频域特性曲线
- 格式:doc
- 大小:26.50 KB
- 文档页数:1
《自动控制原理》实验3.线性系统的频域分析实验三线性系统的频域分析一、实验目的1.掌握用MATLAB语句绘制各种频域曲线。
2.掌握控制系统的频域分析方法。
二、基础知识及MATLAB函数频域分析法是应用频域特性研究控制系统的一种经典方法。
它是通过研究系统对正弦信号下的稳态和动态响应特性来分析系统的。
采用这种方法可直观的表达出系统的频率特性,分析方法比较简单,物理概念明确。
1.频率曲线主要包括三种:Nyquist图、Bode图和Nichols图。
1)Nyquist图的绘制与分析MATLAB中绘制系统Nyquist图的函数调用格式为:nyquist(num,den) 频率响应w的范围由软件自动设定 nyquist(num,den,w) 频率响应w的范围由人工设定[Re,Im]= nyquist(num,den) 返回奈氏曲线的实部和虚部向量,不作图2s?6例4-1:已知系统的开环传递函数为G(s)?3,试绘制Nyquists?2s2?5s?2图,并判断系统的稳定性。
num=[2 6]; den=[1 2 5 2]; nyquist(num,den)极点的显示结果及绘制的Nyquist图如图4-1所示。
由于系统的开环右根数P=0,系统的Nyquist曲线没有逆时针包围(-1,j0)点,所以闭环系统稳定。
p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668图4-1 开环极点的显示结果及Nyquist图若上例要求绘制??(10?2,103)间的Nyquist图,则对应的MATLAB语句为:num=[2 6]; den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100个等距离的点nyquist(num,den,w)2)Bode图的绘制与分析系统的Bode图又称为系统频率特性的对数坐标图。
Bode图有两张图,分别绘制开环频率特性的幅值和相位与角频率?的关系曲线,称为对数幅频特性曲线和对数相频特性曲线。
§4-1 概述系统的频域分析法,是将通过傅利叶变换,将信号分解成多个正弦函数的和(或积分),得到信号的频谱;然后求系统对各个正弦分量的响应,得到响应的频谱;最后通过傅利叶反变换,求得响应。
频域分析法避开了微分方程的求解和卷积积分的计算,容易求得系统的响应。
但是它必须经过两次变换计算,计算量比较大。
但是在很多情况下,直接给定激励信号的频谱,且只需要得到响应信号的频谱,这时就可以不用或少用变换。
频域分析法只能求解系统的稳态响应或零状态响应。
§4-2信号通过系统的频域分析方法一、系统对周期性信号的稳态响应1、 基本思路:周期性信号可以表示(分解)成若干个(复)正弦函数之和。
只要分别求出了系统对各个(复)正弦函数的响应(这一点已经在电路分析课程中做了充分讨论),就可以得到全响应。
⏹ ⏹ 稳态响应:周期信号是一个无始无终的信号,可以认为在很远的过去就已经加到系统上,系统的响应已经进入了一个稳定的状态——响应中只存在稳态响应。
2、 电系统对周期信号的响应: 1) 将周期信号分解为傅利叶级数; 2) 求电路系统对各个频率信号的作用的一般表达式——网络函数)(ωj H ―――求解方法:利用电路分析中的稳态响应3) 求系统对各个频率点上的信号的响应; 4) 将响应叠加,得到全响应。
注意:这里的叠加是时间函数的叠加,不是电路分析中的矢量叠加。
例:P167, 例题4-1⏹ 某些由周期性信号组成的非周期信号(或概周期信号)也可以用这种分析方法。
例如信号:t t t e πcos cos )(+=虽然不是周期信号,但是也可以分解成为周期信号的和,从而也可以用这种方法求解。
3、 通过微分方程求系统对周期信号的响应:在很多场合,已经给出了系统的微分方程,如何求解系统对周期信号的响应?(1) 对于用微分方程描述的一般系统,有:)()(...)()()()(...)()(0111101111t e b t e dt db t e dt d b t e dt d b t r a t r dtd a t r dt d a t r dt d m m m m m m n n n n n ++++=++++------ 我们可以先假设系统对复正弦信号的响应仍然是同频率的复正弦信号(这个假设是否成立?有待验证!) 设:激励信号是复正弦信号tj ej E ωω⋅)(,其响应也是同样频率的复正弦信号tj e j R ωω⋅)(。
控制系统频域分析1. 引言频域分析是控制系统理论中的重要内容之一,它可以帮助工程师们深入了解控制系统的特性和性能。
通过对系统在频域上的响应进行分析,可以得到系统的频率响应曲线和频率特性,从而更好地设计和调节控制系统。
本文将介绍控制系统频域分析的基本概念、常用方法和应用场景。
2. 控制系统频域分析的基本概念2.1 传递函数传递函数是描述系统输入与输出之间关系的数学模型。
对于线性时不变系统,其传递函数可以用拉普拉斯变换表示。
传递函数的频域特性可以通过对传递函数进行频域变换得到。
2.2 频率响应频率响应是控制系统在不同频率下的输出响应,它是描述系统在不同频率下性能的重要指标。
频率响应可以通过传递函数的频域特性来分析。
2.3 增益余弦图增益余弦图是描述控制系统增益和相位随频率变化的图形。
在增益余弦图中,横轴表示频率,纵轴表示增益和相位角。
通过分析增益余弦图,可以得到系统的幅频特性和相频特性。
3. 控制系统频域分析的常用方法3.1 简单频率响应分析简单频率响应分析是最基本也是最常用的频域分析方法之一。
它通过对系统输入信号进行正弦波信号的傅里叶变换,得到系统的频率响应曲线。
常用的频率响应曲线有幅频特性曲线和相频特性曲线。
3.2 Bode图Bode图是一种常用的频域分析方法,它将系统的增益和相位角随频率变化的情况绘制在一张图中。
通过分析Bode图,可以得到系统的幅频特性和相频特性,并进行系统的稳定性分析。
3.3 Nyquist图Nyquist图是一种用于分析系统稳定性的频域分析方法。
它将系统的传递函数关联到一个复平面上,通过对系统传递函数的频域特性进行分析,可以得到系统的稳定性信息。
Nyquist图可以帮助工程师们更好地设计和调节控制系统。
4. 控制系统频域分析的应用场景频域分析在控制系统设计和调节中有广泛的应用场景。
以下是几个常见的应用场景:4.1 控制系统稳定性分析通过对控制系统的频域特性进行分析,可以判断系统的稳定性。