ch03命题逻辑推理理论
- 格式:ppt
- 大小:2.03 MB
- 文档页数:36
离散数学结构第3章命题逻辑的推理理论复习第3章命题逻辑的推理理论主要内容1. 推理的形式结构:①推理的前提②推理的结论③推理正确④有效结论2. 判断推理是否正确的⽅法:①真值表法②等值演算法③主析取范式法3. 对于正确的推理,在⾃然推理系统P中构造证明4. ①⾃然推理系统P的定义②⾃然推理系统P的推理规则:前提引⼊规则、结论引⼊规则、置换规则、假⾔推理规则、附加规则、化简规则、拒取式规则、假⾔三段式规则、构造性⼆难规则、合取引⼊规则。
③附加前提证明法④归谬法学习要求1. 理解并记住推理的形式结构的三种等价形式,即①{A1,A2,…,A k}├B②A1∧A2∧…∧A k→B③前提与结论分开写:前提:A1,A2,…,A k结论:B在判断推理是否正确时,⽤②;在P系统中构造证明时⽤③。
2. 熟练掌握判断推理是否正确的三种⽅法(真值表法,等值演算法,主析取范式法)。
3. 牢记P系统中的各条推理规则。
4. 对于给定的正确推理,要求在P系统中给出严谨的证明序列。
5. 会⽤附加前提证明法和归谬法。
3.1 推理的形式结构定义3.1设A1,A2,…,A k和B都是命题公式,若对于A1,A2,…,A k和B中出现的命题变项的任意⼀组赋值,或者A1∧A2∧…∧A k为假,或者当A1∧A2∧…∧A k为真时,B也为真,则称由前提A1,A2,…,A k推出B的推理是有效的或正确的,并称B是有效结论。
⼆、有效推理的等价定理定理3.1命题公式A1,A2,…,A k推B的推理正确当且仅当(A1∧A2∧…∧A k )→B为重⾔式。
A k为假,或者A1∧A2∧…∧A k和B同时为真,这正符合定义3.1中推理正确的定义。
由此定理知,推理形式:前提:A1,A2,…,A k结论:B是有效的当且仅当(A1∧A2∧…∧A k)→B为重⾔式。
(A1∧A2∧…∧A k)→B称为上述推理的形式结构。
从⽽推理的有效性等价于它的形式结构为永真式。
于是,推理正确{A1,A2,…,A k} B可记为A1∧A2∧…∧A k B其中同⼀样是⼀种元语⾔符号,⽤来表⽰蕴涵式为重⾔式。
第三章 命题逻辑的推理理论§1 推理的形式结构推理:从前提出发推出结论的思维过程。
前提:已知命题公式集合。
结论:从前提出发应用推理规则推出的命题公式。
定义设A1, A2, …, A k, B都是命题公式,若命题公式A1∧A2∧…∧A k→B是重言式,则称由前提A1, A2, …, A k推出结论B的推理是有效的或正确的,并称B是有效的结论。
推理的形式结构记为{A1,A2,…,A k}A B推理正确,记为{ A1,A2,…,A k }⊨B推理无效,记为{ A1,A2,…,A k }⊭B注①推理正确,结论未必为真。
②推理只注重结构。
例判断下述推理的正确性。
(1) {p, p→q}⊢ q(2) {p, q→p}⊢ q解 (1) p∧(p→q)→q⇔p∧(¬p∨q)→q⇔(p∧¬p)∨(p∧q)→q⇔p∧q→q⇔¬ (p∧q)∨q⇔¬p∨(¬q∨q)⇔¬p∨1⇔1故{p, p→q }⊨ q(2) p∧(q→p)→q让q =0,可得q→p =1,再取p =1可得p∧(q→p)=1 由此得p∧(q→p)→q有成假赋值1 0,故{ p, q→p }⊭ q判断推理正确性:1.真值表法。
2.等值演算法。
3.主析取范式法。
4.构造证明。
例判断下述推理是否正确?(1)若a能被4整除,则a能被2整除。
a能被4整除。
所以a能被2整除。
(2)若下午气温超过30℃,则王小燕必去游泳。
若她去游泳,则她就不去看电影了。
所以,若王小燕没去看电影,则下午气温必超过了30℃。
解(1) p:a能被4整除q:a能被2整除前提:p→q,p结论:q推理的形式结构:{p→q,p} A q前面已证此推理正确。
(2) p:下午气温超过30℃q:王小燕去游泳r:王小燕去看电影前提:p→q, q→¬r结论:¬ r→p推理的形式结构:{p→q,q→¬r} A(¬r→p)因为,(p→q)∧(q→¬ r)→(¬r→p)⇔m1∨m3∨m4∨m5∨m6∨m7主析取范式显然不是重言式,故推理不正确。