锅炉的风量调节与燃烧调整
- 格式:ppt
- 大小:934.50 KB
- 文档页数:34
锅炉燃烧调整知识01 锅炉燃烧过程自动调节的任务锅炉燃烧过程自动调节的任务如下:① 维持热负荷与电负荷平衡,以燃料量调节蒸汽量,维持蒸汽压力。
② 维持燃烧充分,当燃料改变时,相应调节送风量,维持适当风煤比例。
③ 保持炉膛负压不变,调节引风与送风配合比,以维持炉膛负压。
02 锅炉风量与燃料量配合风量过大或过小都会给锅炉安全经济运行带来不良影响。
锅炉的送风量是经过送风机进口挡板进行调节的。
经调节后的送风机送出风量,经过一、二次风的配合调节才能更好地满足燃烧的需要,一、二次风的风量分配应根据它们所起的作用进行调节。
一次风应满足进入炉膛风粉混合物挥发分燃烧及固体焦炭质点的氧化需要。
二次风量不仅要满足燃烧的需要,而且补充二次风末段空气量的不足,更重要的是二次风能与刚刚进入炉膛的可燃物混合,这就需要较高的二次风速,以便在高温火焰中起到搅拌混合作用,混合越好,则燃烧得越快、越完全。
一、二次风还可调节由于煤粉管道或燃烧器的阻力不同而造成的各燃烧器风量的偏差,以及由于煤粉管道或燃烧器中燃料浓度偏差所需求的风量。
此外,炉膛内火焰的偏斜、烟气温度的偏差、火焰中心位置等均需要用风量调整。
03 四角切圆锅炉二次风调整四角切圆锅炉二次风采用的是大风箱供风方式,每角的18只喷口连接于一个共同的大风箱,风箱内设有18个分隔室,分别与18个喷口相通。
各分隔室入口处均有百叶窗式的调节挡板。
二次风的调节依据是维持最佳氧量。
辅助风是二次风中最主要的部分。
它的作用是调整二次风箱和炉膛之间的压差(原则上不低于380Pa)。
从而保证进入炉膛的二次风有合适的流速,以便入炉后对煤粉气流造成很好的扰动和混合,使燃烧工况良好。
总二次风量按照燃料量和氧量值进行调节,各燃烧器辅助风的风门开度按相关规程要求的炉膛/风箱压差进行调节。
油层均有各自的油配风,油配风的开度有两种控制方式:油枪投入前,该油枪的油配风挡板开至20%以上;油枪停用时,则与辅助风一样,按炉膛/风箱压差进行调节。
锅炉调节的技术方法锅炉调节是指通过控制锅炉的火焰大小、给水量、燃料供应等来保持锅炉的热负荷平衡,从而实现锅炉效率的提高和安全运行。
下面是一些常用的锅炉调节技术方法。
1. 燃烧调节:燃烧调节是通过控制燃料的供应来调节锅炉的热负荷。
燃烧调节可以通过控制燃料进给机构的速度、调节燃料氧浓度或改变燃料的混合比例来实现。
对于煤炭锅炉,可以通过调节给煤量和煤粉细度来调节燃烧。
对于油燃锅炉,可以通过调节油枪的喷油量和喷油角度来调节燃烧。
对于气燃锅炉,可以通过调节燃气阀门的开度来调节燃烧。
2. 运行参数调节:除了燃烧调节外,还可以通过调节锅炉的运行参数来实现锅炉的调节。
常用的运行参数包括给水量、蒸汽流量、蒸汽温度、过热器蒸汽温度等。
通过调节这些参数,可以保持锅炉的热负荷平衡,同时实现高效、安全的运行。
例如,如果锅炉负荷增加,可以适当增加给水量和蒸汽流量,以保持蒸汽温度和过热器蒸汽温度的稳定。
3. 安全保护调节:锅炉的安全保护是保证锅炉安全运行的重要手段。
锅炉的安全保护调节包括燃烧风量控制、给水量控制、锅炉排污控制等。
燃烧风量控制可以通过调节引风机的转速或打开关闭风门来实现。
给水量控制可以通过调节给水泵的转速或调节给水阀门的开度来实现。
锅炉排污控制可以通过调节排污阀门的开度来实现。
这些安全保护调节措施可以保证锅炉在异常情况下的安全运行。
4. 温度控制:温度控制是保证锅炉稳定运行的关键因素。
常见的温度控制方法包括水温控制、蒸汽温度控制、过热器蒸汽温度控制等。
水温控制可以通过调节给水量、蒸汽流量和燃料供应来实现。
蒸汽温度控制可以通过调节蒸汽流量、给水量和燃料供应来实现。
过热器蒸汽温度控制可以通过调节给水量、蒸汽流量和过热器燃气控制来实现。
通过这些控制手段,可以保证锅炉的温度稳定在安全范围内。
5. 自动控制系统:自动控制系统是实现锅炉调节的核心。
自动控制系统包括传感器、执行器、控制器和监视器等。
传感器负责监测锅炉的运行参数,如压力、温度、流量等。
锅炉燃烧调整及各项指标的控制措施防止锅炉结焦和降低污染排放指标措施——针对此题目进行内容的增减细化和完善,要充分发挥合力团队和专工及主任层面作用,总结经验,真正发挥指导运行人员操作的目的!而不是为完成我布置的工作去应付!建议妥否请考虑!在锅炉运行调整中,在每一个运行工况下,对每一个参数的调整及控制的好坏,直接反映出锅炉燃烧调整的水平,最终反映在整台机组运行的稳定性上。
针对我公司情况,锅炉调整主要是对燃烧系统的调整,其次是各个参数的调整及控制。
下面将详细介绍锅炉调整的每一个环节。
燃烧调整部分:一、送、引风量的调整及控制在平衡通风的燃煤锅炉风量的调整中,原则上直接采用调节送、引风机动叶或静叶开度的大小来调整。
总风量的大小,主要依据锅炉所带负荷的高低、氧量的大小以及炉膛负压来控制。
目前#1、2炉引风量的调节,在稳定工况运行时主要是投入自动调节。
送风量的调节,在负荷稳定时投入自动调节,在负荷波动大时手动调节。
在点炉前吹扫条件中规定风量大于30%所对应的风量的质量流量为280T/H,根据这一基准,在正常调整中,按照负荷高低和规定氧量的大小来控制送风量。
将炉膛负压调节在-19.8Pa~-98Pa为基准来控制引风量。
二、燃料量的调整及控制1、锅炉负荷小幅度变动时调节原则:通过调节运行着的制粉系统的出力来进行。
调节过程(以少量加负荷为例)1)在给煤量不变的情况下,首先将A磨煤机的调整做为燃烧稳定的基础,然后通过适当开B、C磨煤机容量风门开度来调整负荷,调整时不要大幅度开容量风门,根据负荷情况,可单侧或双侧调整,调整幅度控制在2%开度左右,调整后,密切注意汽包压力或主汽压力以及氧量的变化趋势,如果压力上升快,可适当对单侧容量风门回调来进行控制。
2)在各台磨煤机容量风门开至40-45%时,此时应根据磨煤机料位及电流情况,来增加给煤量,根据长时间观察,每台磨煤机给煤量最稳定工况出力在54-56T/H之间,在掺烧劣质煤(如金生小窑煤)时,出力在48-50T/H之间。
电厂锅炉的燃烧优化和运行调整分析在锅炉的运行中,时常发生锅炉偏离最佳工况的现象,所以须根据实际情况讨论锅炉燃烧系统的优化控制运行问题.。
电厂锅炉运行时要保证满足外界负荷对锅炉蒸发量和蒸汽参数的要求,同时保护锅炉本体及附属设备不受损坏.。
因此,加强电厂锅炉设备运行与维护管理,不断对锅炉的燃烧进行优化,有利于提高电厂的生产效率,降低电厂的生产成本,从而提高电厂的经济效益.。
本文主要通过讨论燃烧优化的目的和意义,从而指出其存在的问题,并提出锅炉燃料量控制调整,锅炉燃烧送风量的调整,引风控制系统优化,以及燃用劣质烟煤的调整等优化和运行调整的方法.。
关键词:燃烧优化;火电厂;锅炉;运行调整当前我国经济开始向集约型方向发展,这也对电厂锅炉燃烧的安全性、经济性和环保性提出了更高的要求.。
锅炉燃烧过程中,燃料在炉膛中燃烧会释放大量的热能,这些热能经过金属壁面传热使锅炉中的水转化为过热蒸汽,这些蒸汽被送入到汽轮机中,从而驱动汽轮机进行发电.。
通过对锅炉燃烧运行进行优化,可以有效的提高锅炉燃烧的效率,降低锅炉燃烧过程中所带来的污染,实现节能减排的目标.。
1 燃烧优化的目的和意义煤粉燃烧在我国大型电厂锅炉上的应用十分广泛.。
燃烧优化实际上就是在满足安全运行和外界负荷要求的前提,提高燃燒效率、减少锅炉热损失,同时减少污染物的排放.。
锅炉通过燃烧和传热将燃料的化学能转化为蒸汽的热能.。
锅炉效率是其能量转换的重要经济性指标,一般来说,对于大型火力发电机组,锅炉效率每提高1%,整套机组的效率可以提高0.3-0.4%,供电煤耗可以降低0.7-1%.。
而锅炉效率又与炉内的燃烧工况密切相关,组织好炉内的燃烧,可以有效地提高锅炉效率,实现机组的高效运行.。
锅炉燃烧优化控制系统的最终目的是在保持锅炉自身设备运行参数的情况下,使锅炉燃烧处于最佳运行工况,降低热量损失,提高热能效率,并通过运行人员在线实时的调整各项参数,来降低含碳量和再热器超温问题.。
关于锅炉燃烧调整的总结对于垃圾焚烧炉的燃烧调整,主要是料层厚度、火床长短、风量配比来确保炉温的正常。
为了使锅炉燃烧更加稳定,控制方法更为便捷,通过理论加实践经验,得出总结如下:一、炉排和一、二次风量给定1、推料器的速度及行程决定了推入垃圾的数量,也决定了锅炉的蒸发量。
推料器使能和行程的设置以干燥段的料层为依据,控制干燥段料层为600-800mm,推料器的行程为400mm,使能50%左右。
在调整锅炉蒸发量时,可以通过调节使能控制,使能调节一次5%-10%。
料层的厚度也可以通过加减使能和加减行程来控制。
2、干燥段主要是为了将入炉的垃圾烘干,使其达到着火的条件,所以干燥段炉排的速度决定了垃圾着火点。
为确保垃圾充分干燥,干燥段炉排的使能控制在55%左右,使能的设置以垃圾的着火点为依据,通过现场看火,以着火点在干燥段与燃烧段交接为最佳,调整时可以通过加减使能控制着火点的位置。
着火点偏上容易垃圾衔接不上烧断料,会使炉温急剧下降;着火点偏下会导致火床下移,容易烧不烬出生料。
3、燃烧段是垃圾在炉内的燃烧区,燃烧段炉排的速度决定了火床的长短、主火焰的位置和垃圾燃烬点。
为确保垃圾充分燃烧,燃烧段炉排的使能控制在55%左右,使能的设置以火焰的中心位置和火焰燃烬的位置为依据,火焰的中心位置在后拱前,但不接触到后拱为最佳,调整时可以通过加减使能来控制火焰中心点位。
火焰的中心位置偏下,会导致炉温偏高,后拱结焦,容易烧不烬出生料。
4、燃烬段是将燃烧过的炉渣进行冷却的区域,,所以燃烬段的炉渣厚度不宜过厚。
为确保炉渣得到充分冷却,燃烬段炉排的使能控制在80%左右,确保燃烬段上的炉渣厚度300mm左右,炉渣具有一定热量,厚度不宜过厚,以防止燃烬炉排温度过高,发生卡涩现象。
5、一次风机频率控制在30-35Hz,二次风机频率不小于30Hz,控制锅炉出口氧量在5-8%左右。
一次风温度控制在160℃-190℃。
当垃圾质量发生变化时,如垃圾湿度较大不易着火时,可以加大干燥段风量和风温,加快垃圾干燥时间。
BT-GL-02-13XXXXXXXX扩建工程#3机组锅炉燃烧调整试验方案XXXXXXXX科学研究院二〇二四年一月签字页批准:审核:编写:目录1.编制依据 (5)2.调试目的 (5)3.系统及主要设备技术规范 (5)4.试验内容 (7)5.锅炉燃烧调整应具备的条件 (7)6.试验程序 (8)7.试验方法和步骤 (8)8.职责分工 (9)9.环境、职业健康、安全、风险因素控制措施 (10)1.编制依据1.1《火力发电厂基本建设工程启动及竣工验收规程(1996年版)》1.2《电力建设施工及验收技术规范》锅炉篇(1992年版)1.3《火电工程调整试运质量检验及评定标准》(1996年版)1.4《火电工程启动调试工作规定》(1996年版)1.5设计图纸及设备设明书2.调试目的锅炉燃烧的好坏对锅炉及电厂运行的安全性和经济性都有很大的影响,锅炉燃烧调整可以确保着火稳定,燃烧中心适中,火焰分布均匀,配风合理,避免结焦等,维持锅炉汽温、汽压和蒸发量稳定正常,使锅炉保持较高的经济性运行。
本措施的制定是为了在整套启动阶段指导锅炉燃烧调整,保证在锅炉试运中能够安全正常运行。
3.系统及主要设备技术规范3.1系统简介XXXXXXXX扩建工程#3机组锅炉是由东方锅炉有限责任公司制造的DG1065/18.2-Ⅱ6型亚临界压力一次中间再热自然循环汽包炉。
锅炉采用摆动式燃烧器、四角布置、切向燃烧。
单炉膛、全钢架悬吊结构、平衡通风、固态排渣。
锅炉采用正压直吹式制粉系统,配五台HP863型中速磨煤机,布置在炉前,四台磨煤机可带MCR负荷,一台备用。
燃烧器为可上下摆动的直流燃烧器,采用四角布置、切向燃烧。
上组所有喷口均可上下摆动±30°,下组所有喷口均可上下摆动±15°。
油燃烧器共12个,分三层布置。
燃用轻柴油。
油枪采用简单机械雾化型喷嘴3.2 锅炉主要技术规范3.2.1煤质分析3.2.2 锅炉主要技术参数如下过热蒸汽流量 1065 t/h过热蒸汽压力 17.36 MPa过热蒸汽温度 540 ℃再热蒸汽流量 875 t/h再热蒸汽进口温度 332 ℃再热蒸汽出口温度 540 ℃再热蒸汽进口压力 3.94 MPa再热蒸汽出口压力 3.78 MPa给水温度 281 ℃排烟温度(修正前) 132 ℃排烟温度(修正后) 126 ℃过热器喷水量(一级) 36.61 t/h过热器喷水量(二级) 9.15t/h二次气喷水量 21.96t/h锅筒工作压力18.77 MPa锅炉效率 92.93 %3.2.3燃烧器规范4.试验内容4.1 锅炉主保护的检查确认;4.2 燃烧调整;5.锅炉燃烧调整应具备的条件5.1 在锅炉启动前必须对FSSS系统的各项功能进行试验,确保其动作正确可靠。
锅炉燃尽风调节的研究0引言随着国内电力环保排放标准的越趋严格,国家要求燃煤机组3。
我厂由于锅炉负荷受总排口NOX排放浓度不得高于50mg/Nm热网负荷限制,SCR入口烟温偏低导致SCR反应效率受限,运行人员往往采用过量喷氨来保证脱硝系统的达标排放,造成氨耗量增加,不利于机组经济运行。
另一方面由于漏氨生成硫酸铵盐,导致催化剂积灰严重,脱硝效率下降;同时空预器易堵塞,引风机出口阻力增大,机组运行能耗偏高。
目前,空气分级燃烧技术是一种比较成熟且应用广泛的低氮燃烧技术,能有效大幅降低NO x排放,同时减少尾气脱硝成本。
采用空气分级燃烧技术时,下炉膛主燃烧区域氧气浓度偏低,会生成大量CO形成还原性气氛,有利于抑制NO x形成。
SOFA燃尽风从主燃烧区上部送入炉膛,与炉膛产生的未燃尽的可燃物混合,促进燃料的燃尽,提高了燃烧经济性。
SOFA燃尽风做为空气分级燃烧技术中的一个重要组成部分,其布置方式、风率大小以及入射角度都会对燃烧效率、NO x排放产生不可忽视的影响,同时也会影响上炉膛温度分部和锅炉的安全稳定运行。
针对此问题我参考其他学者的论文并结合我厂SOFA燃尽风挡板的布置方式做出了如下研究。
1锅炉本体情况本锅炉是哈尔滨锅炉厂有限责任公司设计、制造的高压超高温汽包自然循环炉,锅炉型号HG-490/10.9-YM1型。
单炉膛平衡通风、固态排渣、喷水减温、悬吊全钢结构,锅炉为全封闭。
采用正压直吹式制粉系统, 配有4台型中速磨煤机,磨煤机出口选择动态分离器,阻尼减振式液压变加载。
锅炉的横断面布置图如图1所示。
图1-1锅炉房横断面布置图为研究不同燃尽风风率对四角切圆锅炉NO x排放特性的影响,表1中列出了我厂一期锅炉燃烧器配风设计数据。
表1图1-2 我厂一期燃尽风道2燃尽风率对锅炉燃烧及NO x排放特性的影响锅炉炉膛内的煤粉燃烧过程由多个子过程互相耦合而成,主要包含:湍流过程,颗粒相的输运,煤粉颗粒的热解和燃烧,气相反应物参与的均相燃烧反应,辐射和对流传热过程,氮氧化物等生成和还原过程等。
锅炉调节的技术方法锅炉调节技术方法主要有以下几种:1. 燃料调节技术:燃料的供给量和质量对锅炉的工作稳定性和效率有着重要影响。
燃料调节技术可通过控制供给燃料的流量和含氧量,保证燃料的充分燃烧。
在煤气锅炉中,可以通过调节燃气分配阀、燃气节流器等来实现燃料的精细调节。
2. 空气调节技术:空气对燃料的燃烧起到辅助作用,过量的或不足的空气都会影响锅炉的热效率和环保性。
空气调节技术主要通过调节空气预热温度、增加空气的流量和改变风门的开度来实现。
3. 温度调节技术:锅炉的温度控制对于保证系统的稳定运行非常重要。
温度调节技术可通过控制给水温度、燃气温度、烟气温度等来实现。
其中,给水温度的调节可以通过蒸汽温度和压力的反馈控制实现,烟气温度的调节可以通过调节空燃比和炉膛形状等方式实现。
4. 压力调节技术:锅炉的压力控制对于保证系统的正常工作和安全运行非常重要。
压力调节技术可通过调节给水泵的流量和速度、调节汽包的容积和压力等来实现。
5. 液位调节技术:液位是锅炉系统中常用的一个参数,涉及到水的供给、蒸发、排放等过程。
液位调节技术主要通过调节给水泵的流量和速度、调节汽包的容积和压力、调节补给水的阀门开度等方式实现。
6. 氧气调节技术:氧气是锅炉燃烧过程中的关键因素,过量或不足的氧气都会影响锅炉的工作效率和环境排放。
氧气调节技术主要通过调节空燃比、改变炉膛结构和增加燃料进气口等来实现。
在实际的锅炉调节过程中,可以根据实际需求综合运用上述各项技术方法,对锅炉的燃料、空气、温度、压力、液位、氧气等参数进行精细调节,以保证锅炉的正常工作和高效运行,并且做到节能环保。
同时,需要合理选择和使用调节设备和系统,如采用自动化控制系统、数字化监测和数据分析等手段,提高调节的精度和可靠性。
锅炉调节的技术方法(二)锅炉调节技术方法可以分为控制系统调节方法和操作调节方法。
一、控制系统调节方法:1. 比例控制:通过调节燃料供给量,使锅炉输出的蒸汽或热水的温度保持在设定值附近。