=10(个),选D. (2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,得ba=-1,所以a =-1,b =1.所以b -a =2.思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.(1)已知集合A ={(x ,y )|x ,y ∈R ,且x 2+y 2=1},B ={(x ,y )|x ,y ∈R ,且y =x },则A ∩B 的元素个数为( )A .0B .1C .2D .3(2)若集合A ={x |ax 2-3x +2=0}的子集只有两个,则实数a =________. 答案 (1)C (2)0或98解析 (1)集合A 表示的是圆心在原点的单位圆,集合B 表示的是直线y =x ,据此画出图象,可得图象有两个交点,即A ∩B 的元素个数为2. (2)∵集合A 的子集只有两个,∴A 中只有一个元素. 当a =0时,x =23符合要求.当a ≠0时,Δ=(-3)2-4a ×2=0,∴a =98.故a =0或98.题型二 集合间的基本关系例2 (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________.思维启迪 对于含有有限个元素的集合的子集,可按含元素的个数依次写出;B ⊆A 不要忽略B =∅的情形. 答案 (1)D (2)(-∞,4]解析 (1)用列举法表示集合A ,B ,根据集合关系求出集合C 的个数. 由x 2-3x +2=0得x =1或x =2,∴A ={1,2}.由题意知B ={1,2,3,4},∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-22m -1≤7m +1<2m -1,解得2<m ≤4. 综上,m 的取值范围为m ≤4.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解;(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.常用数轴、Venn 图来直观解决这类问题.(1)设M 为非空的数集,M ⊆{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有( )A .6个B .5个C .4个D .3个(2)已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________. 答案 (1)A (2)4解析 (1)集合{1,2,3}的所有子集共有23=8(个),集合{2}的所有子集共有2个,故满足要求的集合M 共有8-2=6(个). (2)由log 2x ≤2,得0<x ≤4,即A ={x |0<x ≤4}, 而B =(-∞,a ),由于A ⊆B ,如图所示,则a >4,即c =4. 题型三 集合的基本运算例3 (1)(2013·湖北)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩(∁R B )等于 ( )A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4}(2)(2012·天津)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.思维启迪 集合的运算问题可先对集合进行化简,然后结合数轴或Venn 图计算. 答案 (1)C (2)-1 1解析 (1)A ={x |x ≥0},B ={x |2≤x ≤4}, ∴A ∩(∁R B )={x |x ≥0}∩{x |x >4或x <2}={x |0≤x <2或x >4}.(2)先求出集合A ,再根据集合的交集的特点求解. A ={x |-5<x <1},因为A ∩B ={x |-1<x <n }, B ={x |(x -m )(x -2)<0},所以m =-1,n =1.思维升华 (1)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.(1)设集合A =⎩⎪⎨⎪⎧x ∈R |⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +1≥0,x -3≤0,B ={x ∈Z |x -2>0},则A ∩B 等于( )A .{x |2<x ≤3}B .{3}C .{2,3}D .{x |-1≤x <2}(2)设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,则m 的值是________. 答案 (1)B (2)1或2解析 (1)A ={x |-1≤x ≤3},B ={x ∈Z |x >2}, ∴A ∩B ={x ∈Z |2<x ≤3}={3}.(2)A ={-2,-1},由(∁U A )∩B =∅,得B ⊆A ,∵方程x 2+(m +1)x +m =0的判别式Δ=(m +1)2-4m =(m -1)2≥0,∴B ≠∅. ∴B ={-1}或B ={-2}或B ={-1,-2}. ①若B ={-1},则m =1;②若B ={-2},则应有-(m +1)=(-2)+(-2)=-4,且m =(-2)·(-2)=4,这两式不能同时成立,∴B ≠{-2};③若B ={-1,-2},则应有-(m +1)=(-1)+(-2)=-3,且m =(-1)·(-2)=2,由这两式得m =2.经检验知m =1和m =2符合条件. ∴m =1或2.题型四 集合中的新定义问题例4 在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n+k |n ∈Z },k =0,1,2,3,4.给出如下四个结论:①2 014∈[4];②-3∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一‘类’”的充要条件是“a -b ∈[0]”. 其中,正确结论的个数是( )A .1B .2C .3D .4思维启迪 解答本题要充分理解[k ]的意义,然后对选项逐一验证.答案 C解析 因为2 014=402×5+4, 又因为[4]={5n +4|n ∈Z }, 所以2 014∈[4],故①正确;因为-3=5×(-1)+2,所以-3∈[2],故②不正确;因为所有的整数Z 除以5可得的余数为0,1,2,3,4,所以③正确; 若a ,b 属于同一“类”,则有a =5n 1+k ,b =5n 2+k , 所以a -b =5(n 1-n 2)∈[0], 反过来,如果a -b ∈[0],也可以得到a ,b 属于同一“类”,故④正确. 故有3个结论正确.思维升华 解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.设U 为全集,对集合X ,Y ,定义运算“”,满足X Y =(∁U X )∪Y ,则对于任意集合X ,Y ,Z ,X (Y Z )等于( )A .(X ∪Y )∪(∁U Z )B .(X ∩Y )∪(∁U Z )C .[(∁U X )∪(∁U Y )]∩ZD .(∁U X )∪(∁U Y )∪Z 答案 D解析 因为X Y =(∁U X )∪Y ,所以Y Z =(∁U Y )∪Z , 所以X (Y Z )=(∁U X )∪(Y Z )=(∁U X )∪(∁U Y )∪Z ,故选D.遗忘空集致误典例:(5分)若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,则由a 的可取值组成的集合为__________.易错分析 从集合的关系看,S ⊆P ,则S =∅或S ≠∅,易遗忘S =∅的情况. 解析 P ={-3,2}.当a =0时,S =∅,满足S ⊆P ; 当a ≠0时,方程ax +1=0的解集为x =-1a,为满足S ⊆P 可使-1a =-3或-1a =2,即a =13或a =-12.故所求集合为⎩⎨⎧⎭⎬⎫0,13,-12.答案 ⎩⎨⎧⎭⎬⎫0,13,-12温馨提醒 (1)根据集合间的关系求参数是高考的一个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)在解答本题时,存在两个典型错误:一是忽略对空集的讨论,如a =0时,S =∅;二是忽略对字母的讨论,如-1a 可以为-3或2.因此,在解答此类问题时,一定要注意分类讨论,避免漏解.方法与技巧1.集合中元素的两个特性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.这是数形结合思想的又一体现. 失误与防范1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解. 3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系. 4.Venn 图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.5.要注意A ⊆B 、A ∩B =A 、A ∪B =B 、∁U A ⊇∁U B 、A ∩(∁U B )=∅这五个关系式的等价性.A 组 专项基础训练 (时间:30分钟)一、选择题1. (2013·重庆)已知全集U ={1,2,3,4},集合A ={1,2},B ={2,3},则∁U (A ∪B )等于( )A .{1,3,4}B .{3,4}C .{3}D .{4}答案 D解析 因为A ∪B ={1,2,3},全集U ={1,2,3,4},所以∁U (A ∪B )={4},故选D. 2. 下列集合中表示同一集合的是( )A .M ={(3,2)},N ={(2,3)}B .M ={2,3},N ={3,2}C .M ={(x ,y )|x +y =1},N ={y |x +y =1}D .M ={2,3},N ={(2,3)} 答案 B解析 选项A 中的集合M 表示由点(3,2)所组成的单点集,集合N 表示由点(2,3)所组成的单点集,故集合M 与N 不是同一个集合.选项C 中的集合M 表示由直线x +y =1上的所有点组成的集合,集合N 表示由直线x +y =1上的所有点的纵坐标组成的集合,即N ={y |x +y =1}=R ,故集合M 与N 不是同一个集合.选项D 中的集合M 有两个元素,而集合N 只含有一个元素,故集合M 与N 不是同一个集合.对选项B ,由集合元素的性质,可知M ,N 表示同一个集合.3. 已知全集S ={1,2,a 2-2a +3},A ={1,a },∁S A ={3},则实数a 等于 ( )A .0或2B .0C .1或2D .2答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.4. 设集合M ={m ∈Z |m ≤-3或m ≥2},N ={n ∈Z |-1≤n ≤3},则(∁Z M )∩N 等于( )A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}答案 B解析 由已知,得∁Z M ={-2,-1,0,1}, N ={-1,0,1,2,3},所以(∁Z M )∩N ={-1,0,1}.5. 已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个 答案 B解析 ∵M ={0,1,2,3,4},N ={1,3,5},∴M ∩N ={1,3}. ∴M ∩N 的子集共有22=4个.6. 已知集合A ={x |x 2-x -2<0},B ={x |-1<x <1},则( )A.A B B.B AC.A=B D.A∩B=∅答案 B解析因为A={x|x2-x-2<0},所以A={x|-1<x<2}.又B={x|-1<x<1},画出数轴,可得B A.7.(2013·辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于() A.(0,1) B.(0,2] C.(1,2) D.(1,2]答案 D解析A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}.8. 设全集U为整数集,集合A={x∈N|y=7x-x2-6},B={x∈Z|-1<x≤3},则右图中阴影部分表示的集合的真子集的个数为()A.3 B.4 C.7 D.8答案 C解析因为A={x∈N|y=7x-x2-6}={x∈N|7x-x2-6≥0}={x∈N|1≤x≤6},由题意,知题图中阴影部分表示的集合为A∩B={1,2,3},所以其真子集有∅,{1},{2},{3},{1,2},{1,3},{2,3},共7个.二、填空题9.已知集合A={1,3,a},B={1,a2-a+1},且B⊆A,则a=__________.答案-1或2解析由a2-a+1=3,得a=-1或a=2,经检验符合.由a2-a+1=a,得a=1,由于集合中不能有相同元素,所以舍去.故a=-1或2.10.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B=__________.答案{(0,1),(-1,2)}解析A、B都表示点集,A∩B即是由A中在直线x+y-1=0上的所有点组成的集合,代入验证即可.11.(2013·天津改编)已知集合A={x||x|≤2},B={x|x≤1},则A∩B=________.答案{x|-2≤x≤1}解析易知A={x|-2≤x≤2},∴A∩B={x|-2≤x≤1}.12.已知集合A={x|1≤x<5},C={x|-a<x≤a+3}.若C∩A=C,则a的取值范围是________.答案(-∞,-1]解析因为C∩A=C,所以C⊆A.①当C =∅时,满足C ⊆A ,此时-a ≥a +3,得a ≤-32; ②当C ≠∅时,要使C ⊆A ,则⎩⎪⎨⎪⎧ -a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1. B 组 专项能力提升(时间:15分钟)1. 设集合A ={1,2,3,4,5,6},B ={4,5,6,7,8},则满足S ⊆A 且S ∩B ≠∅的集合S 的个数是( )A .57B .56C .49D .8答案 B解析 集合S 的个数为26-23=64-8=56.2. 已知集合M ={x |x x -1≥0,x ∈R },N ={y |y =3x 2+1,x ∈R },则M ∩N 等于 ( ) A .∅B .{x |x ≥1}C .{x |x >1}D .{x |x ≥1或x <0} 答案 C解析 由x x -1≥0,得⎩⎪⎨⎪⎧x ≠1,x (x -1)≥0, ∴x >1或x ≤0,∴M ={x |x >1或x ≤0},N ={y |y ≥1},M ∩N ={x |x >1}.3. 已知U ={x ∈Z |y =ln ⎝⎛⎭⎫9x -1},M ={x ∈Z ||x -4|≤1},N ={x ∈N |6x∈Z },则集合{4,5}等于( ) A .M ∩NB .M ∩(∁U N )C .N ∩(∁U M )D .(∁U M )∪(∁U N )答案 B解析 集合U 为函数y =ln ⎝⎛⎭⎫9x -1的定义域内的整数集,由9x -1>0,即9-x x>0,解得0<x <9, 又x ∈Z ,所以x 可取1,2,3,4,5,6,7,8,故U ={1,2,3,4,5,6,7,8}.集合M 为满足不等式|x -4|≤1的整数集,解|x -4|≤1,得3≤x ≤5,又x ∈Z ,所以x 可取3,4,5,故M ={3,4,5}.集合N 是使6x为整数的自然数集合, 显然当x =1时,6x=6; 当x =2时,6x=3; 当x =3时,6x=2; 当x =6时,6x=1. 所以N ={1,2,3,6}.显然M ⊆U ,N ⊆U .而4∈M,4∈U,4∉N,5∈M,5∈U,5∉N ,所以4∈M,4∈∁U N,5∈M,5∈∁U N ,即{4,5}=M ∩(∁U N ).4. 已知U ={y |y =log 2x ,x >1},P ={y |y =1x,x >2},则∁U P =________. 答案 ⎣⎡⎭⎫12,+∞ 解析 ∵U ={y |y =log 2x ,x >1}={y |y >0},P ={y |y =1x ,x >2}={y |0<y <12}, ∴∁U P ={y |y ≥12}=⎣⎡⎭⎫12,+∞. 5. 已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.答案 [1,+∞)解析 A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ),因为A ⊆B ,画出数轴,如右图所示,得c ≥1.6. 已知集合A ={(x ,y )|y =a },B ={(x ,y )|y =b x +1,b >0,b ≠1},若集合A ∩B 只有一个真子集,则实数a 的取值范围是________.答案 (1,+∞)解析 由于集合B 中的元素是指数函数y =b x 的图象向上平移一个单位长度后得到的函数图象上的所有点,要使集合A ∩B 只有一个真子集,那么y =b x +1(b >0,b ≠1)与y =a 的图象只能有一个交点,所以实数a 的取值范围是(1,+∞).。
第3讲 不等式选讲考情解读 本部分主要考查绝对值不等式的解法,求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值X 围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式、绝对值不等式的应用成为命题的热点,从能力上主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想.1.含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a >0)⇔-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解.2.含有绝对值的不等式的性质 |a |-|b |≤|a ±b |≤|a |+|b |. 3.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立. 定理2:如果a 、b 为正数,则a +b2≥ab ,当且仅当a =b时,等号成立.定理3:如果a 、b 、c 为正数,则a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a nn≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立. 4.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法等.热点一 含绝对值不等式的解法例1 不等式|x +3|-|2x -1|<x2+1的解集为________________.答案 ⎩⎨⎧⎭⎬⎫x |x <-25或x >2解析 ①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3.②当-3≤x <12时,原不等式化为(x +3)-(1-2x )<x2+1,解得x <-25,∴-3≤x <-25.③当x ≥12时,原不等式化为(x +3)-(2x -1)<x2+1,解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.思维升华 (1)用零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.(1)若不等式|x +1|+|x -2|<a 无实数解,则a 的取值X 围是________.答案 (-∞,3]解析 由绝对值的几何意义知|x +1|+|x -2|的最小值为3,而|x +1|+|x -2|<a 无解,∴a ≤3.(2)(2012·某某)若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值X 围是________. 答案 [-2,4]解析 利用绝对值不等式的性质求解.∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4. 热点二 不等式的证明 例2 求证下列不等式:(1)设a ≥b >0,求证:3a 3+2b 3≥3a 2b +2ab 2; (2)a 6+8b 6+127c 6≥2a 2b 2c 2;(3)a 2+4b 2+9c 2≥2ab +3ac +6bc .证明 (1)3a 3+2b 3-(3a 2b +2ab 2)=3a 2(a -b )-2b 2·(a -b )=(a -b )(3a 2-2b 2). ∵a ≥b >0,∴a -b ≥0,3a 2-2b 2>0.∴(a -b )(3a 2-2b 2)≥0. ∴3a 3+2b 3≥3a 2b +2ab 2. (2)a 6+8b 6+127c 6≥33827a 6b 6c 6=3×23a 2b 2c 2=2a 2b 2c 2,∴a 6+8b 6+127c 6≥2a 2b 2c 2.(3)∵a 2+4b 2≥2a 2·4b 2=4ab ,a 2+9c 2≥2a 2·9c 2=6ac ,4b 2+9c 2≥24b 2·9c 2=12bc , ∴2a 2+8b 2+18c 2≥4ab +6ac +12bc , ∴a 2+4b 2+9c 2≥2ab +3ac +6bc .思维升华 (1)作差法应该是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力. (2)注意观察不等式的结构,利用基本不等式或柯西不等式证明.(2013·课标全国Ⅱ)设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ca ≤13;(2)a 2b +b 2c +c2a≥1.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a≥1. 热点三 不等式的综合应用例3 (2013·某某)已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn )(bm +an )的最小值为________. 答案 2解析 先化简式子,再利用基本不等式求解最值,注意等号取得的条件.∵a ,b ,m ,n ∈R +,且a +b =1,mn =2, ∴(am +bn )(bm +an ) =abm 2+a 2mn +b 2mn +abn 2=ab (m 2+n 2)+2(a 2+b 2) ≥2ab ·mn +2(a 2+b 2) =4ab +2(a 2+b 2) =2(a 2+b 2+2ab ) =2(a +b )2=2,当且仅当m =n =2时,取“=”. ∴所求最小值为2.思维升华 利用基本不等式求解最值时,有时需化简代数式,切记等号成立的条件.(2012·某某改编)设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +cx +y +z=________.答案 12解析 通过等式找出a +b +c 与x +y +z 的关系. 由题意可得x 2+y 2+z 2=2ax +2by +2cz ,① ①与a 2+b 2+c 2=10相加可得 (x -a )2+(y -b )2+(z -c )2=10,所以不妨令⎩⎪⎨⎪⎧x -a =a ,y -b =b ,z -c =c⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x -a =b ,y -b =c ,z -c =a , 则x +y +z =2(a +b +c ),即a +b +c x +y +z =12.1.对于带有绝对值的不等式的求解,要掌握好三个方法:一个是根据绝对值的几何意义,借助于数轴的直观解法;二是根据绝对值的意义,采用零点分区去绝对值后转化为不等式组的方法;三是构造函数,通过函数图象的方法.要在解题过程中根据不同的问题情境灵活选用这些方法. 2.使用绝对值三角不等式求最值很方便,如|x +2|+|x -4|≥|(x +2)-(x -4)|=6. 3.易错点:解绝对值不等式时忽视去掉绝对值的分界点;在使用算术—几何平均不等式求最值时忽视讨论等号成立的条件.真题感悟1.(2014·某某改编)对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为________. 答案 3解析 ∵x ,y ∈R ,∴|x -1|+|x |≥|(x -1)-x |=1, |y -1|+|y +1|≥|(y -1)-(y +1)|=2, ∴|x -1|+|x |+|y -1|+|y +1|≥3.∴|x -1|+|x |+|y -1|+|y +1|的最小值为3.2.(2014·某某)若关于x 的不等式|ax -2|<3的解集为{x |-53<x <13},则a =________.答案 -3解析 ∵|ax -2|<3,∴-1<ax <5. 当a >0时,-1a <x <5a,与已知条件不符;当a =0时,x ∈R ,与已知条件不符; 当a <0时,5a <x <-1a,又不等式的解集为{x |-53<x <13},故a =-3.押题精练1.已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},则实数a 的值为______.(2)若a =2,且f (x )+f (x +5)≥m 对一切实数x 恒成立,则实数m 的取值X 围为________. 答案 (1)2 (2)(-∞,5]解 方法一 (1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3. 又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)当a =2时,f (x )=|x -2|, 设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5; 当-3≤x ≤2时,g (x )=5; 当x >2时,g (x )>5.综上可得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值X 围为(-∞,5]. 方法二 (1)同方法一.(2)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5).由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值X 围为(-∞,5]. 2.设a ,b ,c 均为正实数,试证明不等式12a +12b +12c ≥1b +c +1c +a +1a +b ,并说明等号成立的条件.解 因为a ,b ,c 均为正实数, 所以12⎝ ⎛⎭⎪⎫12a +12b ≥12ab ≥1a +b ,当且仅当a =b 时等号成立; 12⎝ ⎛⎭⎪⎫12b +12c ≥12bc ≥1b +c , 当且仅当b =c 时等号成立; 12⎝ ⎛⎭⎪⎫12c +12a ≥12ca ≥1c +a , 当且仅当a =c 时等号成立.三个不等式相加,得12a +12b +12c ≥1b +c +1c +a +1a +b ,当且仅当a =b =c 时等号成立.(推荐时间:40分钟)1.如果关于x 的不等式|x -a |+|x +4|≥1的解集是R ,则实数a 的取值X 围是____________. 答案 (-∞,-5]∪[-3,+∞)解析 在数轴上,结合绝对值的几何意义可知a ≤-5或a ≥-3.2.(2014·某某)若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a 的取值X 围是________. 答案 [-1,12]解析 设y =|2x -1|+|x +2|=⎩⎪⎨⎪⎧-3x -1,x <-2,-x +3,-2≤x <12,3x +1,x ≥12.当x <-2时,y =-3x -1>5;当-2≤x <12时,y =-x +3>52;当x ≥12时,y =3x +1≥52,故函数y =|2x -1|+|x +2|的最小值为52.因为不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,所以52≥a 2+12a +2.解不等式52≥a 2+12a +2,得-1≤a ≤12,故a 的取值X 围为[-1,12].3.若不等式|ax +2|<4的解集为(-1,3),则实数a =________. 答案 -2解析 由-4<ax +2<4,得-6<ax <2. 当a >0时,-6a <x <2a ,与解集(-1,3)不符;当a <0时,2a<x <-6a,∴a =-2.4.不等式|x +3|+|x -1|≥a 2-3a 对任意实数x 恒成立,则实数a 的取值X 围是________. 答案 [-1,4]解析 由绝对值的几何意义知,|x +3|+|x -1|的几何意义为数轴上点x 到点-3,1的距离的和,则|x +3|+|x -1|的最小值为4,∴不等式|x +3|+|x -1|≥a 2-3a 对任意实数x 恒成立, 只需a 2-3a ≤4,解得-1≤a ≤4. ∴a 的取值X 围为[-1,4].5.已知集合A ={x ∈R ||x +3|+|x -4|≤9},B ={x ∈R |x =4t +1t-6,t ∈(0,+∞)},则集合A ∩B =________. 答案 {x |-2≤x ≤5} 解析 由|x +3|+|x -4|≤9,当x <-3时,-x -3-(x -4)≤9,即-4≤x <-3; 当-3≤x ≤4时,x +3-(x -4)=7≤9恒成立;当x >4时,x +3+x -4≤9,即4<x ≤5. 综上所述,A ={x |-4≤x ≤5}. 又∵x =4t +1t-6,t ∈(0,+∞),∴x ≥24t ·1t -6=-2,当且仅当t =12时取等号.∴B ={x |x ≥-2},∴A ∩B ={x |-2≤x ≤5}.6.已知关于x 的不等式|x -1|+|x -a |≤8的解集不是空集,则a 的最小值是________. 答案 -7解析 |x -1|+|x -a |=|x -1|+|a -x |≥|a -1|,要使关于x 的不等式不是空集,则|a -1|≤8,∴-7≤a ≤9,即a 的最小值为-7.7.设f (x )=1ax 2-bx +c ,不等式f (x )<0的解集是(-1,3),若f (7+|t |)>f (1+t 2),则实数t 的取值X 围是________.答案 (-3,3)解析 ∵1ax 2-bx +c <0的解集是(-1,3),∴1a >0且-1,3是1ax 2-bx +c =0的两根.则函数f (x )=1a x 2-bx +c 图象的对称轴方程为x =ab2=1,且f (x )在[1,+∞)上是增函数, 又∵7+|t |≥7>1,1+t 2≥1,则由f (7+|t |)>f (1+t 2),得7+|t |>1+t 2, 即|t |2-|t |-6<0,亦即(|t |+2)(|t |-3)<0, ∴|t |<3,即-3<t <3.8.(2013·某某)设a +b =2,b >0,则当a =________时,12|a |+|a |b 取得最小值.答案 -2解析 由于a +b =2,所以12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b,由于b >0,|a |>0,所以b 4|a |+|a |b ≥2b 4|a |·|a |b =1,因此当a >0时,12|a |+|a |b 的最小值是14+1=54;当a <0时,12|a |+|a |b 的最小值是-14+1=34.故12|a |+|a |b 的最小值为34,此时⎩⎪⎨⎪⎧b 4|a |=|a |b ,a <0,即a =-2. 9.若T 1=2s m +n ,T 2=s m +n 2mn,则当s ,m ,n ∈R +时,T 1与T 2的大小为________. 答案 T 1≤T 2解析 因为2s m +n -s m +n 2mn =s ·4nm -m +n22mn m +n=-s m -n22mn m +n ≤0.所以T 1≤T 2.10.设0<x <1,则a =2x ,b =1+x ,c =11-x 中最大的一个是________.答案 c解析 由a 2=2x ,b 2=1+x 2+2x >a 2,a >0,b >0得b >a . 又c -b =11-x -(1+x )=1-1-x21-x=x 21-x>0得c >b ,知c 最大.11.设x >0,y >0,M =x +y 2+x +y ,N =x 2+x +y2+y,则M 、N 的大小关系为__________.答案 M <N解析 N =x 2+x +y 2+y >x 2+x +y +y 2+x +y =x +y2+x +y=M .12.若a ,b ∈R +,且a ≠b ,M =a b +ba,N =a +b ,则M 、N 的大小关系为________. 答案 M >N 解析 ∵a ≠b ,∴a b +b >2a ,ba+a >2b , ∴a b +b +ba +a >2a +2b , ∴a b +ba>a +b .即M >N . 13.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 答案 5解析 ∵|x -1|≤1, ∴-1≤x -1≤1,∴0≤x ≤2.又∵|y -2|≤1,∴-1≤y -2≤1,∴1≤y ≤3, 从而-6≤-2y ≤-2. 由同向不等式的可加性可得 -6≤x -2y ≤0,∴-5≤x -2y +1≤1, ∴|x -2y +1|的最大值为5.14.不等式⎪⎪⎪⎪⎪⎪x +1x >|a -5|+1对于任一非零实数x 均成立,则实数a 的取值X 围是________.答案 (4,6)解析 ⎪⎪⎪⎪⎪⎪x +1x =|x |+1|x |≥2,所以|a -5|+1<2,即|a -5|<1,∴4<a <6.15.不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值X 围是________. 答案 (-∞,2)解析 由绝对值的几何意义知 |x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2,所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.。
专题二 高考中的三角函数的综合问题1. (2013·北京)“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件. 2. 已知向量a =(2,sin x ),b =(cos 2x,2cos x ),则函数f (x )=a·b 的最小正周期是( )A.π2 B .π C .2π D .4π 答案 B解析 f (x )=2cos 2x +2sin x cos x =1+cos 2x +sin 2x =1+2sin ⎝⎛⎭⎫2x +π4,T =2π2=π. 3. 若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为( )A .1B .2 C.3+1 D.3+2答案 B解析 依题意,得f (x )=cos x +3sin x =2sin(x +π6),当0≤x <π2时,π6≤x +π6<2π3,f (x )的最大值是2.4. 已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向量OB→的夹角的取值范围是( )A.⎣⎡⎦⎤0,π4B.⎣⎡⎦⎤π4,512π C.⎣⎡⎦⎤512π,π2 D.⎣⎡⎦⎤π12,512π答案 D解析 由题意,得:OA →=OC →+CA →=(2+2cos α,2+2sin α),所以点A 的轨迹是圆(x -2)2+(y -2)2=2,如图,当A 位于使向量OA →与圆相切时,向量OA →与向量OB →的夹角分别达到最大、最小值,故选D.5. (2012·四川改编)如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC 、ED ,则sin ∠CED =__________. 答案1010解析 方法一 应用两角差的正弦公式求解. 由题意知,在Rt △ADE 中,∠AED =45°, 在Rt △BCE 中,BE =2,BC =1, ∴CE =5,则sin ∠CEB =15,cos ∠CEB =25. 而∠CED =45°-∠CEB , ∴sin ∠CED =sin(45°-∠CEB ) =22(cos ∠CEB -sin ∠CEB ) =22×⎝⎛⎭⎫25-15=1010.方法二 利用余弦定理及同角三角函数基本关系式求解. 由题意得ED =2,EC =12+22= 5. 在△EDC 中,由余弦定理得cos ∠CED =CE 2+DE 2-DC 22CE ·DE =31010,又0<∠CED <π,∴sin ∠CED =1-cos 2∠CED =1-⎝⎛⎭⎫310102=1010.题型一 三角函数的图象和性质例1 已知函数f (x )=sin(ωx +π6)+sin(ωx -π6)-2cos 2ωx2,x ∈R (其中ω>0).(1)求函数f (x )的值域;(2)若函数y =f (x )的图象与直线y =-1的两个相邻交点间的距离为π2,求函数y =f (x )的单调增区间.思维启迪 对三角函数的性质的讨论,首先要化成y =A sin(ωx +φ)+k (一角、一次、一函数)的形式;根据(2)中条件可确定ω. 解 (1)f (x )=32sin ωx +12cos ωx +32sin ωx -12cos ωx -(cos ωx +1) =2(32sin ωx -12cos ωx )-1=2sin(ωx -π6)-1. 由-1≤sin(ωx -π6)≤1,得-3≤2sin(ωx -π6)-1≤1,所以函数f (x )的值域为[-3,1].(2)由题设条件及三角函数图象和性质可知,y =f (x )的周期为π, 所以2πω=π,即ω=2.所以f (x )=2sin(2x -π6)-1,再由2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ).所以函数y =f (x )的单调增区间为[k π-π6,k π+π3](k ∈Z ).思维升华 三角函数的图象和性质是高考考查的重点,通常先将三角函数化为y =A sin(ωx +φ)+k 的形式,然后将t =ωx +φ视为一个整体,结合y =sin t 的图象求解.已知函数f (x )=sin 2x -2sin x cos x +3cos 2x .(1)求函数f (x )的最小正周期;(2)当x ∈[19π24,π]时,求函数f (x )的最大值和最小值.解 f (x )=sin 2x -2sin x cos x +3cos 2x =1-sin 2x +2cos 2x =2+cos 2x -sin 2x =2+2cos(2x +π4).(1)函数f (x )的最小正周期T =π.(2)因为19π24≤x ≤π,所以116π≤2x +π4≤9π4.所以22≤cos(2x +π4)≤1. 所以3≤2+2cos(2x +π4)≤2+2,即3≤f (x )≤2+ 2.所以函数f (x )的最小值为3,最大值为2+ 2. 题型二 三角函数和解三角形例2 (2013·重庆)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2.(1)求C ;(2)设cos A cos B =325,cos (α+A )cos (α+B )cos 2α=25,求tan α的值. 思维启迪 (1)利用余弦定理求C ;(2)由(1)和cos A cos B =325可求得A +B ,代入求tan α.解 (1)因为a 2+b 2+2ab =c 2,由余弦定理有cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.又0<C <π,故C =3π4.(2)由题意得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos 2α=25. 因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25, tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.① 因为C =3π4,所以A +B =π4,所以sin(A +B )=22,因为cos(A +B )=cos A cos B -sin A sin B , 即325-sin A sin B =22, 解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0,解得tan α=1或tan α=4.思维升华 三角函数和三角形的结合,一般可以利用正弦定理、余弦定理先确定三角形的边角,再代入到三角函数中,三角函数和差公式的灵活运用是解决此类问题的关键.(2012·安徽)设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,且有2sinB cos A =sin A cosC +cos A sin C . (1)求角A 的大小;(2)若b =2,c =1,D 为BC 的中点,求AD 的长. 解 (1)方法一 由题设知,2sin B cos A =sin(A +C )=sin B .因为sin B ≠0,所以cos A =12.由于0<A <π,故A =π3.方法二 由题设可知,2b ·b 2+c 2-a 22bc =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc ,于是b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.由于0<A <π,故A =π3.(2)方法一 因为AD →2=⎝ ⎛⎭⎪⎫AB→+AC →22=14(AB →2+AC →2+2AB →·AC →) =14(1+4+2×1×2×cos π3)=74, 所以|AD →|=72.从而AD =72.方法二 因为a 2=b 2+c 2-2bc cos A =4+1-2×2×1×12=3,所以a 2+c 2=b 2,B =π2.因为BD =32,AB =1,所以AD = 1+34=72. 题型三 三角函数与平面向量的综合应用例3 已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x 4. (1)若m·n =1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.思维启迪 (1)由向量数量积的运算转化成三角函数式,化简求值.(2)在△ABC 中,求出∠A 的范围,再求f (A )的取值范围. 解 (1)m·n =3sin x 4·cos x 4+cos 2x 4=32sin x2+1+cosx22=sin ⎝⎛⎭⎫x 2+π6+12,∵m·n =1,∴sin ⎝⎛⎭⎫x 2+π6=12.∵cos ⎝⎛⎭⎫x +π3=1-2sin 2⎝⎛⎭⎫x 2+π6=12, ∴cos ⎝⎛⎭⎫2π3-x =-cos ⎝⎛⎭⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B -sin C cos B =sin B cos C . ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0. ∴cos B =12,∵0<B <π,∴B =π3.∴0<A <2π3.∴π6<A 2+π6<π2,sin ⎝⎛⎭⎫A 2+π6∈⎝⎛⎭⎫12,1. 又∵f (x )=sin ⎝⎛⎭⎫x 2+π6+12. ∴f (A )=sin ⎝⎛⎭⎫A 2+π6+12.故函数f (A )的取值范围是⎝⎛⎭⎫1,32. 思维升华 (1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.已知a =(53cos x ,cos x ),b =(sin x,2cos x ),设函数f (x )=a ·b +|b |2+32.(1)当x ∈[π6,π2]时,求函数f (x )的值域;(2)当x ∈[π6,π2]时,若f (x )=8,求函数f (x -π12)的值;(3)将函数y =f (x )的图象向右平移π12个单位后,再将得到的图象上各点的纵坐标向下平移5个单位,得到函数y =g (x )的图象,求函数g (x )的表达式并判断奇偶性. 解 (1)f (x )=a ·b +|b |2+32=53sin x cos x +2cos 2x +4cos 2x +sin 2x +32=53sin x cos x +5cos 2x +52=532sin 2x +5×1+cos 2x 2+52=5sin(2x +π6)+5.由π6≤x ≤π2,得π2≤2x +π6≤7π6, ∴-12≤sin(2x +π6)≤1,∴当π6≤x ≤π2时,函数f (x )的值域为[52,10].(2)f (x )=5sin(2x +π6)+5=8,则sin(2x +π6)=35,所以cos(2x +π6)=-45,f (x -π12)=5sin 2x +5=5sin(2x +π6-π6)+5=332+7.(3)由题意知f (x )=5sin(2x +π6)+5→g (x )=5sin[2(x -π12)+π6]+5-5=5sin 2x ,即g (x )=5sin 2x ,g (-x )=5sin(-2x )=-5sin 2x =-g (x ), 故g (x )为奇函数.(时间:80分钟)1. 函数y =sin(ωx +φ)(ω>0,|φ|<π2)在同一个周期内,当x =π4时,y 取最大值1,当x =7π12时,y 取最小值-1.(1)求函数的解析式y =f (x );(2)函数y =sin x 的图象经过怎样的变换可得到y =f (x )的图象;(3)若函数f (x )满足方程f (x )=a (0<a <1),求在[0,2π]内的所有实数根之和. 解 (1)∵T =2(712π-π4)=23π,∴ω=3,又∵sin(34π+φ)=1,∴3π4+φ=2k π+π2,k ∈Z .又|φ|<π2,得φ=-π4,∴函数的解析式为f (x )=sin(3x -π4).(2)y =sin x 的图象向右移π4个单位,得到y =sin(x -π4)的图象,再由y =sin(x -π4)的图象上所有点的横坐标变为原来的13,纵坐标不变,得到y =sin(3x -π4)的图象. (3)∵f (x )=sin(3x -π4)的最小正周期为23π,∴f (x )=sin(3x -π4)在[0,2π]内恰有3个周期,∴sin(3x -π4)=a (0<a <1)在[0,2π]内有6个实数根且x 1+x 2=π2.同理,x 3+x 4=11π6,x 5+x 6=196π,故所有实数根之和为π2+11π6+19π6=11π2.2. (2013·安徽)已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0. 从而有2π2ω=π,故ω=1. (2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4, 即π8≤x ≤π2时,f (x )单调递减.综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增, 在区间⎣⎡⎦⎤π8,π2上单调递减.3. (2013·四川)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos 2A -B2cos B -sin(A -B )sin B +cos(A +C )=-35.(1)求cos A 的值;(2)若a =42,b =5,求向量BA →在BC →方向上的投影.解 (1)由2cos 2A -B 2cos B -sin(A -B )sin B +cos(A +C )=-35,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =-35,即cos(A -B )cos B -sin(A -B )sin B =-35.则cos(A -B +B )=-35,即cos A =-35.(2)由cos A =-35,0<A <π,得sin A =45,由正弦定理,有a sin A =b sin B ,所以,sin B =b sin A a =22. 由题知a >b ,则A >B ,故B =π4,根据余弦定理,有(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1或c =-7(舍去).故向量BA →在BC →方向上的投影为|BA →|cos B =22.4. 已知向量a =(cos α,sin α),b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中0<α<x <π.(1)若α=π4,求函数f (x )=b ·c 的最小值及相应x 的值;(2)若a 与b 的夹角为π3,且a ⊥c ,求tan 2α的值.解 (1)∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π4,∴f (x )=b ·c=cos x sin x +2cos x sin α+sin x cos x +2sin x cos α =2sin x cos x +2(sin x +cos x ). 令t =sin x +cos x ⎝⎛⎭⎫π4<x <π,则2sin x cos x =t 2-1,且-1<t < 2. 则y =t 2+2t -1=⎝⎛⎭⎫t +222-32,-1<t <2, ∴t =-22时,y min =-32,此时sin x +cos x =-22, 即2sin ⎝⎛⎭⎫x +π4=-22, ∵π4<x <π,∴π2<x +π4<54π, ∴x +π4=76π,∴x =11π12.∴函数f (x )的最小值为-32,相应x 的值为11π12.(2)∵a 与b 的夹角为π3,∴cos π3=a ·b |a |·|b |=cos αcos x +sin αsin x =cos(x -α).∵0<α<x <π,∴0<x -α<π,∴x -α=π3.∵a ⊥c ,∴cos α(sin x +2sin α)+sin α(cos x +2cos α)=0, ∴sin(x +α)+2sin 2α=0,即sin ⎝⎛⎭⎫2α+π3+2sin 2α=0. ∴52sin 2α+32cos 2α=0,∴tan 2α=-35.5. 函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0,0<φ<π2)的部分图象如图所示.(1)求f (x )的解析式;(2)设g (x )=[f (x -π12)]2,求函数g (x )在x ∈[-π6,π3]上的最大值,并确定此时x 的值.解 (1)由题图知A =2,T 4=π3,则2πω=4×π3,∴ω=32.又f (-π6)=2sin[32×(-π6)+φ]=2sin(-π4+φ)=0,∴sin(φ-π4)=0,∵0<φ<π2,∴-π4<φ-π4<π4,∴φ-π4=0,即φ=π4,∴f (x )=2sin(32x +π4).(2)由(1)可得f (x -π12)=2sin[32(x -π12)+π4]=2sin(32x +π8), ∴g (x )=[f (x -π12)]2=4×1-cos (3x +π4)2=2-2cos(3x +π4), ∵x ∈[-π6,π3],∴-π4≤3x +π4≤5π4, ∴当3x +π4=π,即x =π4时,[g (x )]max =4. 6. 设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围.解 (1)由a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,所以sin B =12,由△ABC 为锐角三角形可得B =π6. (2)由(1)可知A +C =π-B =5π6,故C =5π6-A . 故cos A +sin C =cos A +sin ⎝⎛⎭⎫5π6-A =cos A +sin ⎝⎛⎭⎫π6+A =cos A +12cos A +32sin A =32cos A +32sin A =3⎝⎛⎭⎫32cos A +12sin A =3sin ⎝⎛⎭⎫A +π3, 由△ABC 为锐角三角形可得,0<C <π2, 故0<5π6-A <π2,解得π3<A <5π6, 又0<A <π2,所以π3<A <π2. 故2π3<A +π3<5π6,所以12<sin ⎝⎛⎭⎫A +π3<32, 所以32<3sin ⎝⎛⎭⎫A +π3<32, 即cos A +sin C 的取值范围为⎝⎛⎭⎫32,32.。
§13.1算法与程序框图1.程序框图(1)通常用一些通用图形符号构成一张图来表示算法.这种图称做程序框图(简称框图).(2)基本的程序框图有起、止框、输入、输出框、处理框、判断框、流程线等图形符号和连接线构成.2.三种基本逻辑结构3.基本算法语句(1)赋值语句①概念:用来表明赋给某一个变量一个具体的确定值的语句.②一般格式:变量名=表达式.③作用:计算出赋值号右边表达式的值,把该值赋给赋值号左边的变量,使该变量的值等于表达式的值.(2)输入语句①概念:用来控制输入结构的语句.②一般格式:变量名=input.③作用:把程序和初始数据分开.(3)输出语句①概念:用来控制把求解结果在屏幕上显示(或打印)的语句.②一般格式:print(%io(2),表达式).③作用:将结果在屏幕上输出.(4)条件语句①处理条件分支逻辑结构的算法语句.②条件语句的格式及框图.a.if语句最简单的格式及对应的框图b.if语句的一般格式及对应的框图(5)循环语句①算法中的循环结构是由循环语句来实现的.②循环语句的格式及框图.a.for语句b.while语句1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)算法只能解决一个问题,不能重复使用.(×)(2)程序框图中的图形符号可以由个人来确定.(×)(3)输入框只能紧接开始框,输出框只能紧接结束框.(×)(4)条件分支结构的出口有两个,但在执行时,只有一个出口是有效的.(√) 2.下列关于“赋值语句”叙述正确的是() A.3.6=x是赋值语句B.利用赋值语句可以进行代数式的化简C.赋值语句中的等号与数学中的等号意义相同D.赋值语句的作用是先计算出赋值号右边表达式的值,然后把该值赋给赋值号左边的变量,使该变量的值等于表达式的值答案 D3.下面程序的作用是________________________.S=0;for i=3:4:199S=S+i;endM=-S;print(%io(2),M);答案求-(3+7+11+…+199)的值解析这是for语句、循环变量为i,初值为3,步长为4,终值为199,先求S=3+7+11+…+199,然后M=-S=-(3+7+11+…+199).4.如图,是求实数x的绝对值的算法程序框图,则判断框①中可填________.答案 x >0(或x ≥0)解析 由于|x |=⎩⎪⎨⎪⎧ x , x ≥0,-x ,x <0或|x |=⎩⎪⎨⎪⎧x ,x >0,-x ,x ≤0,故根据所给的程序框图,易知可填“x >0”或“x ≥0”.5. (2012·福建)阅读如图所示的程序框图,运行相应的程序,输出的s 值等于________.答案 -3解析 第一次循环:s =1,k =1<4,s =2×1-1=1,k =1+1=2; 第二次循环:k =2<4,s =2×1-2=0,k =2+1=3; 第三次循环:k =3<4,s =2×0-3=-3,k =3+1=4; 当k =4时,k <4不成立,循环结束,此时s =-3.题型一 算法的顺序结构例1 f (x )=x 2-2x -3.求f (3)、f (-5)、f (5),并计算f (3)+f (-5)+f (5)的值.设计出解决该问题的一个算法,并画出程序框图.思维启迪 算法的设计方案并不唯一,同一问题,可以有不同的算法.设计算法时要注意算法的“明确性”、“有限性”. 解 算法如下:第一步,令x=3.第二步,把x=3代入y1=x2-2x-3.第三步,令x=-5.第四步,把x=-5代入y2=x2-2x-3.第五步,令x=5.第六步,把x=5代入y3=x2-2x-3.第七步,把y1,y2,y3的值代入y=y1+y2+y3.第八步,输出y1,y2,y3,y的值.该算法对应的程序框图如图所示:思维升华给出一个问题,设计算法应注意:(1)认真分析问题,联系解决此问题的一般数学方法;(2)综合考虑此类问题中可能涉及的各种情况;(3)将解决问题的过程划分为若干个步骤;(4)用简练的语言将各个步骤表示出来.阅读如图所示的程序框图,若输入的a,b,c分别是21,32, 75,则输出的a,b,c分别是() A.75,21,32B.21,32,75C.32,21,75D.75,32,21答案 A解析由程序框图中的各个赋值语句可得x=21,a=75,c=32,b=21,故a,b,c分别是75,21,32.题型二 算法的条件分支结构例2 下图中x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,p 为该题的最终得分.当x 1=6,x 2=9,p =8.5时,x 3等于( )A .11B .10C .8D .7思维启迪 依据第二个判断框的条件关系,判断是利用x 2=x 3还是利用x 1=x 3从而验证p 是否为8.5. 答案 C解析 x 1=6,x 2=9,|x 1-x 2|=3<2不成立,即为“否”,所以再输入x 3;由绝对值的意义(一个点到另一个点的距离)和不等式|x 3-x 1|<|x 3-x 2|知,点x 3到点x 1的距离小于点x 3到x 2的距离,所以当x 3<7.5时,|x 3-x 1|<|x 3-x 2|成立,即为“是”,此时x 2=x 3,所以p =x 1+x 32,即6+x 32=8.5,解得x 3=11>7.5,不合题意;当x 3>7.5时,|x 3-x 1|<|x 3-x 2|不成立,即为“否”,此时x 1=x 3,所以p =x 3+x 22,即x 3+92=8.5,解得x 3=8>7.5,符合题意,故选C.思维升华 (1)条件分支结构中条件的判断关键是明确条件结构的功能,然后根据“是”的分支成立的条件进行判断;(2)对条件结构,无论判断框中的条件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.如图,若依次输入的x 分别为5π6、π6,相应输出的y 分别为y 1、y 2,则y 1、y 2的大小关系是( )A .y 1=y 2B .y 1>y 2C .y 1<y 2D .无法确定答案 C解析 由程序框图可知,当输入的x 为5π6时,sin5π6>cos 5π6成立, 所以输出的y 1=sin5π6=12; 当输入的x 为π6时,sin π6>cos π6不成立,所以输出的y 2=cos π6=32,所以y 1<y 2.题型三 算法的循环结构例3 (2013·天津)阅读如图所示的程序框图,运行相应的程序,则输出n 的值为( )A .7B .6C .5D .4思维启迪 观察程序框图,明确是何种循环结构,明确循环体与循环变量是解决问题的关键. 答案 D解析 第一次:S =0+(-1)1×1=-1<2,n =1+1=2, 第二次:S =-1+(-1)2×2=1<2,n =2+1=3,第三次:S =1+(-1)3×3=-2<2,n =3+1=4, 第四次:S =-2+(-1)4×4=2,满足S ≥2, 故输出的n 值为4,故选D.思维升华 利用循环结构表示算法应注意的问题 第一:注意是利用当型循环结构,还是直到型循环结构.直到型循环结构:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.当型循环结构:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.第二:注意选择准确的表示累计的变量.第三:注意在哪一步开始循环,满足什么条件不再执行循环体.(2013·辽宁)执行如图所示的程序框图,若输入n =8,则输出S 等于( )A.49B.67C.89D.1011 答案 A解析 执行第一次循环后,S =13,i =4;执行第二次循环后,S =25,i =6;执行第三次循环后,S =37,i =8;执行第四次循环后,S =49,i =10;此时i =10>8,输出S =49.题型四 基本算法语句例4 (1)下面程序输出的结果是________.(2)根据如图所示的程序,当输入a ,b 分别为2,3时,最后输出的m 的值为________.思维启迪 理解基本算法语句的结构和作用是解题关键,通过流程分析,模拟运行确定输出结果. 答案 (1)0 (2)3解析 (1)当s =5+4+3+2+1≥15时,停止循环,而此时,n =1-1=0. (2)本程序的功能是求两个数中较大的一个数.思维升华 解决算法语句有三个步骤:首先通读全部语句,把它翻译成数学问题;其次领悟该语句的功能;最后根据语句的功能运行程序,解决问题.程序:若输入a =10,则输出的结果是 ( )A .20B .10C .100D .200答案 C解析 程序所表示的函数表达式为y =⎩⎪⎨⎪⎧2a (a <10)a 2 (a ≥10),∴当a =10时,y =102=100.循环规律与程序中的逻辑顺序不明确致误典例:(5分)为了求满足1+2+3+…+n<2 013的最大的自然数n,程序框图如图所示,则输出框中应填输出()A.i-2 B.i-1 C.i D.i+1易错分析本题易出现的错误主要有两个方面:(1)循环规律不明确,导致S与i的关系错误.(2)程序框图中S=S+i与i=i+1的逻辑顺序不明确,导致错误.解析依次执行程序框图:S=0+1,i=2;S=0+1+2,i=3;S=0+1+2+3,i=4;……由此可得S=1+2+3+…+n时,i=n+1;经检验知当S=1+2+3+…+62=1 953时,i=63,满足条件进入循环;S=1+2+3+…+62+63=2 016时,i=64,不满足条件,退出循环.所以应该输出62,即i-2.故选A.答案 A温馨提醒(1)解决程序框图问题要注意的三个常用变量:①计数变量:用来记录某个事件发生的次数,如i=i+1.②累加变量:用来计算数据之和,如S=S+i.③累乘变量:用来计算数据之积,如p=p×i.(2)循环体规律的探求通常由开始一步一步运行,根据判断条件,那么几步后就会输出结果或会呈现出规律,再根据规律计算出结果.方法与技巧1.在设计一个算法的过程中要牢记它的五个特征:概括性、逻辑性、有穷性、不唯一性、普遍性.2.在画程序框图时首先要进行结构的选择.若所要解决的问题不需要分情况讨论,只用顺序结构就能解决;若所要解决的问题要分若干种情况讨论时,就必须引入条件分支结构;若所要解决的问题要进行许多重复的步骤,且这些步骤之间又有相同的规律时,就必须引入变量,应用循环结构.3.程序框图的条件分支结构和循环结构分别对应算法语句的条件语句和循环语句,两种语句的阅读理解是复习重点.失误与防范1.注意起止框与处理框、判断框与循环框的不同.2.注意条件分支结构与循环结构的联系:对于循环结构有重复性,条件分支结构具有选择性没有重复性,并且循环结构中必定包含一个条件分支结构,用于确定何时终止循环体.3.循环语句有“直到型”与“当型”两种,要区别两者的异同,主要解决遇到需要反复执行的任务时,用循环语句来编写程序.4.关于赋值语句,有以下几点需要注意:(1)赋值号左边只能是变量名字,而不是表达式,例如3=m是错误的.(2)赋值号左右不能对换,赋值语句是将赋值号右边的表达式的值赋给赋值号左边的变量,例如Y=x,表示用x的值替代变量Y的原先的取值,不能改写为x=Y.因为后者表示用Y 的值替代变量x的值.(3)在一个赋值语句中只能给一个变量赋值,不能出现多个“=”.A组专项基础训练(时间:20分钟)一、选择题1.已知一个算法:(1)m=a.(2)如果b<m,则m=b,输出m;否则执行第3步.(3)如果c<m,则m=c,输出m.如果a=3,b=6,c=2,那么执行这个算法的结果是()A.3 B.6C.2 D.m答案 C解析当a=3,b=6,c=2时,依据算法设计,执行后,m=a=3<b=6,c=2<a=3=m,∴c=2=m,即输出m的值为2,故选C.2.下列是求一个函数的函数值的程序,在键盘上输入一个自变量x的值,输出它的函数值.x=input (“x=”);if x<=0y=-x;yelseif x<=1y=0;yelsey=x-1;yendend若执行的结果为3,则输入的x值为()A.-3或4 B.3C.4 D.-3答案 A3.(2013·安徽)如图所示,程序框图的输出结果为()A.34B.16C.1112D.2524答案 C解析 赋值S =0,n =2, 进入循环体:检验n =2<8, S =0+12=12,n =2+2=4; 检验n <8, S =12+14=34, n =4+2=6; 检验n <8, S =34+16=1112, n =6+2=8,检验n =8,脱离循环体, 输出S =1112.4. (2013·重庆)执行如图所示的程序框图,则输出的k 的值是 ( )A .3B .4C .5D .6 答案 C解析 由题意,得k =1时,s =1;k =2时,s =1+1=2;k =3时,s =2+4=6;k =4时,s =6+9=15;k =5时,s =15+16=31>15,此时输出的k 值为5.5. (2012·天津)阅读如图所示的程序框图,运行相应的程序,当输入x 的值为-25时,输出x 的值为 ( )A .-1B .1C .3D .9答案 C解析 当x =-25时,|x |>1, 所以x =25-1=4>1, x =4-1=1>1不成立, 所以输出x =2×1+1=3. 二、填空题6. 已知函数y =⎩⎪⎨⎪⎧log 2x ,x ≥2,2-x ,x <2.图中表示的是给定x 的值,求其对应的函数值y 的程序框图.①处应填写________;②处应填写________.答案 x <2 y =log 2x解析 框图中的①就是分段函数解析式两种形式的判断条件,故填写x <2,②就是函数的另一段表达式y =log 2x .7. 对该程序判断正确的是________.(填序号)i =0; S =0;while i<=1 000 S =S +i ; i =i +1; endprint (%io (2),S );①求从1 000到1这1 000个自然数的和; ②求从1到1 000这1 000个自然数的和;③求从1到1 000这1 000个自然数的积; ④求从1 000到1这1 000个自然数的积. 答案 ②解析 本程序用的是循环语句,循环次数为1 000, 运算为:S =1+2+3+…+1 000.8. (2013·浙江)若某程序框图如图所示,则该程序运行后输出的值等于________.答案 95解析 当k =5时,输出S .此时,S =1+11×2+12×3+13×4+14×5=1+1-12+12-13+13-14+14-15=2-15=95.9. 给出一个如图所示的程序框图,若要使输入的x 值与输出的y 值相等,则这样的x 值是________.答案 0,1,3解析 根据题意,本程序框图表示分段函数:y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5,由于输入的x 值与输出的y 值相等, 由x 2=x 解得x =0或x =1,都满足x ≤2; 由x =2x -3解得x =3,也满足2<x ≤5; 由1x =x 解得x =±1,不在x >5内,舍去. 可见满足条件的x 共三个:0,1,3.10.执行下边的程序框图,若p =0.8,则输出的n =________.答案 4解析 第一次,S =12,n =2;第二次,S =12+14,n =3;第三次,S =12+14+18,n =4.因为S =12+14+18>0.8,所以输出的n =4.B 组 专项能力提升 (时间:20分钟)1.(2013·课标全国Ⅱ) 执行下面的程序框图,如果输入的N =4,那么输出的S 等于( )A .1+12+13+14B .1+12+13×2+14×3×2C .1+12+13+14+15D .1+12+13×2+14×3×2+15×4×3×2答案 B解析 第一次循环,T =1,S =1,k =2;第二次循环,T =12,S =1+12,k =3;第三次循环,T =12×3,S =1+12+12×3,k =4,第四次循环,T =12×3×4,S =1+12+12×3+12×3×4,k =5,此时满足条件输出S =1+12+12×3+12×3×4,选B.2. 如图所示的程序框图中,令a =tan θ,b =sin θ,c =cos θ,若在集合{θ|-π4<θ<3π4,θ≠0,π4,π2}中,给θ取一个值,输出的结果是sin θ,则θ的值所在的范围是 ( )A .(-π4,0)B .(0,π4)C .(π4,π2)D .(π2,3π4)答案 D解析 依题意该程序为求解a =tan θ,b =sin θ,c =cos θ的最大值,⎩⎪⎨⎪⎧sin θ>cos θ,sin θ>tan θ, 所以θ的值所在范围是(π2,3π4).3. 如图是求12+22+32+…+1002的值的程序框图,则正整数n =________.答案 100解析 第一次判断执行后,i =2,s =12;第二次判断执行后,i =3,s =12+22,而题目要求计算12+22+…+1002,故n =100.4. 对一个作直线运动的质点的运动过程观测了8次,第i 次观测得到的数据为a i ,具体如下表所示:在对上述统计数据的分析中,一部分计算见如图所示的程序框图(其中a 是这8个数据的平均数),则输出的S 的值是________.答案 7解析 本题计算的是这8个数的方差,因为 a =40+41+43+43+44+46+47+488=44,所以S =42+32+1+1+0+22+32+428=7.5. 经过市场调查分析,2014年第一季度内,某地区对某件商品的需求量为12 000件,为保证商品不脱销,商家在月初时将商品按相同的量投放市场,已知年初商品的库存量为50 000件,用S 表示商品的库存量,设计一个程序,求出第一季度结束时商品的库存量,画出程序框图.解 列出下表表示每月库存量的变化情况:程序如下: S =50 000; S =S -4 000; S =S -4 000; S =S -4 000; print (%io (2),S );。
§2.1函数及其表示1.函数的基本概念(1)函数的定义设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种对应法则叫做集合A上的一个函数.记作y=f(x),x∈A,其中x叫做自变量.(2)函数的定义域、值域定义域:函数y=f(x)自变量取值的范围(数集A)叫做这个函数的定义域.值域:所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.(3)函数的两个要素:定义域和对应法则.2.映射设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.这时,称y是x 在映射f的作用下的象,记作f(x).于是y=f(x),x称作y的原象.映射f也可记为f:A→B,x→f(x).其中A叫做映射f的定义域(函数定义域的推广),由所有象f(x)构成的集合叫做映射f的值域,通常记作f(A).3.分段函数若函数在其定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)f (x )=x 2x与g (x )=x 是同一个函数.( × ) (2)若两个函数的定义域与值域相同,则这两个函数相等.( × )(3)若函数f (x )的定义域为{x |1≤x <3},则函数f (2x -1)的定义域为{x |1≤x <5}.( × )(4)f (x )=⎩⎨⎧1-x 2 (-1≤x ≤1)x +1 (x >1或x <-1),则f (-x )=⎩⎨⎧1-x 2 (-1≤x ≤1)-x +1 (x >1或x <-1).( √ ) (5)函数f (x )=x 2+4+1的值域是{y |y ≥1}. ( × ) (6)函数是特殊的映射.( √ ) 2. (2013·江西)函数y =x ln(1-x )的定义域为( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]答案 B解析 由⎩⎪⎨⎪⎧1-x >0x ≥0得,函数定义域为[0,1).3. (2012·安徽)下列函数中,不满足...f (2x )=2f (x )的是( )A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x答案 C解析 将f (2x )表示出来,看与2f (x )是否相等. 对于A ,f (2x )=|2x |=2|x |=2f (x ); 对于B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x ); 对于C ,f (2x )=2x +1≠2f (x ); 对于D ,f (2x )=-2x =2f (x ),故只有C 不满足f (2x )=2f (x ),所以选C. 4. (2012·福建)设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则f (g (π))的值为( )A .1B .0C .-1D .π 答案 B解析 根据题设条件,∵π是无理数,∴g (π)=0, ∴f (g (π))=f (0)=0. 5. 给出四个命题:①函数是其定义域到值域的映射;②f (x )=x -2+2-x 是函数;③函数y =2x (x ∈N )的图象是一条直线;④函数的定义域和值域一定是无限集合. 其中正确命题的序号有________. 答案 ①②解析 对于①函数是映射,但映射不一定是函数; 对于②f (x )是定义域为{2},值域为{0}的函数; 对于③函数y =2x (x ∈N )的图象不是一条直线;对于④由于函数的关系可以用列表的方法表示,有些用列表法表示的函数的定义域和值域都不是无限集合.题型一 函数的概念 例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.思维启迪 可从函数的定义、定义域和值域等方面对所给结论进行逐一分析判断. 答案 ②③解析 对于①,由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应法则均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1.综上可知,正确的判断是②③.思维升华 函数的值域可由定义域和对应法则唯一确定;当且仅当定义域和对应法则都相同的函数才是同一函数.值得注意的是,函数的对应法则是就效果而言的(判断两个函数的对应法则是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应法则算出的函数值是否相同).(1)下列四个图象中,是函数图象的是( )A .(1)B .(1)(3)(4)C .(1)(2)(3)D .(3)(4)(2)下列各组函数中,表示同一函数的是( )A .f (x )=|x |,g (x )=x 2B .f (x )=x 2,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-1 答案 (1)B (2)A解析 (1)由一个变量x 仅有一个f (x )与之对应,得(2)不是函数图象.故选B. (2)A 中,g (x )=|x |,∴f (x )=g (x ). B 中,f (x )=|x |(x ∈R ),g (x )=x (x ≥0), ∴两函数的定义域不同.C 中,f (x )=x +1 (x ≠1),g (x )=x +1(x ∈R ), ∴两函数的定义域不同.D 中,f (x )=x +1·x -1(x +1≥0且x -1≥0),f (x )的定义域为{x |x ≥1}; g (x )=x 2-1(x 2-1≥0),g (x )的定义域为{x |x ≥1或x ≤-1}. ∴两函数的定义域不同.故选A. 题型二 求函数的解析式例2 (1)如果f (1x )=x1-x,则当x ≠0且x ≠1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x -1 (2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x )·x -1,则f (x )=________.思维启迪 (1)令t =1x ,反解出x ,代入f (1x )=x1-x ,求f (t )的表达式.(2)设f (x )=ax +b (a ≠0),结合条件列出关于x 的方程求参数a ,b . (3)用1x 代替x ,通过解方程组求f (x ).答案 (1)B (2)2x +7 (3)23x +13解析 (1)令t =1x ,得x =1t ,∴f (t )=1t1-1t =1t -1,∴f (x )=1x -1.(2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.(3)在f (x )=2f (1x )x -1中,用1x 代替x ,得f (1x )=2f (x )1x-1,将f (1x )=2f (x )x -1代入f (x )=2f (1x )x -1中,可求得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(4)消去法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x +1x )=x 2+1x2,求f (x )的解析式.(2)已知f (x )满足2f (x )+f (1x )=3x ,求f (x )的解析式.解 (1)∵f (x +1x )=x 2+1x 2=(x +1x )2-2,且x +1x ≥2或x +1x ≤-2,∴f (x )=x 2-2(x ≥2或x ≤-2). (2)∵2f (x )+f (1x )=3x ,①把①中的x 换成1x ,得2f (1x )+f (x )=3x.② ①×2-②得3f (x )=6x -3x ,∴f (x )=2x -1x (x ≠0).题型三 求函数的定义域例3 (1)函数f (x )=ln (2+x -x 2)|x |-x的定义域为( )A .(-1,2)B .(-1,0)∪(0,2)C .(-1,0)D .(0,2)(2)已知函数f (x )的定义域为[1,2],则函数g (x )=f (2x )(x -1)0的定义域为________.思维启迪 函数的定义域是使解析式有意义的自变量的取值集合;抽象函数的定义域要注意自变量的取值和各个字母的位置. 答案 (1)C (2)[12,1)解析 (1)f (x )有意义,则⎩⎪⎨⎪⎧2+x -x 2>0,|x |-x ≠0,解之得⎩⎪⎨⎪⎧-1<x <2,x <0,∴-1<x <0,∴f (x )的定义域为(-1,0).(2)要使函数g (x )=f (2x )(x -1)0有意义,则必须有⎩⎪⎨⎪⎧1≤2x ≤2x -1≠0,∴12≤x <1,故函数g (x )的定义域为[12,1). 思维升华 (1)求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.(2)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].(1)已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是________. (2)函数y =ln (x +1)-x 2-3x +4的定义域为________________.答案 (1)[12,32] (2)(-1,1)解析 (1)因为函数f (x )的定义域是[0,2],所以函数g (x )=f (x +12)+f (x -12)中的自变量x 需要满足⎩⎨⎧0≤x +12≤2,0≤x -12≤2,解得:12≤x ≤32,所以函数g (x )的定义域是[12,32].(2)由⎩⎪⎨⎪⎧x +1>0-x 2-3x +4>0,得-1<x <1.题型四 分段函数例4 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3(2)设函数y =f (x )在R 上有定义.对于给定的正数M ,定义函数f M (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为( )A .2B .1 C. 2 D .- 2思维启迪 (1)应对a 分a >0和a ≤0进行讨论,确定f (a ). (2)可以根据给定函数f (x )和M 确定f M (x ),再求f M (0).答案 (1)A (2)B解析 (1)由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a,2a +2=0无解;②当a ≤0时,f (a )=a +1,∴a +1+2=0,∴a =-3. (2)由题设f (x )=2-x 2≤1,得 当x ≤-1或x ≥1时,f M (x )=2-x 2; 当-1<x <1时,f M (x )=1.∴f M (0)=1.思维升华 (1)应用分段函数时,首先要确定自变量的值属于哪个区间,其次选定相应关系代入计算求解,特别要注意分段区间端点的取舍,当自变量的值不确定时,要分类讨论.(2)若给出函数值或函数值的范围求自变量值或自变量的取值范围时,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围.已知函数f (x )=⎩⎪⎨⎪⎧-x -1(-1≤x <0),-x +1(0<x ≤1),则f (x )-f (-x )>-1的解集为( )A .(-∞,-1)∪(1,+∞)B .[-1,-12)∪(0,1]C .(-∞,0)∪(1,+∞)D .[-1,-12]∪(0,1)答案 B解析 ①当-1≤x <0时,0<-x ≤1,此时f (x )=-x -1,f (-x )=-(-x )+1=x +1, ∴f (x )-f (-x )>-1化为-2x -2>-1, 解得x <-12,则-1≤x <-12.②当0<x ≤1时,-1≤-x <0,此时,f (x )=-x +1,f (-x )=-(-x )-1=x -1, ∴f (x )-f (-x )>-1化为-2x +2>-1, 解得x <32,则0<x ≤1.故所求不等式的解集为[-1,-12)∪(0,1].分段函数意义理解不清致误典例:(5分)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.易错分析 本题易出现的错误主要有两个方面:(1)误以为1-a <1,1+a >1,没有对a 进行讨论直接代入求解. (2)求解过程中忘记检验所求结果是否符合要求致误. 解析 当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )可得2-2a +a =-1-a -2a , 解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )可得-1+a -2a =2+2a +a , 解得a =-34.答案 -34温馨提醒 (1)分类讨论思想在求函数值中的应用对于分段函数的求值问题,若自变量的取值范围不确定,应分情况求解. (2)检验所求自变量的值或范围是否符合题意求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.方法与技巧1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应法则是否相同.2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、消去法. 4.分段函数问题要分段求解. 失误与防范求分段函数应注意的问题:在求分段函数的值f (x 0)时,首先要判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.A 组 专项基础训练 (时间:40分钟)一、选择题1. 函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 由⎩⎪⎨⎪⎧x +1>0ln (x +1)≠04-x 2≥0,得-1<x ≤2,且x ≠0.2. (2012·江西)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139 答案 D解析 由题意知f (3)=23,f ⎝⎛⎭⎫23=⎝⎛⎭⎫232+1=139,∴f (f (3))=f ⎝⎛⎭⎫23=139.3. 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 可以根据函数的概念进行排除,使用筛选法得到答案.4. 已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是 ( )A .f (x )=log 2xB .f (x )=-log 2xC .f (x )=2-x D .f (x )=x -2答案 B解析 根据题意知x >0,所以f (1x )=log 2x ,则f (x )=log 21x=-log 2x .5. 某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为 ( )A .y =[x10]B .y =[x +310]C .y =[x +410]D .y =[x +510]答案 B解析 方法一 取特殊值法,若x =56,则y =5,排除C ,D ; 若x =57,则y =6,排除A ,选B.方法二 设x =10m +α(0≤α≤9,m ,α∈N ),当0≤α≤6时,[x +310]=[m +α+310]=m =[x10], 当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1,所以选B.二、填空题6. 下表表示y 是x 的函数,则函数的值域是________.答案 解析 函数值只有四个数2、3、4、5,故值域为{2,3,4,5}. 7. 已知f (x -1x )=x 2+1x2,则f (3)=________.答案 11解析 ∵f (x -1x )=x 2+1x 2=(x -1x )2+2,∴f (x )=x 2+2(x ≠0),∴f (3)=32+2=11.8. 若函数f (x )R ,则a 的取值范围为________.答案 [-1,0]解析 由题意知2221x ax a +--≥0恒成立. ∴x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0. 三、解答题9. 已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式.解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0, ∴c =0,即f (x )=ax 2+bx . 又∵f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1,解得⎩⎨⎧a =12b =12.∴f (x )=12x 2+12x .10.某人开汽车沿一条直线以60 km /h 的速度从A 地到150 km 远处的B 地.在B 地停留1 h后,再以50 km/h 的速度返回A 地,把汽车与A 地的距离x (km)表示为时间t (h)(从A 地出发开始)的函数,并画出函数的图象.解 x =⎩⎪⎨⎪⎧60t , 0≤t ≤52150, 52<t ≤72150-50(t -72), 72<t ≤132.图象如右图所示.B 组 专项能力提升 (时间:30分钟)1. 已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于 ( )A .1B .2C .3D .4 答案 D解析 由已知可得M =N ,故⎩⎪⎨⎪⎧a 2-4a =-2,b 2-4b +1=-1⇒⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0,所以a ,b 是方程x 2-4x +2=0的两根,故a +b =4.2. 设函数f (x )=⎩⎪⎨⎪⎧x 2+4x +6,x ≤0-x +6,x >0,则不等式f (x )<f (-1)的解集是 ( )A .(-3,-1)∪(3,+∞)B .(-3,-1)∪(2,+∞)C .(-3,+∞)D .(-∞,-3)∪(-1,3)答案 A解析 f (-1)=3,f (x )<3,当x ≤0时,x 2+4x +6<3, 解得x ∈(-3,-1);当x >0时,-x +6<3, 解得x ∈(3,+∞),故不等式的解集为(-3,-1)∪(3,+∞),故选A.3. 已知函数f (x )=⎩⎪⎨⎪⎧e x,x ≥0,-2x ,x <0,则关于x 的方程f (f (x ))+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________.(把所有满足要求的命题序号都填上) 答案 ①②解析 依题意,知函数f (x )>0,又f (f (x ))=⎩⎪⎨⎪⎧e e x,x ≥0,e -2x ,x <0,依据y =f (f (x ))的大致图象(如右图所示),知存在实数k ,使得方程f (f (x ))+k =0恰有1个实根或恰有2个不相等的实根; 不存在实数k ,使得方程恰有3个不相等的实根或恰有4个 不相等的实根.4. 行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫作刹车距离.在某种路面上,某种 型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下 列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图. (1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解 (1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.5. 运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解 (1)行车所用时间为t =130x(h),y =130x ×2×(2+x 2360)+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是 y =2 340x +1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610,当且仅当2 340x =1318x ,即x =1810时,上述不等式中等号成立.故当x =1810时,这次行车的总费用最低,最低费用为2610元.。
§7.2 均值不等式1. 均值不等式ab ≤a +b2(1)均值不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2. 几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 3. 算术平均值与几何平均值设a >0,b >0,则a ,b 的算术平均值为a +b 2,几何平均值为ab ,均值不等式可叙述为两个正数的算术平均值大于或等于它们的几何平均值. 4. 利用均值不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)1. 判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数y =x +1x的最小值是2.( × ) (2)ab ≤(a +b 2)2成立的条件是ab >0.( × ) (3)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × )(4)x >0且y >0是x y +yx ≥2的充要条件.( × ) (5)若a >0,则a 3+1a2的最小值为2a .( × ) (6)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).( √ ) 2. 当x >1时,关于函数f (x )=x +1x -1,下列叙述正确的是( )A .函数f (x )有最小值2B .函数f (x )有最大值2C .函数f (x )有最小值3D .函数f (x )有最大值3答案 C3. 若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 答案 D解析 ∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误. 对于B 、C ,当a <0,b <0时,明显错误. 对于D ,∵ab >0,∴b a +ab≥2b a ·a b=2. 4. 设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =23,则1x +1y的最大值为( )A .2 B.32 C .1 D.12答案 C解析 由a x =b y =3,得:x =log a 3,y =log b 3,由a >1,b >1知x >0,y >0,1x +1y =log 3a +log 3b=log 3ab ≤log 3⎝⎛⎭⎫a +b 22=1,当且仅当a =b =3时“=”成立,则1x +1y 的最大值为1.5. (2013·天津)设a +b =2,b >0,则当a =________时,12|a |+|a |b取得最小值.答案 -2解析 由于a +b =2,所以12|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ,由于b >0,|a |>0,所以b4|a |+|a |b≥2 b 4|a |·|a |b =1,因此当a >0时,12|a |+|a |b 的最小值是14+1=54;当a <0时,12|a |+|a |b的最小值是-14+1=34.故12|a |+|a |b 的最小值为34,此时⎩⎪⎨⎪⎧b 4|a |=|a |b ,a <0,即a =-2.题型一 利用均值不等式求最值例1 (1)已知x >0,y >0,且2x +y =1,则1x +1y的最小值为________;(2)当x >0时,则f (x )=2xx 2+1的最大值为________. 思维启迪 利用均值不等式求最值可以先对式子进行必要的变换.如第(1)问把1x +1y 中的“1”代换为“2x +y ”,展开后利用均值不等式;第(2)问把函数式中分子分母同除“x ”,再利用均值不等式. 答案 (1)3+22 (2)1解析 (1)∵x >0,y >0,且2x +y =1, ∴1x +1y =2x +y x +2x +y y=3+y x +2x y ≥3+2 2.当且仅当y x =2xy 时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x ≤22=1,当且仅当x =1x,即x =1时取等号.思维升华 (1)利用均值不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.(2)在求最值过程中若不能直接使用均值不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用均值不等式.(1)已知正实数x ,y 满足xy =1,则(x y +y )·(yx+x )的最小值为________.(2)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为________.答案 (1)4 (2)3解析 (1)依题意知,(x y +y )(y x +x )=1+y 2x +x 2y +1≥2+2y 2x ×x 2y=4,当且仅当x =y =1时取等号,故(x y +y )·(yx +x )的最小值为4.(2)∵x >0,y >0且1=x 3+y4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号. 题型二 不等式与函数的综合问题例2 (1)已知f (x )=32x -(k +1)3x +2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( )A .(-∞,-1)B .(-∞,22-1)C .(-1,22-1)D .(-22-1,22-1)(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意x ∈N +,f (x )≥3恒成立,则a 的取值范围是________.思维启迪 对不等式恒成立问题可首先考虑分离题中的常数,然后通过求最值得参数范围. 答案 (1)B (2)[-83,+∞)解析 (1)由f (x )>0得32x -(k +1)·3x +2>0,解得k +1<3x +23x ,而3x +23x ≥22(当且仅当3x =23x ,即x =log 32时,等号成立), ∴k +1<22,即k <22-1.(2)对任意x ∈N +,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3.设g (x )=x +8x ,x ∈N +,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173.∴-(x +8x )+3≤-83, ∴a ≥-83,故a 的取值范围是[-83,+∞).思维升华 (1)a >f (x )恒成立⇔a >(f (x ))max , a <f (x )恒成立⇔a <(f (x ))min ;(2)求最值时要注意其中变量的条件,有些不能用均值不等式的问题可考虑利用函数的单调性.若不等式x 2+ax +1≥0对于一切x ∈(0,12)成立,则a 的最小值是( )A .0B .-2C .-52 D .-3答案 C解析 方法一 设f (x )=x 2+ax +1, 则对称轴为x =-a2.当-a 2≥12,即a ≤-1时,f (x )在(0,12)上是减函数,应有f (12)≥0⇒a ≥-52,∴-52≤a ≤-1.当-a 2≤0,即a ≥0时,f (x )在(0,12)上是增函数,应有f (0)=1>0恒成立,故a ≥0. 当0<-a 2<12,即-1<a <0时,应有f (-a 2)=a 24-a 22+1=1-a 24≥0恒成立,故-1<a <0.综上,a ≥-52,故选C.方法二 当x ∈(0,12)时,不等式x 2+ax +1≥0恒成立转化为a ≥-(x +1x )恒成立.又φ(x )=x +1x 在(0,12)上是减函数,∴φ(x )min =φ(12)=52,∴[-(x +1x )]max =-52,∴a ≥-52.题型三 均值不等式的实际应用例3 某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,求:仓库面积S 的最大允许值是多少?为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?思维启迪 把铁栅长、砖墙长设为未知数,由投资3 200元列等式,利用均值不等式即可求解.解 设铁栅长为x 米,一侧砖墙长为y 米,则顶部面积S =xy ,依题设,得40x +2×45y +20xy =3 200,由均值不等式得3 200≥240x ·90y +20xy =120xy +20xy =120S +20S ,则S +6S -160≤0,即(S -10)(S +16)≤0,故0<S ≤10,从而0<S ≤100,所以S 的最大允许值是100平方米,取得此最大值的条件是40x =90y 且xy =100,解得x =15,即铁栅的长应设计为15米.思维升华 对实际问题,在审题和建模时一定不可忽略对目标函数定义域的准确挖掘,一般地,每个表示实际意义的代数式必须为正,由此可得自变量的范围,然后再利用均值不等式求最值.(1)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件(2)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%,若p >q >0,则提价多的方案是________.答案 (1)B (2)乙解析 (1)设每件产品的平均费用为y 元,由题意得 y =800x +x 8≥2800x ·x8=20. 当且仅当800x =x8(x >0),即x =80时“=”成立,故选B.(2)设原价为1,则提价后的价格为 方案甲:(1+p %)(1+q %), 方案乙:(1+p +q 2%)2,因为(1+p %)(1+q %)≤1+p %2+1+q %2=1+p +q2%, 且p >q >0,所以(1+p %)(1+q %)<1+p +q2%,即(1+p %)(1+q %)<(1+p +q 2%)2,所以提价多的方案是乙.忽视均值不等式等号成立的条件致误典例:(10分)(1)(2012·浙江)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( )A.245 B.285 C .5D .6(2)函数y =1-2x -3x(x <0)的最小值为________.易错分析 (1)对x +3y 运用均值不等式得xy 的范围,再对3x +4y 运用均值不等式,利用不等式的传递性得最值;(2)没有注意到x <0这个条件误用均值不等式得2x +3x ≥2 6.解析 (1)由x +3y =5xy 可得15y +35x=1,所以3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+2 3x 5y ·12y 5x =135+125=5, 当且仅当x =1,y =12时取等号,故3x +4y 的最小值是5.(2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x )≥1+2(-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 有最小值1+2 6. 答案 (1)C (2)1+2 6温馨提醒 (1)利用均值不等式求最值,一定要注意应用条件;(2)尽量避免多次使用均值不等式,若必须多次使用,一定要保证等号成立的条件一致.方法与技巧1.均值不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用均值不等式的切入点.2.对于均值不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤(a +b 2)2≤a 2+b 22,ab ≤a +b 2≤a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件. 失误与防范1.使用均值不等式求最值,“一正、二定、三相等”三个条件缺一不可. 2.连续使用均值不等式求最值要求每次等号成立的条件一致.A 组 专项基础训练 (时间:40分钟)一、选择题1. 已知0<x <1,则x (3-3x )取得最大值时x 的值为( )A.13B.12C.34D.23答案 B解析 ∵0<x <1,∴1-x >0. ∴x (3-3x )=3x (1-x )≤3⎝⎛⎭⎫x +1-x 22=34.当且仅当x =1-x ,即x =12时取等号.2. 若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A .1+ 2B .1+ 3C .3D .4答案 C解析 f (x )=x +1x -2=x -2+1x -2+2.∵x >2,∴x -2>0. ∴f (x )=x -2+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2,即x =3时,“=”成立. 又f (x )在x =a 处取最小值.∴a =3.3. 小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b2D .v =a +b2答案 A解析 设甲、乙两地相距s ,则小王往返两地用时为s a +sb ,从而v =2s s a +s b=2aba +b. ∵0<a <b ,∴ab <a +b 2,2ab a +b >2ab2b=a , ∴2a +b <1ab ,即2ab a +b<ab , ∴a <v <ab .4. 若a >0,b >0,且ln(a +b )=0,则1a +1b的最小值是( )A.14 B .1 C .4 D .8 答案 C解析 由a >0,b >0,ln(a +b )=0得⎩⎪⎨⎪⎧a +b =1a >0b >0.故1a +1b =a +b ab =1ab ≥1(a +b 2)2=1(12)2=4. 当且仅当a =b =12时上式取“=”.5. (2012·福建)下列不等式一定成立的是( )A .lg ⎝⎛⎭⎫x 2+14>lg x (x >0) B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R ) D.1x 2+1>1(x ∈R ) 答案 C解析 应用均值不等式:x ,y ∈R +,x +y 2≥xy (当且仅当x =y 时取等号)逐个分析,注意均值不等式的应用条件及取等号的条件. 当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝⎛⎭⎫x 2+14≥lg x (x >0),故选项A 不正确; 运用均值不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确; 由均值不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.二、填空题6. 设x ,y ∈R ,且xy ≠0,则(x 2+1y 2)(1x2+4y 2)的最小值为________.答案 9解析 (x 2+1y 2)(1x 2+4y 2)=5+1x 2y 2+4x 2y 2≥5+21x 2y2·4x 2y 2=9, 当且仅当x 2y 2=12时“=”成立.7. 已知函数f (x )=x +px -1(p 为常数,且p >0),若f (x )在(1,+∞)上的最小值为4,则实数p 的值为________. 答案 94解析 由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,因为f (x )在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.8. 某公司一年需购买某种货物200吨,平均分成若干次进行购买,每次购买的运费为2万元,一年的总存储费用数值(单位:万元)恰好为每次的购买吨数数值,要使一年的总运费与总存储费用之和最小,则每次购买该种货物的吨数是________. 答案 20解析 设每次购买该种货物x 吨,则需要购买200x 次,则一年的总运费为200x ×2=400x ,一年的总存储费用为x ,所以一年的总运费与总存储费用为400x+x ≥2400x·x =40,当且仅当400x =x ,即x =20时等号成立,故要使一年的总运费与总存储费用之和最小,每次应购买该种货物20吨. 三、解答题9. (1)已知0<x <25,求y =2x -5x 2的最大值;(2)已知x >0,y >0,且x +y =1,求8x +2y 的最小值.解 (1)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ).∵0<x <25,∴5x <2,2-5x >0,∴5x (2-5x )≤(5x +2-5x 2)2=1,∴y ≤15,当且仅当5x =2-5x ,即x =15时,y max =15.(2)∵x >0,y >0,且x +y =1,∴8x +2y =(8x +2y )(x +y )=10+8y x +2xy ≥10+2 8y x ·2xy=18, 当且仅当8y x =2x y ,即x =23,y =13时等号成立,∴8x +2y的最小值是18. 10.某造纸厂拟建一座底面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/平方米,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.解 (1)设污水处理池的宽为x 米,则长为162x米. 总造价f (x )=400×(2x +2×162x)+248×2x +80×162 =1 296x +1 296×100x+12 960 =1 296(x +100x)+12 960 ≥1 296×2 x ·100x+12 960 =38 880(元),当且仅当x =100x(x >0),即x =10时取等号. ∴当污水处理池的长为16.2米,宽为10米时总造价最低,总造价最低为38 880元.(2)由限制条件知⎩⎪⎨⎪⎧0<x ≤160<162x ≤16,∴818≤x ≤16. 设g (x )=x +100x (818≤x ≤16), g (x )在[818,16]上是增函数, ∴当x =818时(此时162x=16), g (x )有最小值,即f (x )有最小值,即为1 296×(818+80081)+12 960=38 882(元). ∴当污水处理池的长为16米,宽为818米时总造价最低,总造价最低为38 882元. B 组 专项能力提升(时间:30分钟)1. 已知a >0,b >0,若不等式m 3a +b -3a -1b≤0恒成立,则m 的最大值为( ) A .4 B .16 C .9 D .3答案 B解析 因为a >0,b >0,所以由m 3a +b -3a -1b≤0恒成立得m ≤(3a +1b )(3a +b )=10+3b a +3a b 恒成立.因为3b a +3a b ≥2 3b a ·3a b=6, 当且仅当a =b 时等号成立,所以10+3b a +3a b≥16, 所以m ≤16,即m 的最大值为16,故选B.2. (2013·山东)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z的最大值为( )A .0B .1 C.94D .3 答案 B解析 由已知得z =x 2-3xy +4y 2(*)则xy z =xy x 2-3xy +4y 2=1x y +4y x-3≤1, 当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y2 =-⎝⎛⎭⎫1y -12+1≤1.3. 定义“*”是一种运算,对于任意的x ,y ,都满足x *y =axy +b (x +y ),其中a ,b 为正实数,已知1*2=4,则ab 取最大值时a 的值为 .答案 1解析 ∵1*2=4,∴2a+3b=4,∵2a +3b ≥∴ab ≤23. 当且仅当2a =3b ,即a =1时等号成立,所以当a =1时,ab 取最大值23. 4. (1)若正实数x 、y 满足2x +y +6=xy ,求xy 的最小值.(2)求函数y =x 2+7x +10x +1(x >-1)的最小值. 解 (1)xy =2x +y +6≥22xy +6,令xy =t 2,可得t 2-22t -6≥0,注意到t >0,解得t ≥32,故xy 的最小值为18.(2)设x +1=t ,则x =t -1(t >0),∴y =(t -1)2+7(t -1)+10t=t +4t +5≥2 t ·4t+5=9. 当且仅当t =4t,即t =2,且此时x =1时,取等号, ∴y min =9.5. 经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N +)的旅游人数f (t )(万人)近似地满足f (t )=4+1t,而人均消费g (t )(元)近似地满足g (t )=120-|t -20|. (1)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N +)的函数关系式;(2)求该城市旅游日收益的最小值.解 (1)W (t )=f (t )g (t )=(4+1t)(120-|t -20|) =⎩⎨⎧ 401+4t +100t , 1≤t ≤20,559+140t-4t , 20<t ≤30. (2)当t ∈[1,20]时,401+4t +100t ≥401+24t ·100t=441(t =5时取最小值). 当t ∈(20,30]时,因为W (t )=559+140t-4t 递减, 所以t =30时,W (t )有最小值W (30)=443 23, 所以t ∈[1,30]时,W (t )的最小值为441万元.。
§1.2命题与量词、基本逻辑联结词1.命题的概念能够判断真假的语句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.全称量词与全称命题(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)全称命题:含有全称量词的命题.(3)全称命题的符号表示:形如“对M中的所有x,p(x)”的命题,用符号简记为“∀x∈M,p(x)”.3.存在量词与存在性命题(1)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.(2)存在性命题:含有存在量词的命题.(3)存在性命题的符号表示:形如“存在集合M中的元素x,q(x)”的命题,用符号简记为∃x∈M,q(x).(4)全称命题与存在性命题的否定4. 基本逻辑联结词(1)命题中的“且”、“或”、“非”叫做逻辑联结词.(2)命题真值表:1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)命题p∧q为假命题,则命题p、q都是假命题.(×)(2)已知命题p:∃n0∈N,2n0>1 000,则綈p:∃n∈N,2n0≤1 000. (×)(3)命题p和綈p不可能都是真命题.(√)(4)命题“∀x∈R,x2≥0”的否定是“∀x∈R,x2<0”.(×)(5)若命题p、q至少有一个是真命题,则p∨q是真命题.(√)2.命题p:∀x∈R,sin x<1;命题q:∃x∈R,cos x≤-1,则下列结论是真命题的是() A.p∧q B.(綈p)∧qC.p∨(綈q) D.(綈p)∧(綈q)答案 B解析p是假命题,q是真命题,∴綈p∧q是真命题.3.(2013·重庆)命题“对任意x∈R,都有x2≥0”的否定为() A.对任意x∈R,都有x2<0B.不存在x∈R,使得x2<0C.存在x0∈R,使得x20≥0D.存在x0∈R,使得x20<0答案 D解析因为“∀x∈M,p(x)”的否定是“∃x∈M,綈p(x)”,故“对任意x∈R,都有x2≥0”的否定是“存在x0∈R,使得x20<0”.4.(2013·湖北)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(綈p)∨(綈q) B. p∨(綈q)C.(綈p)∧(綈q) D.p∨q答案 A解析 “至少有一位学员没有落在指定范围”=“甲没有落在指定范围”或“乙没有落在指定范围”=(綈p )∨(綈q ).5. 若命题“∃x ∈R ,x 2-mx -m <0”是假命题,则实数m 的取值范围是________.答案 [-4,0]解析 “∃x ∈R ,x 2-mx -m <0”是假命题,则“∀x ∈R ,x 2-mx -m ≥0”是真命题,即Δ=m 2+4m ≤0, ∴-4≤m ≤0.题型一 含有逻辑联结词命题的真假判断例1 命题p :将函数y =sin 2x 的图象向右平移π3个单位得到函数y =sin ⎝⎛⎭⎫2x -π3的图象;命题q :函数y =sin ⎝⎛⎭⎫x +π6cos ⎝⎛⎭⎫π3-x 的最小正周期为π,则命题“p ∨q ”“p ∧q ”“綈p ”为真命题的个数是( )A .1B .2C .3D .0思维启迪 先判断命题p 、q 的真假,然后利用真值表判断p ∨q 、p ∧q 、綈p 的真假. 答案 B解析 函数y =sin 2x 的图象向右平移π3个单位后,所得函数为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3=sin ⎝⎛⎭⎫2x -2π3, ∴命题p 是假命题. 又y =sin ⎝⎛⎭⎫x +π6cos ⎝⎛⎭⎫π3-x =sin ⎝⎛⎭⎫x +π6cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫x +π6 =sin 2⎝⎛⎭⎫x +π6=12-12cos ⎝⎛⎭⎫2x +π3, ∴其最小正周期为T =2π2=π,∴命题q 是真命题.由此,可判断命题“p ∨q ”为真,“p ∧q ”为假,“綈p ”为真. 思维升华 “p ∨q ”“p ∧q ”“綈p ”形式命题真假的判断步骤: (1)确定命题的构成形式;(2)判断其中命题p 、q 的真假;(3)确定“p ∧q ”“p ∨q ”“綈p ”形式命题的真假.若命题p :函数y =x 2-2x 的单调递增区间是[1,+∞),命题q :函数y =x-1x 的单调递增区间是[1,+∞),则( )A .p ∧q 是真命题B .p ∨q 是假命题C .綈p 是真命题D .綈q 是真命题答案 D解析 因为函数y =x 2-2x 的单调递增区间是[1,+∞), 所以p 是真命题;因为函数y =x -1x 的单调递增区间是(-∞,0)和(0,+∞),所以q 是假命题.所以p ∧q 为假命题,p ∨q 为真命题,綈p 为假命题,綈q 为真命题,故选D. 题型二 含有一个量词的命题的否定例2 写出下列命题的否定,并判断其真假:(1)p :∀x ∈R ,x 2-x +14≥0;(2)q :所有的正方形都是矩形; (3)r :∃x 0∈R ,x 20+2x 0+2≤0; (4)s :至少有一个实数x 0,使x 30+1=0.思维启迪 否定量词,否定结论,写出命题的否定;判断命题的真假. 解 (1)綈p :∃x 0∈R ,x 20-x 0+14<0,假命题. (2)綈q :至少存在一个正方形不是矩形,假命题. (3)綈r :∀x ∈R ,x 2+2x +2>0,真命题. (4)綈s :∀x ∈R ,x 3+1≠0,假命题. 思维升华 (1)含一个量词的命题的否定方法①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定. ②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判断存在性命题是真命题,只要在限定集合内至少能找到一个x =x 0,使p (x 0)成立.(1)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (2)命题“存在实数x ,使x >1”的否定..是( )A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤1 答案 (1)C (2)C解析 (1)綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0. (2)利用存在性命题的否定是全称命题求解.“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”.故选C. 题型三 逻辑联结词与命题真假的应用例3 (1)已知p :∃x ∈R ,mx 2+1≤0,q :∀x ∈R ,x 2+mx +1>0,若p ∨q 为假命题,则实数m 的取值范围为( )A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(2)已知命题p :“∀x ∈[0,1],a ≥e x ”;命题q :“∃x ∈R ,使得x 2+4x +a =0”.若命题“p ∧q ”是真命题,则实数a 的取值范围是__________.思维启迪 利用含逻辑联结词命题的真假求参数范围问题,可先求出各命题为真时参数的范围,再利用逻辑联结词的含义求参数范围. 答案 (1)A (2)[e,4]解析 (1)依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0m ≤-2或m ≥2,即m ≥2. (2)若命题“p ∧q ”是真命题,那么命题p ,q 都是真命题.由∀x ∈[0,1],a ≥e x, 得a ≥e ;由∃x ∈R ,使x 2+4x +a =0,知Δ=16-4a ≥0,a ≤4,因此e ≤a ≤4.思维升华 以命题真假为依据求参数的取值范围时,首先要对两个简单命题进行化简,然后依据“p ∧q ”“p ∨q ”“綈p ”形式命题的真假,列出含有参数的不等式(组)求解即可.(1)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x ∈R ,使x 2+2ax+2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值范围是( )A .{a |a ≤-2或a =1}B .{a |a ≥1}C .{a |a ≤-2或1≤a ≤2}D .{a |-2≤a ≤1}(2)命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围为________. 答案 (1)A (2)[-22,22]解析 (1)由题意知,p :a ≤1,q :a ≤-2或a ≥1,∵“p 且q ”为真命题,∴p 、q 均为真命题,∴a ≤-2或a =1.(2)因题中的命题为假命题,则它的否定“∀x ∈R,2x 2-3ax +9≥0”为真命题,也就是常见的“恒成立”问题,因此只需Δ=9a 2-4×2×9≤0,即-22≤a ≤2 2.借助逻辑联结词求解参数范围典例:(12分)已知c >0,且c ≠1,设p :函数y =c x 在R 上单调递减;q :函数f (x )=x 2-2cx+1在⎝⎛⎭⎫12,+∞上为增函数,若“p 且q ”为假,“p 或q ”为真,求实数c 的取值范围. 思维启迪 (1)p 、q 都为真时,分别求出相应的a 的取值范围;(2)用补集的思想,求出綈p 、綈q 分别对应的a 的取值范围;(3)根据“p 且q ”为假、“p 或q ”为真,确定p 、q 的真假. 规范解答解 ∵函数y =c x 在R 上单调递减,∴0<c <1.[2分] 即p :0<c <1,∵c >0且c ≠1,∴綈p :c >1.[3分] 又∵f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,∴c ≤12. 即q :0<c ≤12,∵c >0且c ≠1,∴綈q :c >12且c ≠1.[5分]又∵“p 或q ”为真,“p 且q ”为假, ∴p 真q 假或p 假q 真.[6分] ①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1.[8分]②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅.[10分]综上所述,实数c 的取值范围是⎩⎨⎧⎭⎬⎫c |12<c <1.[12分]第一步:求命题p 、q 对应的参数的范围. 第二步:求命题綈p 、綈q 对应的参数的范围. 第三步:根据已知条件构造新命题,如本题构造新命题 “p 且q ”或“p 或q ”.第四步:根据新命题的真假,确定参数的范围. 第五步:反思回顾.查看关键点、易错点及解题规范.温馨提醒 解决此类问题的关键是准确地把每个条件所对应的参数的取值范围求解出来,然后转化为集合交、并、补的基本运算.答题时,可依答题模板的格式进行,这样可使答题思路清晰,过程完整.老师在阅卷时,便于查找得分点.方法与技巧1.把握含逻辑联结词的命题的形式,特别是字面上未出现“或”、“且”,要结合语句的含义理解.2.要写一个命题的否定,需先分清其是全称命题还是存在性命题,对照否定结构去写,并注意与否命题区别;否定的规律是“改量词,否结论”. 失误与防范1.p ∨q 为真命题,只需p 、q 有一个为真即可;p ∧q 为真命题,必须p 、q 同时为真. 2.p 或q 的否定:非p 且非q ;p 且q 的否定:非p 或非q . 3.命题的否定与否命题“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题p 的否定”即“非p ”,只是否定命题p 的结论.A 组 专项基础训练 (时间:30分钟)一、选择题1. 设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真答案 C解析 p 是假命题,q 是假命题,因此只有C 正确. 2. 下列命题中的假命题是( )A .∃x 0∈R ,lg x 0=0B .∃x 0∈R ,tan x 0=1C .∀x ∈R ,x 3>0D .∀x ∈R,2x >0答案 C解析 对于A ,当x 0=1时,lg x 0=0,正确;对于B ,当x 0=π4时,tan x 0=1,正确;对于C ,当x <0时,x 3<0,错误;对于D ,∀x ∈R,2x >0,正确. 3. (2012·湖北)命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 答案 B解析 通过否定原命题得出结论.原命题的否定是“任意一个无理数,它的平方不是有理数”.4. (2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D.5. 已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .綈p ∨qB .p ∧qC .綈p ∧綈qD .綈p ∨綈q答案 D解析 不难判断命题p 为真命题,命题q 为假命题,从而上述叙述中只有綈p ∨綈q 为真命题.6. 已知命题p :若a >1,则a x >log a x 恒成立;命题q :在等差数列{a n }中(其中公差d ≠0),m +n =p +q 是a n +a m =a p +a q 的充分不必要条件(m ,n ,p ,q ∈N +). 则下面选项中真命题是( )A .綈p ∧綈qB .綈p ∨綈qC .綈p ∨qD .p ∧q答案 B解析 对于命题p ,如图所示,作出函数y =a x (a >1)与y =log a x (a >1)在(0,+∞)上的图象,显然当a >1时,函数y =a x 的图象在函数y =log a x 图象的上方,即当a >1时,a x >log a x 恒成立,故命题p 为真命题.对于命题q ,由等差数列的性质,可知当公差不为0时,m +n =p +q 是a n +a m =a p +a q 的充要条件,故命题q 为假命题. ∴命题綈p 为假,綈q 为真,故綈p ∨綈q 为真. 7. 下列命题中,真命题是( )A .∃x 0∈⎣⎡⎦⎤0,π2,sin x 0+cos x 0≥2 B .∀x ∈(3,+∞),x 2>2x +1C .∃x 0∈R ,x 20+x 0=-1D .∀x ∈⎝⎛⎭⎫π2,π,tan x >sin x 答案 B解析 对于选项A ,∀x ∈⎣⎡⎦⎤0,π2,sin x +cos x =2sin ⎝⎛⎭⎫x +π4≤2, ∴此命题为假命题;对于选项B ,当x ∈(3,+∞)时,x 2-2x -1=(x -1)2-2>0, ∴此命题为真命题;对于选项C ,∀x ∈R ,x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴此命题为假命题;对于选项D ,当x ∈⎝⎛⎭⎫π2,π时,tan x <0<sin x , ∴此命题为假命题.故选B.8. 命题“函数y =f (x )的导函数为f ′(x )=e x+k 2e x -1k(其中e 为自然对数的底数,k 为实数),且f (x )在R 上不是单调函数”是真命题,则实数k 的取值范围是 ( )A.⎝⎛⎭⎫-∞,-22 B.⎝⎛⎭⎫-22,0 C.⎝⎛⎭⎫0,22D.⎝⎛⎭⎫22,+∞ 答案 C解析 当k =-1时,f ′(x )=e x +1e x +1≥2+1=3,则f (x )在R 上单调递增,不满足题意,应排除A ; 当k =-12时,f ′(x )=e x +14e x +2≥1+2=3,所以f (x )在R 上单调递增,不满足题意,应排除B ; 当k =1时,f ′(x )=e x +1ex -1≥2e x ·1ex -1=2-1=1, 则f (x )在R 上单调递增,不满足题意,应排除D.选C. 二、填空题9. 命题“∀x ∈R ,∃m ∈Z ,m 2-m <x 2+x +1”是________命题.(填“真”或“假”)答案 真解析 由于∀x ∈R ,x 2+x +1=⎝⎛⎭⎫x +122+34≥34, 因此只需m 2-m <34,即-12<m <32,所以当m =0或m =1时,∀x ∈R ,m 2-m <x 2+x +1成立, 因此命题是真命题.10.命题“能被5整除的数,末位是0”的否定是________________________.答案 存在能被5整除的数,末位不是0解析 此命题省略了全称量词“任何一个”,其否定是存在性命题.11.若命题p :关于x 的不等式ax +b >0的解集是{x |x >-ba},命题q :关于x 的不等式(x -a )(x-b )<0的解集是{x |a <x <b },则在命题“p ∧q ”、“p ∨q ”、“綈p ”、“綈q ”中,是真命题的有________. 答案 綈p 、綈q解析 依题意可知命题p 和q 都是假命题,所以“p ∧q ”为假、“p ∨q ”为假、“綈p ”为真、“綈q ”为真.12.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.答案 [-3,0]解析 ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,得⎩⎪⎨⎪⎧a <0Δ=4a 2+12a ≤0, 解得-3≤a <0,故-3≤a ≤0. B 组 专项能力提升 (时间:15分钟) 1. 下列命题中的假命题是( )A .∀x ∈R,2x -1>0B .∀x ∈N +,(x -1)2>0C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =2答案 B解析 A 正确;对于B ,当x =1时,(x -1)2=0,错误;对于C ,当x ∈(0,1)时,lg x <0<1,正确;对于D ,∃x ∈R ,tan x =2,正确.2.“命题‘∃x ∈R ,x 2+ax -4a <0’为假命题”是“-16≤a ≤0”的( ) A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 答案 A解析 因为“∃x ∈R ,x 2+ax -4a <0”为假命题,所以“∀x ∈R ,x 2+ax -4a ≥0”为真命题.所以Δ=a 2+16a ≤0,即-16≤a ≤0.所以“命题‘∃x ∈R ,x 2+ax -4a <0’为假命题”是“-16≤a ≤0”的充要条件.3. 设有两个命题,p :不等式e x 4+1e x >a 的解集为R ;q :函数f (x )=-(7-3a )x 在R 上是减函数,如果这两个命题中有且只有一个真命题,那么实数a 的取值范围是( )A .1≤a <2B .2<a ≤73C .2≤a <73D .1<a ≤2 答案 A解析 记A ={a |不等式e x 4+1e x >a 的解集为R }; B ={a |f (x )=-(7-3a )x 在R 上是减函数}.由于函数y =e x 4+1e x 的最小值为1,故A ={a |a <1}.又因为函数f (x )=-(7-3a )x 在R 上是减函数,故7-3a >1,即a <2,所以B ={a |a <2}.要使这两个命题中有且只有一个真命题,a 的取值范围为[(∁R A )∩B ]∪[(∁R B )∩A ],而(∁R A )∩B =[1,+∞)∩(-∞,2)=[1,2),(∁R B )∩A =[2,+∞)∩(-∞,1)=∅,因此[(∁R A )∩B ]∪[(∁R B )∩A ]=[1,2),故选A.4. 下列四个命题:①∀x ∈R ,x 2+x +1≥0;②∀x ∈Q ,12x 2+x -13是有理数; ③∃α,β∈R ,使sin(α+β)=sin α+sin β;④∃x ,y ∈Z ,使3x -2y =10.所有真命题的序号是________.答案 ①②③④解析 ①②显然正确;③中,若α=π2,β=0, 则sin(α+β)=1,sin α+sin β=1+0=1,等式成立,∴③正确;④中,x =4,y =1时,3x -2y =10成立,∴④正确,故填①②③④.5. 已知命题p :“∀x ∈R ,∃m ∈R,4x -2x +1+m =0”,若命题綈p 是假命题,则实数m 的取值范围是__________.答案 (-∞,1]解析 若綈p 是假命题,则p 是真命题,即关于x 的方程4x -2·2x +m =0有实数解,由于m =-(4x -2·2x )=-(2x -1)2+1≤1,∴m ≤1.6. 设p :关于x 的不等式a x >1的解集是{x |x <0};q :函数y =ax 2-x +a 的定义域为R .若p ∨q 是真命题,p ∧q 是假命题,则实数a 的取值范围是________________.答案 ⎝⎛⎭⎫0,12∪[1,+∞) 解析 根据指数函数的单调性,可知命题p 为真命题时,实数a 的取值集合为P ={a |0<a <1},对于命题q :函数的定义域为R 的充要条件是ax 2-x +a ≥0恒成立.当a =0时,不等式为-x ≥0,解得x ≤0,显然不成立;当a ≠0时,不等式恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ=(-1)2-4a ×a ≤0,解得a ≥12. 所以命题q 为真命题时,a 的取值集合为Q ={a |a ≥12}. 由“p ∨q 是真命题,p ∧q 是假命题”,可知命题p ,q 一真一假,当p 真q 假时,a 的取值范围是P ∩(∁R Q )={a |0<a <1}∩{a |a <12}={a |0<a <12}; 当p 假q 真时,a 的取值范围是(∁R P )∩Q ={a |a ≤0或a ≥1}∩{a |a ≥12}={a |a ≥1}. 综上,a 的取值范围是⎝⎛⎭⎫0,12∪[1,+∞).。
常考题型强化练——不等式、推理与证明A 组 专项基础训练 (时间:40分钟)一、选择题1.“|x |<2”是“x 2-x -6<0”的什么条件( )A .充分而不必要B .必要而不充分C .充要D .既不充分也不必要答案 A解析 不等式|x |<2的解集是(-2,2),而不等式x 2-x -6<0的解集是(-2,3),于是当x ∈ (-2,2)时,可得x ∈(-2,3),反之则不成立,故选A.2. 某种生产设备购买时费用为10万元,每年的设备管理费共计9千元,这种生产设备的维修费各年为第一年2千元,第二年4千元,第三年6千元,而且以后以每年2千元的增量逐年递增,则这种生产设备最多使用多少年报废最合算(即使用多少年的年平均费用最少)( )A .8B .9C .10D .11 答案 C解析 设使用x 年的年平均费用为y 万元. 由已知,得y =10+0.9x +0.2x 2+0.2x2x ,即y =1+10x +x10(x ∈N +).由均值不等式知y ≥1+210x ·x 10=3,当且仅当10x =x10,即x =10时取等号.因此使用10年报废最合算,年平均费用为3万元.3. (2013·四川)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤8,2y -x ≤4,x ≥0,y ≥0,且z =5y -x 的最大值为a ,最小值为b ,则a -b 的值是( )A .48B .30C .24D .16 答案 C解析 画出可行域如图阴影部分(包括边界)易解得A (4,4),B (8,0),C (0,2).对目标函数令z =0作出直线l 0,上下平移易知过点A (4,4),z 最大=16,过点B (8,0),z 最小=-8,即a =16,b =-8, ∴a -b =24.选C.4. 一元二次不等式ax 2+bx +c >0的解集为(α,β)(α>0),则不等式cx 2+bx +a >0的解集为( )A.⎝⎛⎭⎫1α,1βB.⎝⎛⎭⎫-1α,-1β C.⎝⎛⎭⎫1β,1α D.⎝⎛⎭⎫-1β,-1α 答案 C解析 ∵不等式ax 2+bx +c >0的解集为(α,β),则a <0,α+β=-b a ,αβ=ca ,而不等式cx 2+bx +a >0可化为c a x 2+bax +1<0,即αβx 2-(α+β)x +1<0,可得(αx -1)(βx -1)<0,即⎝⎛⎭⎫x -1α⎝⎛⎭⎫x -1β<0,所以其解集是⎝⎛⎭⎫1β,1α,故选C.5. 设等差数列{a n }的前n 项和为S n .若存在正整数m ,n (m <n ),使得S m =S n ,则S m +n =0.类比上述结论,设正项等比数列{b n }的前n 项积为T n .若存在正整数m ,n (m <n ),使T m =T n ,则T m +n 等于( )A .0B .1C .m +nD .mn 答案 B解析 因为T m =T n ,所以b m +1b m +2…b n =1,从而b m +1b n =1,T m +n =b 1b 2…b m b m +1…b n b n +1…b n +m -1b n +m =(b 1b n +m )·(b 2b n +m -1)… (b m b n +1)·(b m +1b n )=1. 二、填空题6. 已知x >0,y >0,且2x +1y=1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是____________. 答案 (-4,2)解析 ∵x >0,y >0,且2x +1y=1,∴x +2y =(x +2y )⎝⎛⎭⎫2x +1y =4+4y x +x y ≥4+24y x ·x y =8,当且仅当4y x =x y, 即4y 2=x 2,x =2y 时取等号,又2x +1y =1,此时x =4,y =2,∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4<m <2.7. 已知点P (x ,y )在曲线y =1x上运动,作PM 垂直于x 轴于M ,则△OPM (O 为坐标原点)的周长的最小值为________. 答案 2+ 2解析 三角形OPM 的周长为 |x |+1|x |+x 2+1x2≥2·|x |·1|x |+2·x 2·1x2=2+ 2(当且仅当|x |=1|x |时,即|x |=1时取等号).8. 已知对于任意实数α,我们有正弦恒等式sin αsin(π3-α)·sin(π3+α)=14sin 3α,也有余弦恒等式cos αcos(π3-α)·cos(π3+α)=14cos 3α,类比以上结论对于使正切有意义的α,可以推理得正切恒等式为________________. 答案 tan αtan(π3-α)tan(π3+α)=tan 3α三、解答题9. 在一条直线型的工艺流水线上有3个工作台,将工艺流水线用如下图所示的数轴表示,各工作台的坐标分别为x 1,x 2,x 3,每个工作台上有若干名工人.现要在x 1与x 3之间修建一个零件供应站,使得各工作台上的所有工人到供应站的距离之和最短. (1)若每个工作台上只有一名工人,试确定供应站的位置;(2)设工作台从左到右的人数依次为2,1,3,试确定供应站的位置,并求所有工人到供应站的距离之和的最小值.解 设供应站坐标为x ,各工作台上的所有工人到供应站的距离之和为d (x ).(1)由题设,知x 1≤x ≤x 3,所以d (x )=x -x 1+|x -x 2|+x 3-x =|x -x 2|-x 1+x 3, 故当x =x 2时,d (x )取最小值,此时供应站的位置为x =x 2. (2)由题设,知x 1≤x ≤x 3,所以d (x )=2(x -x 1)+|x -x 2|+3(x 3-x )=⎩⎪⎨⎪⎧-2x +3x 3+x 2-2x 1,x 1≤x <x 2,3x 3-x 2-2x 1,x 2≤x ≤x 3. 因此,函数d (x )在区间[x 1,x 2]上是减函数, 在区间[x 2,x 3]上是常数.故供应站位置位于区间[x 2,x 3]上任意一点时,均能使函数d (x )取得最小值,且最小值为3x 3-x 2-2x 1.10.某市政府为了打造宜居城市,计划在公园内新建一个如下图所示的矩形ABCD 的休闲区,内部是矩形景观区A 1B 1C 1D 1,景观区四周是人行道,已知景观区的面积为8 000平方米,人行道的宽为5米(如下图所示).(1)设景观区的宽B 1C 1的长度为x (米),求休闲区ABCD 所占面积S 关于x 的函数; (2)规划要求景观区的宽B 1C 1的长度不能超过50米,如何设计景观区的长和宽,才能使休闲区ABCD 所占面积最小?解 (1)因为AB =10+8 000x ,BC =10+x ,所以S =⎝⎛⎭⎫10+8 000x (10+x ) =8 100+80 000x+10x (x >0).所以休闲区ABCD 所占面积S 关于x 的函数是 S =8 100+80 000x +10x (x >0).(2)S =8 100+80 000x+10x (0<x ≤50),令S ′=10-80 000x 2=0,得x =405或x =-405(舍去).所以当0<x ≤50时,S ′<0,故S =8 100+80 000x+10x 在(0,50]上单调递减.所以函数S =8 100+80 000x +10x (0<x ≤50)在x =50取得最小值,此时A 1B 1=8 00050=160(米).所以当景观区的长为160米,宽为50米时,休闲区ABCD 所占面积S 最小.B 组 专项能力提升 (时间:30分钟)1. 某商场中秋前30天月饼销售总量f (t )与时间t (0<t ≤30)的关系大致满足f (t )=t 2+10t +16,则该商场前t 天平均售出(如前10天的平均售出为f (10)10)的月饼最小值为 ( )A .18B .27C .20D .16 答案 A解析 平均销售量y =f (t )t =t 2+10t +16t=t +16t+10≥18.当且仅当t =16t ,即t =4∈(0,30]时等号成立,即平均销售量的最小值为18.2. 某蔬菜收购点租用车辆,将100吨新鲜黄瓜运往某市销售,可供租用的卡车和农用车分别为10辆和20辆.若每辆卡车载重8吨,运费960元,每辆农用车载重2.5吨,运费360元,则蔬菜收购点运完全部黄瓜支出的最低运费为( )A .11 280元B .12 480元C .10 280元D .11 480元答案 B解析 设租用的卡车和农用车分别为x 辆和y 辆,运完全部黄瓜支出的运费为z 元,则⎩⎪⎨⎪⎧0≤x ≤100≤y ≤208x +2.5y ≥100x ∈N +y ∈N+,目标函数z =960x +360y ,此不等式组表示的可行域是△ABC (其中A (10,8),B (10,20),C (6.25,20))内横坐标和纵坐标均为整数的点.当直线l :z =960x +360y 经过点A (10,8)时,运费最低, 且其最低运费z min =960×10+360×8=12 480(元),选B.3. 如图所示,要挖一个面积为800平方米的矩形鱼池,并在鱼池的四周留出左右宽2米,上下宽1米的小路,则占地总面积的最小 值是________平方米. 答案 968解析 设鱼池的长EH =x ,则EF =800x,占地总面积是(x +4)·⎝⎛⎭⎫800x +2 =808+2⎝⎛⎭⎫x +1 600x ≥808+2·2x ·1 600x=968.当且仅当x =1 600x,即x =40时,取等号.4. 我们把在平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系xOy 中,利用求动点轨迹方程的方法,可以求出过点A (-3,4),且其法向量为n =(1,-2)的直线方程为1×(x +3)+(-2)×(y -4)=0,化简得x -2y +11=0.类比上述方法,在空间直角坐标系Oxyz 中,经过点A (1,2,3),且其法向量为n =(-1,-2,1)的平面方程为________. 答案 x +2y -z -2=0解析 设P (x ,y ,z )为空间内任意一点,则类比上述结论可得AP →·n =(x -1,y -2,z -3)·(-1,-2,1)=0,整理得x +2y -z -2=0.5. 某工厂每天生产某种产品最多不超过40件,产品的正品率P 与日产量x (x ∈N +)件之间的关系为P =4 200-x 24 500,每生产一件正品盈利 4 000元,每出现一件次品亏损 2 000元.(注:正品率=产品中的正品件数÷产品总件数×100%) (1)将日利润y (元)表示成日产量x (件)的函数;(2)该厂的日产量为多少件时,日利润最大?并求出日利润的最大值. 解 (1)∵y =4 000·4 200-x 24 500·x -2 000⎝⎛⎭⎫1-4 200-x 24 500·x =3 600x -43x 3,∴所求的函数关系式是y =-43x 3+3 600x (x ∈N +,1≤x ≤40).(2)由(1)知y ′=3 600-4x 2. 令y ′=0,解得x =30. ∴当1≤x <30时,y ′>0; 当30<x ≤40时,y ′<0.∴函数y =-43x 3+3 600x (x ∈N +,1≤x ≤40)在(1,30)上是单调递增函数,在(30,40)上是单调递减函数. ∴当x =30时,函数y =-43x 3+3 600x (x ∈N +,1≤x ≤40)取得最大值,最大值为-43×303+3 600×30=72 000(元).∴该厂的日产量为30件时,日利润最大, 最大值为72 000元.。