第2章平稳随机信号的功率谱-频域特征教学案例
- 格式:ppt
- 大小:1.16 MB
- 文档页数:66
《随机信号分析与处理》教学⼤纲《随机信号分析与处理》教学⼤纲(执笔⼈:罗鹏飞教授学院:电⼦科学与⼯程学院)课程编号:070504209英⽂名称:Random Signal Analysis and Processing预修课程:概率论与数理统计、信号与系统、数字信号处理学时安排:60学时,其中讲授54学时,实践6学时学分:3⼀、课程概述(⼀)课程性质地位本课程是电⼦⼯程、通信⼯程专业的⼀门学科基础课程。
该课程系统地介绍随机信号的基本概念、随机信号的统计特性分析⽅法以及随机信号通过系统的分析⽅法;介绍信号检测、估计、滤波等信号处理理论的基本原理和信息提取⽅法。
其⽬的是使学⽣通过本课程的学习,掌握随机信号分析与处理的基本概念、基本原理和基本⽅法,培养学⽣运⽤随机信号分析与处理的理论解决⼯程实际问题的能⼒,提⾼综合素质,为后续课程的学习打下必要的理论基础。
本课程是电⼦信息技术核⼼理论基础。
电⼦信息系统中的关键技术是信息获取、信息传输、信息处理,这些技术的理论基础就是随机信号的分析、检测、估计、滤波等理论,这正是本课程的主要内容。
因此,本课程内容是电⼦信息类应⽤型⼈才知识结构中不可或缺的必备知识。
⼆、课程⽬标(⼀)知识与技能通过本课程的学习,掌握随机信号分析与处理基本概念和基本分析⽅法。
内容包括:1.理解和掌握随机过程基本概念和统计描述;2.掌握随机过程通过线性和⾮线性系统分析⽅法3.理解和掌握典型随机过程的特点及分析⽅法;4.掌握参数估计的概念、规则和性能分析⽅法;5.掌握信号检测的概念、规则和性能分析⽅法;6.掌握⾼斯⽩噪声中最佳检测器的结构和性能分析。
通过本课程的学习,要达到的能⼒⽬标是:1.具有正确地理解、阐述、解释⽣活中的随机现象的能⼒,即培养统计思维能⼒;2.运⽤概率、统计的数学⽅法和计算机⽅法分析和处理随机信号的能⼒;3.初步具备雷达、通信、导航等技术领域的信号处理系统的分析、设计、仿真的科学研究能⼒;4.培养⾃主学习能⼒;5.培养技术交流能⼒(包括论⽂写作和⼝头表达);6.培养协作学习的能⼒;(⼆)过程与⽅法依托“理论、实践、第⼆课堂”三个基本教学平台,通过课堂教学、概念测试、课堂研讨、案例研究、作业、实验、课程论⽂、⽹络教学等多种教学形式,采⽤研究型、案例式、互动研讨、基于团队学习、基于MATLAB的教学以及基于多媒体的教学等多种教学⽅法和⼿段,使学⽣加深对随机信号分析与处理的基本概念、基本原理以及应⽤的理解,并使学⽣通过⾃主学习、⼩组作业、案例研究、实验、课题论⽂等主动学习形式,培养⾃学能⼒和协同学习的能⼒,使学⽣不仅获得知识、综合素质得到提⾼。
授课题目(教学章节或主题)平稳随机过程
1平稳随机过程的主要数字特征2 平稳随机过程的功率谱密度
授课方式理论课
1.教学目的与要求:1.掌握平稳随机噪声中数字特征的物理意义;
2.掌握自相关函数、方差、平均功率的计算方法;
3.掌握自相关函数、方差、均方值、功率谱密度在通信中的应用;
教学基本内容(包括重点、难点、时间分配):
重点:
1. 平稳随机过程的主要数字特征
(1)平稳随机过程的概念及其特点
通信信道中的高斯随机噪声属于平稳随机过程(有各态历经性),即平稳高斯噪声。
随机过程(随机噪声)是不同时刻随机变量的组合,或者说随机过程中每一时刻的取值都是随机变量。
如图.。
信号的频谱分析式研究信号特性的重要手段之一,对于确定信号,可以用Fourier变换来考察信号的频谱特性,而对于广义平稳随机信号而言,相应的方法是求其功率谱。
功率谱反映了随机信号功率能量的分布特征,可以揭示信号中隐含的周期性以及靠的很近的谱峰等有用信息,有很广泛的应用。
在雷达信号处理中,回波信号的功率提供了运动目标的位置、强度和速度等信息(即功率谱的峰值与宽度、高度、和位置的关系);在无源声纳信号处理中,功率谱密度的位置给出了鱼雷的方向(方位角)信息;在生物医学工程中,功率谱的峰和波形,表示了一些特殊疾病的发作周期;在语音处理中,谱分析用来探测语音语调共振;在电子战中,还利用功率谱来对目标进行分类。
功率谱密度函数反映了随机信号各频率成份的功率分布情况,是随机信号处理中应用很广泛的技术。
实际应用中的平稳信号通常是有限长的,因此,只能从有限的信号中去估计信号的真实功率谱,这就是功率谱估计问题。
寻找可靠与质量优良的估计谱是这次研究的主要内容。
功率谱估计可分为非参数化方法(低分辨率分析),参数化方法(高分辨率分析),广义的功率谱分析(空间谱分析),也可以把非参数化方法称为经典谱估计,参数化方法称为现代谱估计(包括空间谱估计)这次论文从不同角度介绍了现代谱估计的一些主要算法,包括参数模型法、Pisarenko 谐波分解法、最大熵估计、多重信号分类(MUSIC)、旋转不变技术(ESPRIT)等。
参数模型法将以ARMA模型为主,以及其谱估计所需的AR、MA的参数和阶数;最大熵估计也就是Burg最大熵谱估计,它在不同约束条件下,分别与AR谱估计、ARMA谱估计等价;MUSIC 方法是一种估计信号空间参数的现代谱估计方法;ESPRIT方法是一种估计信号空间参数的旋转不变技术,其基本思想是将谐波频率的估计转变为矩阵束的广义特征值分解。
最后,这次论文还会分析它们各自的优缺点及应用场合。
并利用计算机语言对各种现代谱估计算法的进行仿真实现,并比较它们的性能。
第六讲 平稳随机过程的功率谱密度6.1 确知信号的频谱和能量谱密度对于确知信号,周期信号可以表示成傅立叶级数,非周期信号可以表示成傅立叶积分。
设信号s(t)为时间t 的非周期实函数,满足如下条件:1)⎰∞∞-∞<dt t s )(,即s(t)绝对可积;2)s(t)在),(∞-∞内只有有限个第一类间断点和有限个极值点, 那么,s(t)的傅立叶变换存在,为⎰∞∞--=dt e t s S t j ωω)()(又称为频谱密度,也简称为频谱。
信号s(t)可以用频谱表示为⎰∞∞-=ωωπωd e S t s t j )(21)(信号s(t)的总能量为⎰∞∞-=dt t s E )(2根据帕塞瓦尔定理:对能量有限信号,时域内信号的能量等于频域内信号的能量。
即ωωπd S dt t s E 22)(21)(⎰⎰∞∞-∞∞-==其中,2)(ωS 称为s(t)的能量谱密度(能谱密度)。
能谱密度存在的条件是∞<⎰∞∞-dt t s )(2即总能量有限,所以s(t)也称为有限能量信号。
6.2 随机过程的功率谱密度随机信号的能量一般是无限的,但是其平均功率是有限的。
经推导可得,])([21lim )(2ωωT T X X E TS ∞→=为随机过程X(t)的功率谱密度函数,简称为功率谱密度。
功率谱密度是从频率角度描述随机过程X(t)的统计特性的最主要的数字特征。
可得随机过程的平均功率为 ⎰∞∞-=ωωπd S P X X )(21对于平稳随机过程,其平均功率为ωωπd S t X E X ⎰∞∞-=)(21)]([2若X(t)为各态历经过程,则功率谱密度可由一个样本函数得到,即2),(21lim )(e X TS T T X ωω∞→=6.3 功率谱密度与自相关函数之间的关系平稳随机过程的自相关函数与功率谱密度构成傅立叶变换对,即维纳-辛钦定理:⎰⎰∞∞--∞∞-==ωωπτττωωτωτd eS R d e R S j X X j X X )(21)()()(它成立的条件是)()(τωX XR S 和绝对可积,即∞<∞<⎰⎰∞∞-∞∞-ωωττd S d R X X )()(当0=τ时,可得⎰∞∞-==ωωπd S t X E R X X )(21)]([)0(2可知,)]([)0(2t X E R X=是平稳随机过程X(t)的平均功率。