2018届高三上学期期末考试数学(理)试题 (3)
- 格式:doc
- 大小:1.08 MB
- 文档页数:15
数学(理)第Ⅰ卷一、选择题:本大题共 12 个小题 , 每题 5 分 , 共 60 分. 在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1. 已知会合 A {1,2 ,3} , B { x | (x 1)(2 x) 0 , Z },则AB ()A . {1}B. {1,2}C . {0 ,1,2 ,3}D . { 1,0 ,1,2,3} 2. 复数 z 1 cos x isin x , z 2 sin xicos x ,则( )A . 4 B.3C .2D . 13. 设 a R ,则“”是“直线 l 1 : ax2 y 1 0z 1 z 2与直线 l 2 : x (a 1) y 4 0 平行”的()A .充分必需条件B .必需不充分条件C.充分不用要条件D.既不充分也不用要条件ln x ,1x4. f ( x)m 3t2dt , ≤ ,且 f f e 10 ,则 m 的值为()2x0 x 1A .1B. 2C.1D. 25. 履行如下图的程序框图,假如运转结果为 5040 ,那么判断框中应填入()A . k 6?B. k 7?C.k 6? D . k 7?6. 已知公差不为 0 的等差数列 { a n } 知足 a 1 , a 3 , a 4 成等比数列, S n 为数列 { a n } 的前 n 项和, 则S3S 2 的值为()S 5 S 3A . 2B. 3C.2D. 37. 1 81 y 4的系数是()x 的睁开式中 x 2 y 2A . 56B. 84C.112D. 1688. 等轴双曲线 C 的中心在原点, 焦点在 x 轴上, C 与抛物线 y 216x 的准线交于 A ,B 两点,AB 4 3 ;则C的实轴长为()A. 2 B.22C. 4D.89.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:结构数列1,1,1,1 ,,1. ①第二步:将数列①的各项乘以n ,得数列(记2 3 4 n为) a1 , a2, a3 , , a n . 则 a1 a2 a2 a3 a n 1 a n等于()A. n(n 1) B . (n 1)2 C. n2 D.n(n 1)10. 直线 y 1 k( x 3) 被圆(x 2) 2 ( y 2) 2 4 所截得的最短弦长等于()A. 3B. 2 3C. 2 2D. 511.已知三棱锥 S ABC 全部极点都在球 O 的球面上,且 SC 平面 ABC ,若SC AB AC 1, BAC 120 ,则球 O 的表面积为()A. 5B. 5C. 4D.2 312. 已知函数 f (x) sin( x ),(A 0 ,0 ,)知足 f (x ) f ( x ) ,且2 2 2f ( x) f ( x) ,则以下区间中是 f ( x) 的单一减区间的是()6 6A. [6 ,] B . [ 4 , 5 ] C.[2,7] D . [ ,0]3 3 6 3 6 3第Ⅱ卷二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.我国古代数学名著《九章算术》有“米谷粒分” 题:粮仓开仓放粮,有人送来米 1534 石,验得米内夹谷,抽样取米一把,数得 254 粒内夹谷 28粒,则这批米内夹谷约为石;(结果四舍五入,精准到各位).x y 7 ≤ 014. 设 x ,y知足拘束条件 x 3y 1≤ 0 则 z 2x y 获得最大值时的最优解为.3x y 5 ≥ 015. 已知一个空间几何体的三视图及其尺寸如右图所示,则该几何体的体积是.16. 若对于曲线 f (x)e x x 上随意点处的切线 l 1 ,总存在 g (x)2ax sin x 上处的切线 l 2 ,使得 l 1 l 2 ,则实数 a 的取值范围是.三、解答题 (本大题共 6 小题,共 70 分 . 解答应写出文字说明、证明过程或演算步骤.)17. 若向量 a( 3 sin x ,sin x) ,b (cos x ,sinx) ,此中0 .记函数f (x) a b1 ,2若函数 f (x) 的图象上相邻两个对称轴之间的距离是.2(1)求 f ( x) 的表达式;(2)设△ABC 三内角 A 、 B 、 C 的对应边分别为 a 、 、c ,若 a b 3 ,c3 , f (C) 1 ,b求 △ABC 的面积 .18. 某同学参加语、数、外三门课程的考试,设该同学语、数、外获得优异成绩的概率分别为 4 , m , n ( mn ),设该同学三门课程都获得优异成绩的概率为24,都未获得优异5125成绩的概率为6,且不一样课程能否获得优异成绩互相独立.125(1)求 m , n ;(2)设X为该同学获得优异成绩的课程门数,求X的散布列和数学希望.19. 如图,在四棱锥中P ABCD ,底面ABCD 为边长为2 的正方形,E , F分别为PC ,AB 的中点 .(1)求证: EF平面 PAD ;(2)若 PA BD , EF 平面 PCD ,求直线 PB 与平面 PCD 所成角的大小 .22)的离心率为 3,短轴端点到焦点的距离为 2 . 20. 已知椭圆 C :xy 1 (a b 0 a 2b 22(1)求椭圆 C 的方程;(2)设 A , B 为椭圆 C 上随意两点, O 为坐标原点,且 OA OB . 求证:原点 O 到直线 AB 的距离为定值,并求出该定值 .21. 已知函数 f ( x)1 e2 x ax ( a R , e 为自然对数的底数) .2(1)议论函数 f (x) 的单一性;(2)若 a 1,函数 g (x)( x m) f ( x) 1 e 2 x x 2x 在区间 (0 , ) 上为增函数, 求整数 m4的最大值 .请考生在 22、 23 两题中任选一题作答,假如多做,则按所做的第一题记分.22. 选修 4-4 :坐标系与参数方程在直角坐标平面内, 以坐标原点 O 为极点, x 轴的非负半轴为极轴成立极坐标系 .已知点 A 、B 的极坐标分别为(1, ) 、 (3,2) ,曲线 C 的参数方程为 x r cos (为参数) .33y r sin(1)求直线 AB 的直角坐标方程;(2)若直线 AB 和曲线 C 只有一个交点,求r 的值 .23. 选修 4-5 :不等式选讲已知对于 x 的不等式 2 x x 1m 对于随意的 xR 恒成立 .(1)求 m 的取值范围;(2)在( 1)的条件下求函数f ( m) m1 的最小值 .2(m2)数学(理)参照答案一、选择题1-5:ADCBB 6-10:CDBAC 11、 12: BA二、填空题13. 16914.(5 ,2)15.20016.[0 ,1]2三、解答题17.. 解:( 1)∵ a ( 3 sin x ,sin x) , b (cos x ,sin x) ∴ f ( x)a b1 3sin xcosx sin21 sin(2 x)2x26由题意可知其周期为 , 2 2,即1,∴ f ( x)sin(2 x)6(2)由 f ( C) 1 ,得 sin(2C) 16∵ 0 C,∴2C 11 ,6 6 6∴ 2C6,解得 C23又∵ a b 3 , c3 ,由余弦定理得 222ca b2abcos ,3∴ (a b)2 3ab 3 ,即 ab 2∴由面积公式得 △ ABC 面积为 1absin C32218. ( 1)设该同学语、数、外获得优异成绩分别为事件 A 、B 、C∴ P(A)4, P( B) m , P(C) n5由已知条件可知: P( ABC)24 , P(ABC ) 61251254mn 243, n2∴54 1256 又 m n ,则 m(155)(1 m)(1 n)5125(2)∵ X0,1,2 ,3 , P( X 0)6 ,P(X1) P( ABC ABC ABC )37 ;125125P( X2) P(ABCABC ABC )58, P(X3)24125125∴ x 的散布列为19. 解:( 1)设 PD 的中点为 Q ,连结 AQ , EQ ,则 EQ ∥1 CD ,而 AF ∥ 1CD2 2∴ EQ ∥CD ∴四边形∴ EF ∥AQ ,而 EFAFEQ平面为平行四边形PAD , AQ .平面PAD∴ EF ∥平面PAD ;(2)由( 1)知, EF ∥ AQ ,由于 EF平面 PCD因此 AQ平面 PCD ,而 PD , CD 平面 PAD∴ AQ CD∵AQ CD , AD CD , AQ AD A∴ CD 平面 PAD , PA 平面 PAD∴ PA CD ,而 PA BD ,CD BDD ,因此 PA 平面 ABCD(注意:没有证明出PA 平面 ABCD ,直接运用这一结论的,后续过程不给分)由题意, AB , AP , AD 两两垂直,以 A 为坐标原点,向量 AB , AD , AP 的方向为 x 轴,y 轴, z 轴的正方形成立如下图的空间直角坐标系A xyz在三角形 APD 中 AQ 平面 PCD ,而 PD 平面 PAD ,知 AQPD ,而 PD 的中点为 Q 知AP AD2 ,则 A0( 0,0) ,B( 2 ,0 ,0)2 , 2 D(0, 2 ,0)P(0 ,0 , 2),,Q(0 ,,,2 2AQ (0 , 2 , 2 ), PB( 2,0,2) , AQ 为平面 PCD 的一个法向量 .2 2设直线 PB 与平面 PCD 所成角为 , sinPB AQ 1PB AQ2因此直线 PB 与平面 PCD 所成角为 .620. 解:( 1)由题意知, e c 3 , b 2 c 2 2 ,又 a 2 b 2 c 2 ,a 2因此 a 2, c3 , b 1因此椭圆 C 的方程为x 2y 2 1 .4(2)证明:当直线 AB 的斜率不存在时,直线AB 的方程为 x2 5 .5此时,原点 O 到直线 AB 的距离为25 .5当直线 AB 的斜率存在时,设直线 AB 的方程为 y kx m , A( x 1 ,y 1 ) , B( x 2 ,y 2 ) .由 x 2 y 2 1 得 (1 4k 2) x 28kmx4m 24 04y kx m则 △ (8km)24(1 4 k 2 )(4 m 24) 16(1 4k 2 m 2) 0 ,8km4m 24x 1 x 212 , x 1x 21 4k 24k则 y 1 y 2 (kx 1m)(kx 2 m) m 24k 2 2 ,由 OA OB 得 k OA k OB1,即y 1y 2 1,1 4k x 1x 2因此x 1 x 2y 1 y 25m24 4k 20 ,即 m 24(1 k 2 ) ,14k 25m2 5 因此原点 O 到直线 AB 的距离为 dk2 51 综上,原点 O 到直线 AB 的距离为定值2 5 .5 21. 解:( 1)由 f (x)1 e2 x ax 得 f ( x)e 2 xa2当 a 0 时, f (x) 0 ,因此 f ( x) 在 ( , ) 上为增函数;当 a 0 时, x (,ln a) 时, f ( x)2因此 f (x) 在,ln a 为减函数,在 2(2)当 a 1 时,g ( x) (x 1 2 x m)( e 2 则 g (x)( x m)( e 2 x 1)x 10 , x(ln a, ) 时, f (x) 0 ,2ln a , 为增函数,21 2 x2x) ex x4若 g( x) 在区间 (0 ,) 上为增函数,则 g ( x)0在(0, ) 上恒成立,即 mx1 2xx 在e1(0 , ) 上恒成立 .令h( x)x 1x , x (0 , ) ;则 h ( x)e 2 x (e 2 x2 x 3) , x (0, );e 2 x1(e 2 x1)2令 L( x) e 2 x 2 x 3 ,则 L ( x) 2e 2 x2当 x(0 ,) 时, L ( x)2e 2x 2 0 ,则 L( x) 在 x(0 ,) 单一递加而 L( 1 ) e 40 , L(1) e 2 5 02因此函数 L (x)e 2x2x 3 在 x (0 , ) 只有一个零点,设为 ,即 x (0 , ) 时, L ( x) 0 ,即 h ( x) 0 ; x ( , ) 时, L ( x) 0 ,即 h ( x) 0 , ∴ h( x)x 1x , x (0 , ) ,有最小值 h()1 ,2 x1 21ee223 代入上式可得 h( )1,把 e2又由于( 1,1) ,因此 h( ) (1,3) ,2 2又 m h( x) 恒成立,因此 m h( ) ,又由于 m 为整数,因此 m 1 ,因此整数 m 的最大值为 1 .22. 解:( 1)∵点 A 、 B 的极坐标分别为 (1, ) 、 (3 ,2) ,33∴点 A , B 的直角坐标分别为 ( 1 , 3 ) 、 ( 3,3 3 ) ,2 2 2 2∴直线 AB 的直角坐标方程为 2 3x 4yi 3 3 0 ;(2)由曲线C的参数方程x r cos (为参数),化为一般方程为x 2 y 2r 2 ,y r sin∵直线 AB 和曲线 C 只有一个交点,∴由点到直线的距离公式得半径r3 3 3 21(2 3) 2 42 1423. 解:( 1)∵对于 x 的不等式 2 x x 1 m 对于随意的x R 恒成立,可得∴ m ( 2 x x 1) max依据柯西不等式,有( 2 x x 1) 2 (1 2 x 1 x 1) 2≤ [12 12 ] [( 2 x)2 ( x 1) 2 ] 6∴ 2 x x 1 ≤ 6 ,当且仅当x 1 时等号成立,故m 6 . 2(2)由( 1)知m 2 0 ,则 f ( m) m12) 21(m 2)1( m 2)12)22 (m 2 2 (m∴ f ( m) 3 3 1( m 2)1(m 2) 1 2 332 2 2 2 ( m 2) 2 2当且仅当1(m 2) 1 ,即 m 2 3 2 6时取等号,2 ( m 2)2因此函数 f (m) m 12)2 的最小值为33 2 2(m 2。
数学试卷(理科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|1}A x x =>,{|32}xB x =>,则A B =I ( ) A .(01), B .(12),C .(1)+∞,D .(0)+∞, 2.在正方形内任取一点,则该点在此正方形的内切圆外的概率为( ) A .44π- B .4π C .34π- D .24π-3.复数2i1iz +=-,i 是虚数单位,则下列结论正确的是( ) A .5z = B .z 的共轭复数为31i 22+ C .z 的实数与虚部之和为1 D .z 在平面内的对应点位于第一象限 4.若31log 2a =,2log 3b =,312c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( )A .c b a >>B .b c a >> C.b a c >> D .c a b >> 5.若执行如图所示的程序图,则输出S 的值为( )A .13B .14 C.15 D .166.已知等差数列{}n a 的前n 项和为n S ,若63a =,812S =,则{}n a 的公差为( ) A .1- B .1 C.2 D .37.已知m ,n 是空间中两条不同的直线,α,β是两个不同的平面,则下列说法正确的是( ) A .若m α⊂,n β⊂,αβ∥,则m n ∥ B .若m α⊂,αβ∥,则m β∥ C. 若n β⊥,αβ⊥,则n α∥D .若m α⊂,n β⊂,l αβ=I ,且m l ⊥,n l ⊥,则αβ⊥8.榫卯是中国古代建筑、家具及其他器械的主要结构方式,是在两个构建上采用凹凸部位相结合的一种连接方式,突出部分叫做“榫头”.若某“榫头”的三视图如图所示,则一个该“榫头”的体积为( )A .10B .12 C.14 D .169.已知实数x ,y 满足2210x y x y +⎧⎪⎨⎪-⎩≥≤≥,若z x my =+的最大值为10,则m =( )A .1B .2 C.3 D .410.已知函数()sin(2)f x x ϕ=+2πϕ⎛⎫< ⎪⎝⎭的最小正周期为T ,将曲线()y f x =向左平移4T 个单位之后,得到曲线sin 26y x π⎛⎫=+ ⎪⎝⎭,则函数()f x 的一个单调递增区间为( )A .123ππ⎛⎫- ⎪⎝⎭,B .312ππ⎛⎫- ⎪⎝⎭, C.32ππ⎛⎫ ⎪⎝⎭, D .223ππ⎛⎫⎪⎝⎭,11.过双曲线221916x y -=的右支上一点P ,分别向圆1C :22(5)4x y ++=和圆2C :222(5)x y r -+=(0r >)作切线,切点分别为M ,N ,若22PM PN -的最小值为58,则r =( )A .1B .212.已知函数322310()10ax x x x f x e x ⎧-+⎪=⎨+<⎪⎩,,≥在[22]-,上的最大值为5,则实数a 的取值范围是( )A .[2ln 2)-+∞,B .[0ln 2], C.(0]-∞, D .[ln 2)-+∞,二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量(2)a k k =-+r ,,(23)b =-r ,,若(2)a a b +r r r∥,则实数k = . 14.6(2)()x y x y +-的展开式中,43x y 的系数为 (用数字作答).15.若在各项都为正数的等比数列{}n a 中,12a =,393a a =,则2018a = .16.已知抛物线C :22y px =(0p >)的焦点为F ,准线l :54x =-,点M 在抛物线C 上,点A 在准线l 上,若MA l ⊥,直线AF 的倾斜角为3π,则MF = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC △,角A ,B ,C 所对的边分别为a ,b ,c ,且cos cos ()cos b A c B c a B -=-. (1)求角B 的值;(2)若ABC △的面积为b =a c +的值.18. 随着雾霾的日益严重,中国部分省份已经实施了“煤改气”的计划来改善空气质量指数.2017年支撑我国天然气市场消费增长的主要资源是国产常规气和进口天然气,资源每年的增量不足以支撑天然气市场连续300亿立方米的年增量.进口LNG 和进口管道气受到接收站、管道能力和进口气价资源的制约.未来,国产常规气产能释放的红利将会逐步减弱,产量增量将维持在80亿方以内.为了测定某市是否符合实施煤改气计划的标准,某监测站点于2016年8月某日起连续200天监测空气质量指数(AQI ),数据统计如下:(1)根据上图完成下列表格空气质量指数(3/g mμ)[0,50)[50,100)[100,150)[150,200)[200,250)天数(2)若按照分层抽样的方法,从空气质量指数在101~150以及151~200的等级中抽取14天进行调研,再从这14天中任取4天进行空气颗粒物分析,记这4天中空气质量指数在101~150的天数为X,求X的分布列;(3)以频率估计概率,根据上述情况,若在一年365天中随机抽取5天,记空气质量指数在150以上(含150)的天数为Y,求Y的期望.19. 已知三棱锥D ABC-中,BE垂直平分AD,垂足为E,ABC△是面积为3的等边三角形,60DAB∠=︒,3CD=,CF⊥平面ABD,垂足为F,O为线段AB的中点.(1)证明:AB⊥平面DOC;(2)求CF与平面BCD所成的角的正弦值.20. 已知椭圆C:22221x ya b+=(0a b>>)的左右焦点分别为1F,2F,若椭圆上一点P满足124PF PF +=,且椭圆C 过点312⎛⎫-- ⎪⎝⎭,,过点(40)R ,的直线l 与椭圆C 交于两点E F . (1)求椭圆C 的方程;(2)过点E 作x 轴的垂线,交椭圆C 于N ,求证:N ,2F ,F 三点共线. 21. 已知函数2()ln f x x x x =--. (1)求函数()f x 的极值;(2)若1x ,2x 是方程2()ax f x x x +=-(0a >)的两个不同的实数根,求证:12ln ln 2ln 0x x a ++<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线2C 的极坐标方程为cos 4πρθ⎛⎫+= ⎪⎝⎭(1)求曲线1C 的普通方程和曲线2C 的普通方程; (2)若曲线1C ,2C 相交于A ,B 两点,求线段AB 的长度. 23.选修4-5:不等式选讲 已知函数()12018f x x =-+.(1)解关于x 的不等式()2018f x x >+;(2)若2(43)((4)1)f a f a -+>-+,求实数a 的取值范围.参考答案、提示及评分细则一、选择题1-5:CADBA 6-10:BBCBA 11、12:BD二、填空题13.4 14.10 15.20182 16.5三、解答题17.解:(1)∵cos cos ()cos b A c B c a B -=-.∴由正弦定理,得sin cos sin cos (sin sin )cos B A C B C A B -=-. ∴sin cos cos sin 2sin cos A B A B C B +=.sin()2sin cos A B C B ∴+=.又A B C π++=,∴sin()sin A B C +=. 又∵0C π<<,1cos 2B ∴=.又(0)B π∈,,3B π∴=. (2)据(1)求解知3B π=,∴222222cos b a c ac B a c ac =+-=+-.①又1sin 2S ac B ==,∴12ac =,②又b =Q ,∴据①②解,得7a c +=.18.解:(1)所求表格数据如下:(2)依题意,从空气质量指数在101~150以及151~200的天数分别是10,4; 故X 的可能取值为0,1,2,3,4;141141(0)1001C P X C ===,3141031440(1)1001C C P X C ===,22410414270(2)1001C C P X C ===,13410414480(3)1001C C P X C ===,410414210(4)1001C P X C ===.故X 的分布列为:(3)依题意,任取1天空气质量指数在150以上的概率为320. 由二项分布知识可知,3~520Y B ⎛⎫ ⎪⎝⎭,,故33()5204E Y =⨯=.19.(1)证明:∵BE 垂直平分AD ,垂足为E ,∴AB DB=. ∵60DAB ∠=︒,∴ABD △是等边三角形. 又ABC △是等边三角形.∴O 是AB 中点,DO AB ⊥,CO AB ⊥.∵DO CO O =I ,DO ,CO ⊂平面DOC ,∴AB ⊥平面DOC . (2)解:由(1)知OC OD =,平面DOC ⊥平面ABD . 因为平面DOC 与平面ABD 的交线为OD . ∵CF ⊥平面ABD .∴F CD ∈. 又等边ABC △OC = 又CD =,∴ F 是OD 中点. 如图建立空间直角坐标系O xyz -,(100)B ,,,(030)C ,,33(0)2D ,,,33(0)4F ,, 所以333(0)4CF =u u u r ,,,(130)BC =-u u u r ,,33(1)2BD =-u u u r ,, 设平面BDC 的法向量为()n x y z =r,,,则303302n BC x n BD x y z ⎧⋅=-=⎪⎨⋅=-++=⎪⎩r u u u rr u u u r ,取3y =,则3x =,1z =. 即平面BCD 的一个法向量为(331),.所以CF 与平面BCD 所成角的正弦值为3113213CF n CF n⋅-+==⋅⋅u u u r ru u u r r 20.解:(1)依题意,1224PF PF a +==,故2a =.将312⎛⎫-- ⎪⎝⎭,代入22214x y b +=中,解得23b =,故椭圆C :22143x y +=. (2)由题知直线l 的斜率必存在,设l 的方程为(4)y k x =-.点11()E x y ,,22()F x y ,,11()N x y -,,联立22(4)3412y k x x y =-⎧⎨+=⎩得22234(4)12x k x +-=. 即2222(34)3264120k x k x k +-+-=,0∆>,21223234k x x k +=+,2122641234k x x k-=+ 由题可得直线FN 方程为211121()y y y y x x x x ++=--, 又∵11(4)y k x =-,22(4)y k x =-. ∴直线FN 方程为211121(4)(4)(4)()k x k x y k x x x x x -+-+-=--,令0y =,整理得2122111212112124424()88x x x x x x x x x x x x x x x --+-+=+=+-+-22222264123224343432834k k k k k k -⨯-⨯++=-+22222434132243234k k k k -+==--+,即直线FN 过点(10),. 又∵椭圆C 的左焦点坐标为2(10)F ,,∴三点N ,2F ,F 在同一直线上.21.解:(1)依题意,2121()21x x f x x x x --'=--=(21)(1)x x x+-=故当(01)x ∈,时,()0f x '<,当(1)x ∈+∞,时,()0f x '> 故当1x =时,函数()f x 有极小值(1)0f =,无极大值.(2)因为1x ,2x 是方程2()ax f x x x +=-的两个不同的实数根. ∴1122ln 0(1)ln 0(2)ax x ax x -=⎧⎨-=⎩两式相减得2121()ln 0x a x x x -+=,解得2121lnx x a x x =-要证:12ln ln 2ln 0x x a ++<,即证:1221x x a <,即证:2211221()ln x x x x x x -<⎛⎫⎪⎝⎭,即证222212111212()ln 2x x x x xx x x x x ⎛⎫-<=-+ ⎪⎝⎭, 不妨设12x x <,令211x t x =>.只需证21ln 2t t t<-+. 设21()ln 2g t t t t=--+,∴22111()ln 12ln g t t t t t t t t ⎛⎫'=-+=-+ ⎪⎝⎭;令1()2ln h t t t t =-+,∴22211()110h t t t t ⎛⎫'=--=--< ⎪⎝⎭,∴()h t 在(1)+∞,上单调递减,∴()(1)h t h <0=,∴()0g t '<,∴()g t 在(1)+∞,为减函数,∴()(1)0g t g <=. 即21ln 2t t t<-+在(1)+∞,恒成立,∴原不等式成立,即12ln ln 2ln 0x x a ++<.22.解:(1)曲线1C 的普通方程为221x y +=. 曲线2C 的普通方程为10x y --=.(2)据22110x y x y ⎧+=⎨--=⎩得01x y =⎧⎨=-⎩或10x y =⎧⎨=⎩所以线段AB = 23.解:(1)()2018f x x >+可化为1x x ->, 所以22(1)x x ->,所以12x <,所以所求不等式的解集为12x x ⎧⎫<⎨⎬⎩⎭.(2)因为函数()12018f x x =-+在[1)+∞,上单调递增, 431a -+>,2(4)11a -+≥,2(43)((4)1)f a f a -+>-+.所以243(4)1a a -+>-+所以(41)(42)0a a -+--<,所以42a -<,所以26a <<.即实数a 的取值范围 是(26),。
2017-2018学年度高三教学质量检测数学(理工类)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2|30A x x x =-?,(){}|lg 2B x y x ==-,则A B =I ( ) A.{}|02x x ?B.{}|13x x ?C.{}|23x x <?D.{}|02x x <?2.已知(),3a m =r ,()2,2b =-r,且()a b b -r r r ∥,则m =( )A.3-B.1-C.1D.33.已知函数()()()log 320,1a g x x a a =-+>?的图象经过定点M ,若幂函数()f x x a =的图象过点M ,则a 的值等于( )( ) A.1-B.12C.2D.34.命题p :若a b <,则c R "?,22ac bc <;命题q :00x $>,使得00ln 1x x =-,则下列命题中为真命题的是( ) A.p q ÙB.()p q 谪C.()p q 刭D.()()p q 刭?5.中国古代数学著作《算法统宗》中记载了这样的一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”,其大意为:有一个人走了378里路,第一天健步行走,从第二天其因脚痛每天走的路程为前一天的一半,走了6天后到达了目的地,问此人第二天走的路程里数为( ) A.76B.96C.146D.1886.已知实数,x y 满足条件001x y x y x ì-?ïï+?íï£ïî,则12xz y 骣琪=-琪桫的最大值为( )A.32-B.1-C.1D.127.已知3cos 2pa 骣琪+=琪桫,22p pa 骣琪-<<琪桫,则sin 3p a 骣琪+=琪桫( ) A.323- B.323+ C.63- D.63+ 8.已知0a >,0b >,并且1a ,12,1b成等差数列,则9a b +的最小值为( )A.16B.9C.5D.49.函数22cos cos 1y x x =-++,,22x p p轾?犏犏臌的图象大致为( )ABCD10.“1a =-”是函数()2ln 1xf x a x 骣琪=+琪+桫为奇函数”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件11.已知抛物线()21:20C y px p =>的焦点为F ,准线与x 轴的交点为E ,线段EF 被双曲线()22222:10,0x y C a b a b-=>>的顶点三等分,且两曲线12,C C 的交点连线过曲线1C 的焦点F ,曲线2C 的焦距为211,则曲线2C 的离心率为( ) 2B.3211 22 12.设()ln f x x =,若函数()()g x f x ax =-在区间()20,e 上有三个零点,则实数a 的取值范围是( ) A.10,e骣琪琪桫B.211,e e 骣琪琪桫C.222,e e 骣琪琪桫D.221,e e 骣琪琪桫二、填空题(每题5分,满分20分,将答案填在答题纸上)13.直线l 过抛物线2:4C x y =的焦点且与y 轴垂直,则l 与抛物线C 所围成的图形的面积等于.14.函数()()sin f x A x w j =+0,0,2A pw j 骣琪>><琪桫的部分图象如图所示,则将()y f x =的图象向右平移6p个单位后,得到的图象对应的函数解析式为 .15.某多面体的三视图,如图所示,则该几何体的外接球的表面积为.16.设函数()()()()()()()1121211112123123n x x x x x x x x x n x f x n++++++-=+++++创创创?………,则方程()0n f x =的根为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.ABC △的内角,,A B C 所对的边分别是,,a b c 3cos sin 3c A a C c +. (1)求角A 的大小;(2)若5b c +=,3ABC S =△a 的值.18.已知n S 为数列{}n a 的前n 项和,且31n n S a =-. (1)求数列{}n a 的通项公式; (2)设2211log log n n n b a a +=×,求数列{}n b 的前n 项和n T .19.如图,三棱柱111ABC A B C -中,侧棱1AA ^平面ABC ,ABC △为等腰直角三角形,90BAC =∠°,且12AB AA ==,,E F 分别是1,CC BC 的中点.(1)若D 是1AA 的中点,求证:BD ∥平面AEF ;(2)若M 是线段AE 上的任意一点,求直线1B M 与平面AEF 所成角正弦的最大值. 20.如图,点()3,0B是圆()22:316A x y ++=内的一个定点,点P 是圆A 上的任意一点,线段BP的垂直平分线l 和半径AP 相交于点Q ,当点P 在圆A 上运动时,点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)点()2,0E ,()0,1F ,直线QE 与y 轴交于点M ,直线QF 与x 轴交于点N ,求EN FM ×的值. 21.设函数()()2ln a a f x x x a R x-=+-?. (1)讨论函数()f x 的单词性;(2)当1a =时,记()()g x xf x =,是否存在整数t ,使得关于x 的不等式()t g x ³有解?若存在,请求出t 的最小值;若不存在,请说明理由.22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,已知直线l 的参数方程为31x ty t ì=ïí=+ïî(t 为参数),曲线C 的极坐标方程是2cos 2sin r q q =.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于,A B 两点,点M 为AB 的中点,点P 的极坐标为6p,求PM 的值.23.设函数()2f x x a x =-+.(1)当1a =-时,求不等式()0f x £的解集;(2)若1x ?时,恒有()0f x ³成立,求a 的取值范围.2017-2018学年度高三教学质量检测数学(理工类)试题参考答案一、选择题1-5:AABCB 6-10:DAABC 11、12:DD二、填空题13.83 14.sin 26y x p 骣琪=-琪桫15.1003p 16.1,2,3,,n ----… 三、解答题17.(1)cos sin A a C +cos sin sin C A A C C +,∵sin 0C ¹sin A A +∴12sin 2sin 23A A A p 骣琪+=+琪桫桫∴sin 3A p 骣琪+琪桫 ∵4,333A p p p 骣琪+?琪桫,∴233A p p+=, 即3A p =.(2)由11sin sin 223ABC S bc A bc p ==△,∴4bc =,∵()222222cos 2534133a b c bc b c bc bc p =+-=+--=-?,∴a .18.解:(1)当1n =时,1131S a =-,∴1131a a =-,∴114a =, 当2n ³时,因为31n n S a =-① 所以1131n n S a --=-②①-②得13n n n a a a -=-,∴14n n a a -=,∴114n n a a -=. 所以数列{}n a 是首项为14,公比为14的等比数列.∴1111444n nn a -骣骣琪琪=?琪琪桫桫;(2)()()122122111log log 22111log log 44n nn n n b a a n n ++===轾×--+骣骣臌琪琪×琪琪桫桫()11114141n n n n 骣琪==-琪++桫, ∴1111111114223341n T n n 轾骣骣骣骣犏琪琪琪琪=-+-+-++-琪琪琪琪犏+桫桫桫桫臌…()1114141n n n 骣琪-=琪++桫. 19.解:(1)连接1DC ,1BC ,∵,D E 分别是11,AA CC 的中点,∴1AD C E =,1AD C E ∥,四边形ADCE 是平行四边形, 所以AE DC ∥,因为,E F 分别是1,CC BC 的中点,所以1EF BC ∥, 所以平面AEF ∥平面1BDC , 又BD Ì平面1BDC ,所以BD ∥平面AEF ;(2)以A 为坐标原点,1,,AB AC AA 分别为,,x y z 轴,建立空间直角坐标系,如图, 可知:()0,0,0A ,()12,0,2B ,()0,2,1E ,()1,1,0F , ()0,2,1AE =u u u r ,()1,1,0AF =u u u r, 设平面AEF 的法向量为(),,n x y z =r,由00n AE n AF ì?ïíï?îr u u u r r u u u r ,得200y z x y ì+=ïí+=ïî,令2z =,得1x =,1y =-,所以平面AEF 的一个法向量为()1,1,2n =-r,设(),,M x y z ,AM AE l =u u u u r u u u r,所以()(),,0,2,1x y z l =,得0x =,2y l =,z l =,即()0,2,M l l =, 所以()12,2,2B M l l =--u u u u r,设直线1B M 与平面AEF 所成角为q ,则111sin cos ,n B M n B M n B M q ×=<>=×r u u u u r r u u u u rr u u u u r当25l =时,()max sin q 20.解:(1)因为点Q 在BP 的垂直平分线上,所以QB QP =,∴4QA QB QA QP +=+=,从而点Q 的轨迹是以,A B 为焦点的椭圆,这时,2a =,c 1b =, 所以曲线C 的方程为2214x y +=.(2)由题设知,直线的斜率存在.设直线QE 的方程为()2y k x =-,()11,Q x y ,()22,E x y , 由()22214y k x x y ì=-ïïíï+=ïî,得()222214161640k x k x k +-+-=,因为212216414k x x k -=+,22x =,所以2128214k x k-=+, 所以222824,1414k k Q k k 骣--琪琪++桫,因为点F ,N ,Q 共线,FN FQ k k =, 所以222411148214N k x k k ---+=-+,即()222218221144N k k x k k k --==+++, 又直线QE 与y 轴的交点纵坐标为2M y k =-, 所以4221N EN x k =-=+,112M FM y k =-=+, 所以4EN FM?.21.解:⑴()22221'1a a x x a a f x x x x -++-=++=()()21x a x a x ++-当0a <时,()0,x a ?时,()'0f x <;(),x a ?+?时,()'0f x >;当01a #时,()0,x ??时,()'0f x >;当1a >时,()0,1x a ?时,()'0f x <;()1,x a ?+?时,()'0f x >;综上,当0a <时,函数()f x 的单调减区间是()0,a -;单调增区间是(),a -+?;当01a #时,函数()f x 的单调增区间是()0,+?;无单调减区间;当1a >时,函数()f x 的单调减区间是()0,1a -;单调增区间是()1,a -+?.(2)当1a =时,()()2ln g x xf x x x x ==+,()'2ln 1g x x x =++,可知函数()'g x 单调递增,1'2ln 202g 骣琪=->琪桫,14'ln 6063g 骣琪=-<琪桫, 所以存在唯一011,62x 骣琪Î琪桫,使得()0'0g x =,即()000'2ln 10g x x x =++=,当()00,x x Î时,()'0g x <;()0,x x ??时,()'0g x >;所以()()()222000000000min ln 21g x g x x x x x x x x x ==+=+--=--,记函数()2000x x x j=--,()0x j 在11,62骣琪琪桫上递减.所以()01126g x j j骣骣琪琪<<琪琪桫桫,即()037436g x -<<-. 由34t ?,且t 为整数,得0t ³. 所以存在整数t 满足题意,且t 的最小值为0. 22.解:(1)由31x ty t ì=ïí=+ïî,得31y x =+,由曲线C 的极坐标方程2cos 2sin r q q =,得22cos 2sin r q r q =, 所以曲线C 的直角坐标方程为22x y =. (2)由2312y x x yì=+ïíï=î,得2620x x --=,设()11,A x y ,()22,B x y ,所以126x x +=,AB 的中点是1212,22x x y y 骣++琪琪桫, 所以()3,10M ,点P 的极坐标为6p,所以点P 的直角坐标为(. 23.解:(1)因为120x x ++?, 所以10310x x ì+?ïí+?ïî或1010x x ì+<ïí-?ïî,即113x-#-或1x <-, 则不等式()0f x £的解集是 1|3x x 禳镲?睚镲铪.(2)因为()()()3x a x a f x x a x a ì-?ï=í+?ïî为增函数, 当1a ?时,()310a ?-?,从而3a ?, 当1a ?时,10a -+?,从而1a ³, 综上,3a ?,或1a ³.。
四川省达州市高2018届高三上期末试卷理科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}12,2A x B x x =<≤=>-,则A B ⋃=( ) A .()2,1-- B .(]2,1-- C .()4,-+∞ D .[)4,-+∞ 2.设复数12z i =+,则( )A .223z z =-B .224z z =-C .225z z =-D .226z z =-3.若双曲线221y x m-=的一个焦点为()3,0-,则m =( ) A..8 C .9 D .644.设向量a b 、满足1,2a b ==,且1a b ⋅=,则2a b -=( )A .2BC .4D .55.某几何体的三视图如图所示,则该几何体的体积为( )A .5B .6C .6.5D .76.设,x y 满足约束条件320,6120,4590,x y x y x y +-≥⎧⎪+-≤⎨⎪-+≥⎩则2z x y =-的最小值为( )A .3-B .4C .0D .4-7.执行如图的程序框图,若输入的11k =,则输出的S =( )A .12B .13C .15D .188.若函数()24x f x a =--存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( )A .()0,4B .()0,+∞C .()3,4D .()3,+∞9.已知等差数列{}n a 的前n 项和为n S ,21a =,则“35a >”是“3993S S +>”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件10.函数()()()cos 0,0,0f x A x A ωϕϕπϕ=+>>-<<的部分图象如图所示,为了得到()sin g x A x ω=的图象,只需将函数()y f x =的图象( )A.向左平移6π个单位长度 B.向右平移12π个单位长度C.向右平移6π个单位长度 D.向左平移12π个单位长度11.在四面体ABCD 中,AD ⊥底面ABC ,2AB AC BC ===,E 为棱BC 的中点,点G 在AE 上且满足2AG GE =,若四面体ABCD 的外接球的表面积为2449π,则tan AGD ∠=( )A .12B .2C D12.已知函数()f x 的导数为()f x ',()f x 不是常数函数,且()()()10x f x xf x '++≥对[)0,x ∈+∞恒成立,则下列不等式一定成立的是( )A .()()122f ef <B .()()12ef f <C .()10f <D .()()22ef e f <第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 若函数()282log log f x x x =+,则()8f = .14. 在()9x a +的展开式中,若第四项的系数为84,则a = . 15.直线l经过抛物线24y x =的焦点F ,且与抛物线交于,A B 两点,若5AF FB =,则直线l的斜率为 .16.在数列{}n a 中,112a =,且133431n na a n n +=++.记11,313n ni i n n i i i a a S T i ====+∑∑,则下列判断正确的是 .(填写所有正确结论的编号)①数列31n a n ⎧⎫⎨⎬+⎩⎭为等比数列;②存在正整数n ,使得n a 能被11整除;③10243S T >;④21T 能被51整除.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC ∆中,角,,A B C 所对的边分别为,,a b c()cos 2cos A b C =. (1)求角C ; (2)若6A π=,ABC ∆D 为AB 的中点,求sin BCD ∠.18.某家电公司根据销售区域将销售员分成,A B 两组.2017年年初,公司根据销售员的销售业绩分发年终奖,销售员的销售额(单位:十万元)在区间[)[)[)[]90,95,95,100,100,105,105,110内对应的年终奖分别为2万元,2.5万元,3万元,3.5万元.已知200名销售员的年销售额都在区间[]90,110内,将这些数据分成4组:[)[)[)[]90,95,95,100,100,105,105,110,得到如下两个频率分布直方图:以上面数据的频率作为概率,分别从A 组与B 组的销售员中随机选取1位,记,X Y 分别表示A 组与B 组被选取的销售员获得的年终奖. (1)求X 的分布列及数学期;(2)试问A 组与B 组哪个组销售员获得的年终奖的平均值更高?为什么?19.如图,在四校锥P ABCD -中,,,AC BD AC BD O PO AB ⊥⋂=⊥,POD ∆是以PD 为斜边的等腰直角三角形,且11123OB OC OD OA ====.(1)证明:平面PAC ⊥平面PBD ; (2)求二面角A PD B --的余弦值.20.已知椭圆()2222:10y x W a b a b +=>>的焦距与椭圆22:14x y Ω+=的矩轴长相等,且W 与Ω的长轴长相等,这两个椭圆在第一象限的交点为A ,直线l与直线OA (O 为坐标原点)垂直,且l与W 交于,M N 两点.(1)求W 的方程;(2)求MON ∆的面积的最大值.21.已知a R ∈,函数()(2x x x f x xe ax xe =-.(1)若曲线()y f x =在点()()0,0f 1+,判断函数()f x 在1,2⎛⎫-+∞ ⎪⎝⎭上的单调性;(2)若10,a e ⎛⎫∈ ⎪⎝⎭,证明:()2f x a >对x R ∈恒成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos ,2sin ,x y αα=+⎧⎨=+⎩(α为参数),直线2C 的方程为y =,以O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线1C 和直线2C 的极坐标方程; (2)若直线2C 与曲线1C 交于,A B 两点,求11OA OB+.23.选修4-5:不等式选讲 已知函数()3f x x x =+-. (1)求不等式62x f ⎛⎫< ⎪⎝⎭的解集;(2)若0k >,且直线5y kx k =+与函数()f x 的图象可以围成一个三角形,求k 的取值范围.试卷答案一、选择题1-5: DCBBB 6-10: ACCAD 11、12:BA 二、填空题13. 7 14. 1 15. ①②④ 三、解答题17.解:(1()cos 2cos A b C =-,得)2cos cos cos b C c A a C +,由正弦定理可得,)()2sin cos sin cos sin cos B C C A A C A C B =+=+=,因为sin 0B ≠,所以cos C =因为0C π<<,所以6C π=.(2)因为6A π=,故ABC ∆为等腰三角形,且顶角23B π=,故21sin 2ABCS a B ∆=== 所以2a =,在DBC ∆中,由余弦定理可得,222 2cos 7BC CD DB DB BC B =-⋅=+,所以CD =DBC ∆中,由正弦定理可得,sin sin CD DBB BCD=∠,1sin BCD =∠,所以sin BCD ∠=18.解:(1)A 组销售员的销售额在[)[)[)[]90,95,95,100,100,105,105,110的频率分别为0.2,0.3,0.2,0.3,则X 的分布列为:故()200000.2250000.3300000.2350000.328000E X =⨯+⨯+⨯+⨯=(元).(2)B 组销售员的销售额在[)[)[)[]90,95,95,100,100,105,105,110的频率分别为:0.1,0.35,0.35,0.2, 则Y 的分布列为:故()200000.1250000.35300000.35350000.228250E Y =⨯+⨯+⨯+⨯=(元). ∵()()E X E Y <,∴B 组销售员获得的年终奖的平均值更高.19.(1)证明:∵POD ∆是以PD 为 斜边的等腰直角三角形, ∴PO DO ⊥.又,PO AB AB DO B ⊥⋂=,∴PO ⊥平面ABCD , 则PO AC ⊥,又,AC BD BD PO O ⊥⋂=, ∴AC ⊥平面PBD .又AC ⊂平面PAC , ∴平面PAC ⊥平面PBD .(2)解:以O 为坐标原点,建立如图所示的空间直角坐标系O xyz -,则()()()3,0,0,0,2,0,0,0,2A D P -,则()()3,2,0,0,2,2DA DP ==, 设(),,n x y z =是平面ADP 的法向量, 则00n DA n DP ⎧⋅=⎪⎨⋅=⎪⎩,即320220x y y z -=⎧⎨+=⎩,令3y =得()2,3,3n =-.由(1)知,平面PBD 的一个法向量为()1,0,0OC =-,∴cos ,22n OC n OC n OC⋅===, 由图可知,二面角A PD B --的平面角为锐角, 故二面角A PD B --. 20.解:(1)由题意可得22241a a b ⎧=⎪⎨-=⎪⎩,∴2243a b ⎧=⎪⎨=⎪⎩, 故W 的方程为22143y x +=. (2)联立222214314y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩,得223613413x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴2219y x =,又A 在第一象限,∴13OA y k x ==. 故可设l的方程为3y x m =-+.联立223143y x m y x =-+⎧⎪⎨+=⎪⎩,得2231183120x mx m -+-=,设()()1122,,,M x y N x y ,则2121218312,3131mm x x x x -+== ∴MN==,又O 到直线l的距离为d =,则MON ∆的面积12S d MN ==∴)2231S m m =≤+-=, 当且仅当2231m m =-,即2312m =,满足0∆>,故MON ∆21. (1)解:∵()()(x x f x e ax xe =-+,∴()()(()()1x x x x f x e a xe e ax x e '=-++-+,∴())0111f a '=-+=+,∴0a =. ∴()()221x x f x x e '=++,当1,2x ⎛⎫∈-+∞ ⎪⎝⎭时,2210,0,0x x x e e +>>>,∴()0f x '>,∴函数()f x 在1,2⎛⎫-+∞ ⎪⎝⎭上单调递增.(2)证明:设()x g x xe =()()1x g x x e '=+,令()0g x '>,得1x >-,()g x 递增;令()0g x '<,得1x <-,()g x 递减. ∴()()min 11g x g e =-=-+,∵ 2.7e≈,∴11e-+>,∴()1g x >.设()x h x e ax =-,令()0h x '=得ln x a =,令()0h x '>得ln x a >,()h x 递增;令()0h x '<得ln x a <,()h x 递减. ∴()()()min ln ln 1ln h x h a a a a a a ==-=-,∵10,a e ⎛⎫∈ ⎪⎝⎭,∴ln 1a <-,∴1ln 2a ->,∴()min 2h x a >,∴()20h x a >>.又()1g x >,∴()()2g x h x a >,即()2f x a >.22.解:(1)曲线1C 的普通方程为()()22221x y -+-=,则1C 的极坐标方程为24cos 4sin 70ρρθρθ--+=,由于直线2C 过原点,且倾斜角为3π,故其极坐标为()3R πθρ=∈ (或tan θ=(2)由24cos 4sin 70,,3ρρθρθπθ⎧--+=⎪⎨=⎪⎩得()2270ρρ-++=,故12122,7ρρρρ+=+=,∴121211OA OB OA OB OA OB ρρρρ+++===⋅23.解:(1)由62x f ⎛⎫< ⎪⎝⎭即3622x x +-<得,3236x x ⎧≥⎪⎨⎪-<⎩或03236x ⎧<<⎪⎨⎪<⎩或0236xx ⎧≤⎪⎨⎪-+<⎩, 解得39x -<<,∴不等式62x f ⎛⎫< ⎪⎝⎭的解集为()3,9-.(2)做出函数()23,03,0323,3x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩的图象,如图所示,∵直线()5y k x =+经过定点()5,0A -, ∴当直线()5y k x =+经过点()0,3B 时,35k =, ∴当直线()5y k x =+经过点()3,3C 时,38k =. ∴当33,85k ⎛⎤∈ ⎥⎝⎦时,直线5y kx k =+与函数()f x 的图象可以围成一个三角形.。
2017-2018学年度上学期期末考试高三年级数学科(理科)试卷第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知是虚数单位,则复数的虚部是()A. -1B. 1C.D.【答案】B因为 ,所以的虚部是,故选B.2. 设集合,,则()A. B. C. D.【答案】C∵集合∴∵集合∴故选C3. 若,且为第二象限角,则()A. B. C. D.【答案】B因为,且为第二象限角,所以,,故选B.4. 已知向量与的夹角为,,,则()A. B. 2 C. D. 4【答案】B因为所以,,,故选B.5. 某四棱锥的三视图如图所示,则该四棱锥的外接球半径为()A. 1B.C.D.【答案】B由三视图可知,该四棱锥是底面为边长为的正方形,一条长为的侧棱与底面垂直,将该棱锥补成棱长为的正方体,则棱锥的外接球就是正方体的外接球,正方体外接球的直径就是正方体的对角线,即,故选B.【方法】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点. 观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.6. 已知数列的前项和,若,则()A. B. C. D.【答案】D由,得,两式相减可得,是以为公差的等差数列,是递减数列,,故选D.7. 若满足约束条件,则的最大值是()A. -2B. 0C. 2D. 4【答案】C作出不等式组对应的平面区域,如图(阴影部分),由图可知平移直线,当直线经过点时,直线的截距最小最大,所以,的最大值为故选C. 【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8. 把四个不同的小球放入三个分别标有1~3号的盒子中,不允许有空盒子的放法有()A. 12种B. 24种C. 36种D. 48种【答案】C从个球中选出个组成复合元素有种方法,再把个元素(包括复合元素)放入个不同的盒子中有种放法,所以四个不同的小球放入三个分别标有1〜3号的盒子中,不允许有空盒子的放法有,故选C.9. 已知函数,现将的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,则在的值域为()A. B. C. D.【答案】A将函数向左平移个单位,可得对应的函数式为:,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到的图象对应的函数式为:,则∵∴∴∴∴故选A:本题主要考查了三角函数的图象变换及三角函数性质,属于基础题;图象的伸缩变换的规律:(1)把函数的图像向左平移个单位长度,则所得图像对应的式为,遵循“左加右减”;(2)把函数图像上点的纵坐标保持不变,横坐标变为原来的倍(),那么所得图像对应的式为.10. 已知椭圆的左右焦点分别为、,过的直线与过的直线交于点,设点的坐标,若,则下列结论中不正确的是()A. B. C. D.【答案】A由题意可得椭圆的半焦距,且由可知点在以线段为直径的圆上,则.....................∴,故A不正确故选A11. 某班有三个小组,甲、乙、丙三人分属不同的小组.某次数学考试成绩公布情况如下:甲和三人中的第3小组那位不一样,丙比三人中第1小组的那位的成绩低,三人中第3小组的那位比乙分数高.若甲、乙、丙三人按数学成绩由高到低排列,正确的是()A. 甲、乙、丙B. 甲、丙、乙C. 乙、甲、丙D. 丙、甲、乙【答案】B甲和三人中的第小组那位不一样,说明甲不在第小组;三人中第小组那位比乙分数高,说明乙不在第3组,说明丙在第3组,又第3组成绩低于第1组,大于乙,这时可得乙为第2组,甲为第1组,那么成绩从高到低为:甲、丙、乙,故选B.12. 已知函数在处取得极大值,则实数的取值范围是()A. B. C. D.【答案】D由题意得函数的定义域为,且若在处取极大值,则在递增,在递减,则在恒成立,故在恒成立令,,则∴在上为减函数∵∴故选D:本题考查函数极值问题,转化到不等式恒成立问题.不等式恒成立问题常见方法:①分离参数恒成立(可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④分类讨论参数.第Ⅱ卷二、填空题(本大题共4小题,每题5分,共20分,把答案填在答卷纸的相应位置上)13. 已知实数满足,则__________.【答案】由,得,即,解得,即,故答案为.14. 如图是一个算法的流程图,则输出的的值是__________.【答案】11执行程序框图,当输入,第一次循环,;第二次循环,;第三次循环,;第四次循环,;第五次循环,,结束循环输出,故答案为.【方法】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.15. 已知双曲线的两个焦点为、,渐近线为,则双曲线的标准方程为__________.【答案】∵双曲线的两个焦点为、,焦点在轴上∴∵渐近线∴∵∴∴双曲线的方程为故答案为:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据,,及渐近线之间的关系,求出,的值.16. 等比数列的前项和记为,若,则__________.【答案】设等比数列的首项为,公比为,,,,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. 中,角的对边分别为,.(1)求的值;(2)若,边上的高为,求的值.【答案】(1);(2).试题:(1)由,根据两角和的正弦公式可得,从而可得,进而可得;(2)结合(1),由面积相等可得,由余弦定理可得,配方后可其求得.试题:(1)∵,∴,∴,∵,∴.(2)由已知,,∵,∴又∴∴∴18. 甲、乙两名同学准备参加考试,在正式考试之前进行了十次模拟测试,测试成绩如下:甲:137,121,131,120,129,119,132,123,125,133乙:110,130,147,127,146,114,126,110,144,146(1)画出甲、乙两人成绩的茎叶图,求出甲同学成绩的平均数和方差,并根据茎叶图,写出甲、乙两位同学平均成绩以及两位同学成绩的中位数的大小关系的结论:(2)规定成绩超过127为“良好”,现在老师分别从甲、乙两人成绩中各随机选出一个,求选出成绩“良好”的个数的分布列和数学期望.(注:方差,其中为的平均数)【答案】(1)答案见;(2)答案见.试题:(1)根据根据所给数据,利用茎叶图的作法可得茎叶图,根据茎叶图可得甲乙两人成绩的中位数,根据平均值公式可得甲乙两人的平均成绩根据方差公式可得甲的方程,比较两人的成绩的中位数及平均成绩即可的结果;(2)的可能取值为0,1,2,分别求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望..试题:(1)茎叶图如图乙的均值为,中位数为;甲的平均值为,中位数为,甲的方差为,所以甲的中位数大于乙的中位数,甲的平均成绩小于乙的平均成绩;(2)由已知,的可能取值为0,1,2,分布列为:0 1 2,,, .【方法】本题主要考查茎叶图的画法、方差与平均值的求法、中位数的定义以及离散型随机变量的分布列与数学期望,属于中档题. 求解该离散型随机变量的分布列与数学期望,首项要理解问题的关键,其次要准确无误的随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19. 如图,在底面是菱形的四棱锥中,平面,,,点分别为的中点,设直线与平面交于点.(1)已知平面平面,求证:;(2)求直线与平面所成角的正弦值.【答案】(1)证明见;(2).试题:(1)由三角形中位线定理可得,利用线面平行的判定定理可得平面,在根据线面平行的性质定理可得;(2)由勾股定理可得,∵平面,由此可以点为原点,直线分别为轴建立空间直角坐标系,利用两直线垂直数量积为零列出方程组,分别求出直线的方向向量与平面的法向量,利用空间向量夹角余弦公式. 试题:(1)∵,平面,平面.∴平面,∵平面,平面平面∴.(2)∵底面是菱形,为的中点∴∴∵平面,则以点为原点,直线分别为轴建立如图所示空间直角坐标系则∴,,设平面的法向量为,有得设,则,则解之得,∴,设直线与平面所成角为则∴直线与平面所成角的正弦值为.【方法点晴】本题主要考查线面平行的性质与判定以及利用空间向量求线面角,属于难题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20. 已知直线与抛物线交于两点.(1)若,求的值;(2)以为边作矩形,若矩形的外接圆圆心为,求矩形的面积.【答案】(1);(2)30.试题:(1)与联立得,设,根据韦达定理可得,结合可列出关于的方程,从而可得结果;(2)设弦的中点为, 设圆心,则,由得,可得,根据点到直线距离公式可得,根据弦长公式可得,从而可得矩形的面积.试题:(1)与联立得由得,设,则∵,∴∴,∴∴,满足题意.(2)设弦的中点为,则,,设圆心∵∴∴,则,∴,∴∴∴∴面积为21. 已知函数.(1)时,求在上的单调区间;(2)且,均恒成立,求实数的取值范围.【答案】(1)单调增区间是,单调减区间是;(2).试题:(1)根据,对求导,再令,再根据定义域,求得在上是单调递减函数,由,即可求出在上的单调区间;(2)通过时,化简不等式,时,化简不等式,设,利用函数的导数,通过导函数的符号,判断单调性,推出时,在上单调递增,符合题意;时,时,都出现矛盾结果;得到的集合.试题:(1)时,,设,当时,,则在上是单调递减函数,即在上是单调递减函数,∵∴时,;时,∴在上的单调增区间是,单调减区间是;(2)时,,即;时,,即;设,则时,∵∴在上单调递增∴时,;时,∴符合题意;时,,时,∴在上单调递减,∴当时,,与时,矛盾;舍时,设为和0中的最大值,当时,,∴在上单调递减∴当时,,与时,矛盾;舍综上,:通过导数证明不等式或研究不等式恒成立问题的基本思路是:以导函数和不等式为基础,单调性为主线,最(极)值为助手,从数形结合、分类讨论等多视角进行探究,经常是把不等式问题转化为判断函数的单调性、求函数的最值,利用最值得出相应结论,其中分类讨论是经常用到的数学思想方法.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.22. 已知平面直角坐标系中,直线的参数方程为(为参数,且),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.已知直线与曲线交于两点,且.(1)求的大小;(2)过分别作的垂线与轴交于两点,求.【答案】(1);(2)4.试题:(1)根据加减消元法可得直线直角坐标方程,根据极坐标极径含义可得到直线的距离,根据点到直线距离公式可解得的大小(2)根据投影可得,即得结果试题:(1)由已知,直线的方程为,∵,,∴到直线的距离为3,则,解之得∵且,∴(2)23. 已知函数(1)当时,解不等式;(2)若存在,使成立,求的取值范围.【答案】(1);(2).试题:(1)当时,原不等式可化为,通过对取值范围的讨论,去掉式中的绝对值符号,解相应的不等式,最后取并即可;(2)由则可得,求出的取值范围.试题:(1)由已知时,解得,则;时,解得;则时,解得,则综上:解集为(2)∵∴当且仅当且时等号成立.∴,解之得或,∴的取值范围为。
2017-2018学年高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={x|x>1},集合A={x|x>2},则∁UA=()A.{x|1<x≤2} B.{x|1<x<2} C.{x|x>2} D.{x|x≤2}【解答】解:全集U={x|x>1},集合A={x|x>2},∁UA={x|1<x≤2},故答案为:A.2.等差数列{an}中,a1=2,a5=a4+2,则a3=()A.4 B.10 C.8 D.6【解答】解:∵等差数列{an}中,a1=2,a5=a4+2,∴,解得a1=2,d=d=2,∴a3=2+2×2=6.故选:D.3.已知向量=(1,2),=(m,1),若⊥,则实数m=()A.﹣2 B.2 C.D.﹣【解答】解:∵向量=(1,2),=(m,1),⊥,∴=m+2=0,解得m=﹣2.故选:A.4.已知a>0,b>0,且+=1,则a+2b的最小值是()A.3﹣2B.3+2C.2D.4【解答】解:∵a>0,b>0,且+=1,则a+2b=(a+2b)=3+≥3+2=3+2,当且仅当a=b=1+时取等号.故选:B.5.若x,y满足约束条件,则z=2x﹣y的最小值为()A.1 B.﹣1 C.2 D.﹣2【解答】解:由约束条件,作出可行域如图联立,解得A(1,3),化目标函数z=2x﹣y为y=2x﹣z.由图可知,当直线y=2x﹣z.过A时,直线在y轴上的截距最小,z有最小值为﹣1.故选:B.6.已知tan(+α)=2,则sin2α=()A.B.﹣C.﹣D.【解答】解:∵tan(+α)==2,∴tanα=,∴sin2α==,故选:A7.下列说法中,正确的是()A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为假命题B.“x>3”是“x>2”的必要不充分条件C.命题“p或q”为真命题,¬p为真,则命题q为假命题D.命题“∃x0∈R,x02﹣x0>0”的否定是:“∀x∈R,x2﹣x≤0”【解答】解:对于A,若am2<bm2,则a<b,故错;对于B,∵满足x>3,一定满足x>2,故错;对于C,∵“p或q”为真命题,¬p为真,则命题q为真命题,故错;对于D,含有量词的命题的否定,先换量词,再否定结论,故正确;故选:D8.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,3,则输出v的值为()A.20 B.61 C.183 D.548【解答】解:初始值n=4,x=3,程序运行过程如下表所示:v=1i=3 v=1×3+3=6i=2 v=6×3+2=20i=1 v=20×3+1=61i=0 v=61×3+0=183i=﹣1 跳出循环,输出v的值为183.故选:C.9.将函数y=sin(x+)cos(x+)的图象沿x轴向右平移个单位后,得到一个偶函数的图象,则φ的取值不可能是()A. B.﹣C.D.【解答】解:∵y=sin(x+)cos(x+)=sin(2x+φ),将函数y的图象向右平移个单位后得到f(x﹣)=sin(2x﹣+φ),∵f(x﹣)为偶函数,∴﹣+φ=kπ+,k∈Z,∴φ=kπ+,k∈Z,故选:C.10.已知数列{an}的前n项和为Sn,若Sn=1+2an(n≥2),且a1=2,则S20()A.219﹣1 B.221﹣2 C.219+1 D.221+2【解答】解:∵Sn=1+2an(n≥2),且a1=2,∴n≥2时,an=Sn﹣Sn﹣1=1+2an﹣(1+2an ﹣1),化为:an=2an﹣1,∴数列{an}是等比数列,公比与首项都为2.∴S20==221﹣2.故选:B.11.已知函数f(x)是奇函数,当x<0,f(x)=﹣x2+x,若不等式f(x)﹣x≤2logax(a>0且a≠1)对∀x∈(0,]恒成立,则实数a的取值范围是()A.(0,] B.[,1)C.(0,] D.[,]∪(1,+∞)【解答】解:函数f(x)是奇函数,当x<0,f(x)=﹣x2+x∴f(﹣x)=﹣f(x),设x>0,则﹣x<0,∴f(﹣x)=﹣x2﹣x,∴f(x)=x2+x,∵不等式f(x)﹣x≤2logax(a>0,a≠1)对∀x∈(0,]恒成立,∴x2+x﹣x≤2logax(a>0,a≠1)对∀x∈(0,]恒成立,∴x2≤logax2,∴()2≤loga()2,∴loga=≤loga,当a>1时,≤,解得a≤,此时无解,当0<a<1时,≥,解得a≥,此时≤a<1,综上所述a的取值范围为[,1).故选:B.12.已知定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=﹣1对称,且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),若a=0.76f(0.76),b=log6f(log6),c=60.6f(60.6),则a,b,c的大小关系是()A.a>b>c B.b>a>c C.c>a>b D.a>c>b【解答】解:定义在R上的函数y=f(x)满足:函数y=f(x+1)的图象关于直线x=﹣1对称,可知函数是偶函数,2-1-c-n-j-y当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立(f′(x)是函数f(x)的导函数),可知函数y=xf(x)是增函数,x>0时是减函数;0.76∈(0,1),60.6(2,4),log6≈log1.56∈(4,6).所以a>c>b.故选:D.二.填空题:(本大题共4小题,每小题5分,共20分,将答案填在机读卡上相应的位置.)13.已知复数z满足z=,则|z|=.【解答】解:∵z==,∴.故答案为:.14.已知曲线y=﹣lnx的一条切线的斜率为﹣,则切点的坐标为.【解答】解:由y=﹣lnx得y′=.设斜率为﹣的切线的切点为(x0,y0),(x0>0)则,解得:x0=1,∴y0=.故答案为.15.在边长为3的等边三角形ABC中,=2,2+=3,则||=.【解答】解:如图,以BC边所在直线为x轴,以BC的垂直平分线为y轴建立平面直角坐标系,则D(﹣,0),B(,0),C(),A(0,),设E(x,y),则由2+=3,得(6,0)+()=(,3y),即,解得E(1,),∴,则.故答案为:.16.函数f(x)=且对于方程f(x)2﹣af(x)+a2﹣3=0有7个实数根,则实数a的取值范围是.【解答】解:函数f(x)=的图象如下图所示:由图可得:当t∈(﹣∞,0)时,方程f(x)=t有一个根,当t=0时,方程f(x)=t有两个根,当t∈(0,1]时,方程f(x)=t有三个根,当t∈(1,2)时,方程f(x)=t有四个根,当t∈(2,+∞)时,方程f(x)=t有两个根,若方程f(x)2﹣af(x)+a2﹣3=0有7个实数根,则方程t2﹣at+a2﹣3=0有两个实数根,一个在区间(0,1]上,一个在区间(1,2)上,令g(t)=t2﹣at+a2﹣3,解得:.故答案为:.三、解答题:(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数f(x)=2cos(﹣x)cos(x+)+.(Ⅰ)求函数f(x)的最小正周期和单调递减区间;(Ⅱ)求函数f(x)在区间[0,]上的值域.【解答】解:(Ⅰ)f(x)=2cos(﹣x)cos(x+)+=sinxcosx﹣sin2x+=sin (2x+)…T==π …由2kπ+≤2x+≤2kπ+,可得单调递减区间为[kπ+,kπ+](k∈Z)…(Ⅱ)x∈[0,],2x+∈[,]…..当2x+=,即x=时,f(x)max=1.当2x+=m即x=时,f(x)min=﹣∴f(x)值域为[﹣,1]…..18.已知数列{an}是公差不为0的等差数列,Sn为数列{an}的前n项和,S5=20,a1,a3,a7成等比数列.(1)求数列{an}的通项公式;(2)若bn+1=bn+an,且b1=1,求数列{}的前n项和Tn.【解答】解:(1)由题可知,,得a1=2d…因为S5=20,所以a3=4,所以a1=2,d=1…所以an=n+1…(2)由(1)可知,bn+1﹣bn=n+1,所以:b2﹣b1=2,b3﹣b2=3,b4﹣b3=4,…,bn﹣bn﹣1=n.由累加法可得:,所以…所以Tn=2++…+=2=.…19.如图,在△ABC中,AB=2,cos2B+5cosB﹣=0,且点D在线段BC上.(1)若∠ADC=,求AD的长;(2)若BD=2DC,=4,求△ABD的面积.【解答】解:(1)由,可得3cos2B+5cosB﹣2=0,所以或cosB=﹣2(舍去)…所以…因为,所以…由正弦定理可得:,所以…(2)由BD=2DC,得,所以…因为,AB=2,所以…由余弦定理AC2=AB2+BC2﹣2AB•BC•cosB可得BC=6或(舍去)…所以:BD=4,所以…20.已知f(x)=x2﹣ax+lnx,a∈R.(1)当a=3时,求函数f(x)的极小值;(2)令g(x)=x2﹣f(x),是否存在实数a,当x∈[1,e](e是自然对数的底数)时,函数g(x)取得最小值为1.若存在,求出a的值;若不存在,说明理由.【解答】解:(1)由题可知,f(x)=x2﹣3x+lnx,所以…令f'(x)=0,得或x=1…令f′(x)>0,解得:0<x<,或x>1,令f′(x)<0,解得:<x<1,所以f(x)在,(1,+∞)单调递增,在上单调递减…所以f(x)的极小值是f(1)=﹣2…(2)由题知,g(x)=ax﹣lnx,所以…①当a≤0时,g(x)在[1,e]上单调递减,g(x)min=g(e)=ae﹣1=1,解得:(舍去)…②当时,g(x)在[1,e]上单调递减,g(x)min=g(e)=ae﹣1=1,解得:(舍去)…③当时,g(x)在上单调递减,在上单调递增,,解得:a=1(舍去)…④当a≥1时,g(x)在[1,e]上单调递增,g(x)min=g(1)=a=1,解得:a=1…综合所述:当a=1时,g(x)在[1,e]上有最小值1.…21.已知函数f(x)=ax3﹣bex(a∈R,b∈R),且f(x)在x=0处的切线与x﹣y+3=0垂直.(1)若函数f(x)在[,1]存在单调递增区间,求实数a的取值范围;(2)若f′(x)有两个极值点x1,x2,且x1<x2,求a的取值范围;(3)在第二问的前提下,证明:﹣<f′(x1)<﹣1.【解答】解:因为f'(x)=ax2﹣bex,所以f'(0)=﹣b=﹣1,所以b=1…(1)由前可知,f'(x)=ax2﹣ex根据题意:f'(x)>0在上有解,即ax2﹣ex>0在上有解…即在上有解,令,故只需所以,所以,当时,g'(x)<0,所以g(x)在上单调递减,所以g(x)min=g(1)=e,所以a>e…(2)令h(x)=f'(x),则h(x)=ax2﹣ex,所以h'(x)=2ax﹣ex由题可知,h'(x)=0有两个根x1,x2,即2ax﹣ex=0有两个根x1,x2,又x=0显然不是该方程的根,所以方程有两个根,…设φ(x)=,则φ′(x)=,当x<0时,φ'(x)<0,φ(x)单调递减;当0<x<1时,φ′(x)<0,φ(x)单调递减;当x>1时,φ′(x)>0,φ(x)单调递增.故要使方程2a=有两个根,只需2a>φ(1)=e,即a>,所以a的取值范围是(,+∞),(3)由(2)得:0<x1<1<x2…且由h'(x1)=0,得2ax1﹣=0,所以a=,x1∈(0,1)…所以f′(x1)=h(x1)=a﹣=(﹣1),x1∈(0,1),令r(t)=et(﹣1),(0<t<1),则r′(t)=et()<0,r(t)在(0,1)上单调递减,所以r(1)<r(t)<r(0),即﹣<f′(x1)<﹣1.…请考生在22、23二题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号[选修4—4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,X轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ﹣)=.(1)求C的普通方程和l的倾斜角;(2)若l和C交于A,B两点,且Q(2,3),求|QA|+|QB|.【解答】解:(1)曲线C的参数方程为(α为参数),普通方程是=1 …由ρsin(θ﹣)=,得ρsinθ﹣ρcosθ=1 …所以:x﹣y+1=0,即直线l的倾斜角为:45° …(2)联立直线与椭圆的方程,解得A(0,1),B(﹣,﹣)…所以|QA|=2,|QB|=…所以|QA|+|QB|=.…[选修4-5:不等式选讲]23.设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.【解答】解:(1)记f(x)=|x﹣1|﹣|x+2|=,由﹣2<﹣2x﹣1<0解得﹣<x<,则M=(﹣,).…∵a、b∈M,∴,所以|a+b|≤|a|+|b|<×+×=.…(2)由(1)得a2<,b2<.因为|1﹣4ab|2﹣4|a﹣b|2=(1﹣8ab+16a2b2)﹣4(a2﹣2ab+b2)=(4a2﹣1)(4b2﹣1)>0,…所以|1﹣4ab|2>4|a﹣b|2,故|1﹣4ab|>2|a﹣b|.…。
北京市朝阳区2018-2019学年度第一学期期末质量检测高三年级数学试卷(理工类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合,,则A. B. C. D.【答案】D【解析】【分析】利用并集定义直接求解.【详解】集合A={x∈N|1≤x≤3}={1,2,3},B={2,3,4,5},∴A∪B={1,2,3,4,5}.故选:D.【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.设复数满足,则=A. B. C. 2 D.【答案】B【解析】【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【详解】由(1﹣i)z=2i,得z,∴|z|.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.3.执行如图所示的程序框图,若输入的,则输出的=A. B. C. D.【答案】A【解析】【分析】根据框图的流程依次计算程序运行的结果,直到满足条件跳出循环,确定输出S的值【详解】模拟程序的运行,可得S=12,n=1执行循环体,S=10,n=2不满足条件S+n≤0,执行循环体,S=6,n=3不满足条件S+n≤0,执行循环体,S=0,n=4不满足条件S+n≤0,执行循环体,S=﹣8,n=5满足条件S+n≤0,退出循环,输出S的值为﹣8.故选:A.【点睛】解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.4.在平面直角坐标系中,过三点的圆被轴截得的弦长为A. B. C. D.【答案】A【解析】【分析】利用待定系数法求出圆的一般方程,令y=0可得:x2﹣4x=0,由此即可得到圆被轴截得的弦长.【详解】根据题意,设过A、B、C的圆为圆M,其方程为x2+y2+Dx+Ey+F=0,又由A(4,4),B(4,0),C(0,4),则有,解可得:D=﹣4,E=﹣4,F=0,即圆M的方程为x2+y2﹣4x﹣4y=0,令y=0可得:x2﹣4x=0,解可得:x1=0,x2=4,即圆与x轴的交点的坐标为(0,0),(4,0),则圆被x轴截得的弦长为4;故选:A.【点睛】本题考查直线与圆的方程的应用,涉及待定系数法求圆的方程,关键是求出圆的方程.5.将函数的图象向右平移个单位后,图象经过点,则的最小值为A. B. C. D.【答案】B【解析】【分析】根据三角函数平移变换的规律得到向右平移φ(φ>0)个单位长度的解析式,将点带入求解即可.【详解】将函数y=sin2x的图象向右平移φ(φ>0)个单位长度,可得y=sin2(x﹣φ)=sin(2x﹣2φ),图象过点,∴sin(2φ),即2φ2kπ,或2kπ,k∈Z,即φ 或,k ∈Z ,∵φ>0,∴φ的最小值为. 故选:B .【点睛】本题主要考查了函数y =A sin (ωx +φ)的图象变换规律,考查计算能力,属于基础题. 6.设为实数,则是 “”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】C 【解析】 【分析】 由“x <0”易得“”,反过来,由“”可得出“x <0”,从而得出“x <0”是“”的充分必要条件.【详解】若x <0,﹣x >0,则:;∴“x <0“是““的充分条件;若,则;解得x <0; ∴“x <0“是““的必要条件;综上得,“x <0”是“”的充分必要条件.故选:C .【点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件. 7.对任意实数,都有(且),则实数的取值范围是A. B. C. D.【答案】B【解析】【分析】由题意可得a>1且a≤e x+3对任意实数x都成立,根据指数函数的性质即可求出.【详解】∵log a(e x+3)≥1=log a a,∴a>1且a≤e x+3对任意实数x都成立,又e x+3>3,∴1<a≤3,故选:B【点睛】本题考查了对数的运算性质和函数恒成立的问题,属于中档题.8.以棱长为1的正方体各面的中心为顶点,构成一个正八面体,再以这个正八面体各面的中心为顶点构成一个小正方体,那么该小正方体的棱长为A. B. C. D.【答案】C【解析】【分析】利用正八面体与大小正方体的关系,即可得到结果.【详解】正方体C1各面中心为顶点的凸多面体C2为正八面体,它的中截面(垂直平分相对顶点连线的界面)是正方形,该正方形对角线长等于正方体的棱长,所以它的棱长a2;以C2各个面的中心为顶点的正方体为图形C3是正方体,正方体C3面对角线长等于C2棱长的,(正三角形中心到对边的距离等于高的),因此对角线为,所以a,3故选:【点睛】本题考查组合体的特征,抓住两个组合体主元素的关系是解题的关键,考查空间想象能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.已知数列为等差数列,为其前项的和.若,,则_______.【答案】【解析】【分析】运用等差数列的前n项和公式可解决此问题.【详解】根据题意得,2=6,∴=3 又=7,∴2d=7﹣3=4,∴d=2,=1,∴S=55+20=25,5故答案为:25.【点睛】本题考查等差数列的前n项和公式的应用.10.已知四边形的顶点A,B,C,D在边长为1的正方形网格中的位置如图所示,则____________.【答案】【解析】【分析】以A为坐标原点,以AC所在直线为x轴建立平面直角坐标系,分别求出的坐标,由数量积的坐标运算得答案.【详解】如图,以A为坐标原点,以AC所在直线为x轴建立平面直角坐标系,则A(0,0),B(4,2),C(7,0),D(3,﹣2),∴,,∴7×1+0×4=7.故答案为:7.【点睛】本题考查平面向量数量积的性质及其运算,合理构建坐标系是解题的关键,是基础的计算题.11.如图,在边长为1的正方形网格中,粗实线表示一个三棱锥的三视图,则该三棱锥的体积为_______________.【答案】【解析】【分析】由三视图还原几何体,该几何体为三棱锥,底面三角形ACB与侧面三角形APB为全等的等腰直角三角形,侧面PAB⊥侧面ACB,AB=4,PO=OC=2,由此即可得到结果.【详解】由三视图还原原几何体如图,该几何体为三棱锥,底面三角形ACB与侧面三角形APB为全等的等腰直角三角形,侧面PAB⊥侧面ACB,AB=4,PO=OC=2.侧面PAC与PBC为全等的等边三角形.则该三棱锥的体积为V=.故答案为:.【点睛】本题考查由三视图求体积,关键是由三视图还原原几何体,考查空间想象能力及运算能力,是中档题.12.过抛物线焦点的直线交抛物线于两点,分别过作准线的垂线,垂足分别为.若,则__________________.【答案】【解析】【分析】设直线AB的倾斜家为锐角θ,由|AF|=4|BF|,可解出cosθ的值,进而得出sinθ的值,然后利用抛物线的焦点弦长公式计算出线段AB的长,再利用|CD|=|AB|sinθ可计算出答案.【详解】设直线AB的倾斜角为θ,并设θ为锐角,由于|AF|=4|BF|,则有,解得,则,由抛物线的焦点弦长公式可得,因此,.故答案为:5.【点睛】本题考查抛物线的性质,解决本题的关键在于灵活利用抛物线的焦点弦长公式,属于中等题.13.2018年国际象棋奥林匹克团体赛中国男队、女队同时夺冠.国际象棋中骑士的移动规则是沿着3×2格或2×3格的对角移动.在历史上,欧拉、泰勒、哈密尔顿等数学家研究了“骑士巡游”问题:在格的黑白相间的国际象棋棋盘上移动骑士,是否可以让骑士从某方格内出发不重复地走遍棋盘上的每一格?图(一)给出了骑士的一种走法,它从图上标1的方格内出发,依次经过标2,3,4,5,6,,到达标64的方格内,不重复地走遍棋盘上的每一格,又可从标64的方格内直接走回到标1的方格内.如果骑士的出发点在左下角标50的方格内,按照上述走法,_____(填“能”或“不能”)走回到标50的方格内.若骑士限制在图(二)中的3×4=12格内按规则移动,存在唯一一种给方格标数字的方式,使得骑士从左上角标1的方格内出发,依次不重复经过2,3,4,5,6,,到达右下角标12的方格内,分析图(二)中A处所标的数应为____.【答案】(1). 能(2).【解析】【分析】根据题意,画出路线图,解判断是否能,再根据题意,结合题目中的数字,即可求出A处的数字.【详解】如图所示:如果骑士的出发点在左下角标50的方格内,按照上述走法,能走回到标50的方格内,如图所示:使得骑士从左上角标1的方格内出发,依次不重复经过2,3,4,5,6,…,到达右下角标12的方格,且路线是唯一的,故A处应该为8,故答案为:能,8【点睛】本题考查了合情推理的问题,考查了转化与化归思想,整体和部分的思想,属于中档题14.如图,以正方形的各边为底可向外作四个腰长为1的等腰三角形,则阴影部分面积的最大值是___________.【答案】【解析】【分析】设等腰三角形底角为,阴影面积为,根据正弦函数的图象与性质即可得到结果.【详解】设等腰三角形底角为,则等腰三角形底边长为高为,阴影面积为:,当时,阴影面积的最大值为故答案为:【点睛】本题考查平面图形的面积问题,考查三角函数的图象与性质,解题关键用等腰三角形底角为表示等腰三角形的底边与高.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.在中,已知,(1)求的长;(2)求边上的中线的长.【答案】(1)(2)【解析】【分析】(1)利用同角关系得到,结合正弦定理即可得到的长;(2)在中求出,结合余弦定理即可得到边上的中线的长. 【详解】解:(1)由,,所以.由正弦定理得,,即.(2)在中,.由余弦定理得,,所以.所以.【点睛】本题考查正余弦定理的应用,考查推理及运算能力,属于中档题.16.某日A,B,C三个城市18个销售点的小麦价格如下表:(1)甲以B市5个销售点小麦价格的中位数作为购买价格,乙从C市4个销售点中随机挑选2个了解小麦价格.记乙挑选的2个销售点中小麦价格比甲的购买价格高的个数为,求的分布列及数学期望;(2)如果一个城市的销售点小麦价格方差越大,则称其价格差异性越大.请你对A,B,C三个城市按照小麦价格差异性从大到小进行排序(只写出结果).【答案】(1)分布列见解析,期望为1(2)C,A,B【解析】【分析】(1)由题意可得的可能取值为0,1,2.求出相应的概率值,即可得到的分布列及数学期望;(2)三个城市按照价格差异性从大到小排列为:C,A,B.【详解】解:(1)B市共有5个销售点,其小麦价格从低到高排列为:2450,2460,2500,2500,2500.所以中位数为2500,所以甲的购买价格为2500.C市共有4个销售点,其小麦价格从低到高排列为:2400,2470,2540,2580,故的可能取值为0,1,2.,,.所以分布列为所以数学期望.(2)三个城市按小麦价格差异性从大到小排序为:C,A,B【点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.17.如图,三棱柱的侧面是平行四边形,,平面平面,且分别是的中点.(1)求证:平面;(2)当侧面是正方形,且时,(ⅰ)求二面角的大小;(ⅱ)在线段上是否存在点,使得?若存在,指出点的位置;若不存在,请说明理由.【答案】(1)见解析(2)(ⅰ)(ⅱ)点在点处时,有【解析】【分析】(1)取中点,证明四边形是平行四边形,可得从而得证;(2)(ⅰ)先证明平面以为原点建立空间直角坐标系,求出平面与平面的法向量,即可得到二面角的大小;(ⅱ)假设在线段上存在点,使得. 设,则.利用垂直关系,建立的方程,解之即可.【详解】证明:(1)取中点,连,连.在△中,因为分别是中点,所以,且.在平行四边形中,因为是的中点,所以,且.所以,且.所以四边形是平行四边形.所以.又因为平面,平面,所以平面.(2)因为侧面是正方形,所以.又因为平面平面,且平面平面,所以平面.所以.又因为,以为原点建立空间直角坐标系,如图所示. 设,则,.(ⅰ)设平面的一个法向量为.由得即令,所以.又因为平面,所以是平面的一个法向量.所以.由图可知,二面角为钝角,所以二面角的大小为.(ⅱ)假设在线段上存在点,使得.设,则.因为,又,所以.所以.故点在点处时,有【点睛】本题考查向量法求二面角大小、线面平行的证明,考查满足线面垂直的点的位置的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查化归与转化思想、数形结合思想,考查推理论论能力、空间想象能力,是中档题.18.已知函数.(Ⅰ)当时,求函数的极小值;(Ⅱ)当时,讨论的单调性;(Ⅲ)若函数在区间上有且只有一个零点,求的取值范围.【答案】(Ⅰ)(Ⅱ)详见解析(Ⅲ)【解析】【分析】(Ⅰ)由题意,当时,求得,得出函数的单调性,进而求解函数的极值;(Ⅱ)由,由,得或,分类讨论,即可得到函数的单调区间;(Ⅲ)由(1)和(2),分当和,分类讨论,分别求得函数的单调性和极值,即可得出相应的结论,进而得到结论.【详解】解:(Ⅰ)当时:,令解得,又因为当,,函数为减函数;当,,函数为增函数.所以,的极小值为.(Ⅱ).当时,由,得或.(ⅰ)若,则.故在上单调递增;(ⅱ)若,则.故当时,;当时,.所以在,单调递增,在单调递减.(ⅲ)若,则.故当时,;当时,.所以在,单调递增,在单调递减.(Ⅲ)(1)当时,,令,得.因为当时,,当时,,所以此时在区间上有且只有一个零点.(2)当时:(ⅰ)当时,由(Ⅱ)可知在上单调递增,且,,此时在区间上有且只有一个零点.(ⅱ)当时,由(Ⅱ)的单调性结合,又,只需讨论的符号:当时,,在区间上有且只有一个零点;当时,,函数在区间上无零点.(ⅲ)当时,由(Ⅱ)的单调性结合,,,此时在区间上有且只有一个零点.综上所述,.【点睛】本题主要考查了导数在函数中的综合应用问题,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.19.过椭圆W:的左焦点作直线交椭圆于两点,其中,另一条过的直线交椭圆于两点(不与重合),且点不与点重合.过作轴的垂线分别交直线,于,.(Ⅰ)求点坐标和直线的方程;(Ⅱ)求证:.【答案】(Ⅰ),的方程为(Ⅱ)详见解析【解析】【分析】(Ⅰ)由题意可得直线的方程为.与椭圆方程联立方程组,即可求解B点坐标;(Ⅱ)设,,的方程为,联立方程组,根据根与系数的关系,求得,,进而得出点的纵坐标,化简即可证得,得到证明.【详解】(Ⅰ)由题意可得直线的方程为.与椭圆方程联立,由可求.(Ⅱ)当与轴垂直时,两点与,两点重合,由椭圆的对称性,.当不与轴垂直时,设,,的方程为().由消去,整理得.则,.由已知,,则直线的方程为,令,得点的纵坐标.把代入得.由已知,,则直线的方程为,令,得点的纵坐标.把代入得.把,代入到中,=.即,即..【点睛】本题主要考查了直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,确定函数的性质进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.已知是由正整数组成的无穷数列,对任意,满足如下两个条件:①是的倍数;②.(1)若,,写出满足条件的所有的值;(2)求证:当时,;(3)求所有可能取值中的最大值.【答案】(1)(2)见解析(3)85【解析】【分析】(1)根据满足的两个条件即可得到满足条件的所有的值;(2)由,对于任意的,有. 当时,成立,即成立;若存在使,由反证法可得矛盾;(3)由(2)知,因为且是的倍数,可得所有可能取值中的最大值.【详解】(1)的值可取.(2)由,对于任意的,有.当时,,即,即.则成立.因为是的倍数,所以当时,有成立.若存在使,依以上所证,这样的的个数是有限的,设其中最大的为.则,成立,因为是的倍数,故.由,得.因此当时,.(3)由上问知,因为且是的倍数,所以满足下面的不等式:,. 则,, ,,,,,,,,当时,这个数列符合条件.故所求的最大值为85.【点睛】本题考查了数列的有关知识,考查了逻辑推理能力,综合性较强.。
2017-2018学年河南省南阳市高三(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:如图,集合U为全集,则图中阴影部分表示的集合是()A.∁U(A∩B)∩C B.∁U(B∩C)∩A C.A∩∁U(B∪C)D.∁U(A∪B)∩C 2.已知1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,则a+b=()A.﹣1 B.1 C.﹣3 D.33.已知双曲线C的一条渐近线的方程是:y=2x,且该双曲线C经过点,则双曲线C的方程是()A.B.C.D.4.已知:f(x)=asinx+bcosx,,若函数f(x)和g(x)有完全相同的对称轴,则不等式g(x)>2的解集是()A.B.C.D.5.已知各项均为正数的等比数列{a n},a3•a5=2,若f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),则f'(0)=()A.B.C.128 D.﹣1286.已知:,则目标函数z=2x﹣3y()A.z max=﹣7,z min=﹣9 B.,z min=﹣7C.z max=﹣7,z无最小值D.,z无最小值7.设f(x)=e1+sinx+e1﹣sinx,x1、,且f(x1)>f(x2),则下列结论必成立的是()A.x1>x2B.x1+x2>0 C.x1<x2D.>8.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=()A.10πB.C.D.12π9.执行如图的程序框图,若输出S的值是2,则a的值可以为()A.2014 B.2015 C.2016 D.201710.我们把顶角为36°的等腰三角形称为黄金三角形.其作法如下:①作一个正方形ABCD;②以AD的中点E为圆心,以EC长为半径作圆,交AD延长线于F;③以D为圆心,以DF长为半径作⊙D;④以A为圆心,以AD长为半径作⊙A交⊙D于G,则△ADG为黄金三角形.根据上述作法,可以求出cos36°=()A.B.C.D.11.已知抛物线E:y2=2px(p>0),过其焦点F的直线l交抛物线E于A、B=﹣tan∠AOB,则p的值是()两点(点A在第一象限),若S△OABA.2 B.3 C.4 D.512.已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1二、填空题:13. 1.028≈(小数点后保留三位小数).14.已知向量=(1,2),=(﹣2,﹣4),||=,若(+)=,则与的夹角为.15.已知:,则cos2α+cos2β的取值范围是.16.在四边形ABCD中,∠ABC=90°,,△ACD为等边三角形,则△ABC的外接圆与△ACD的内切圆的公共弦长=.三、解答题:17.(12.00分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.18.(12.00分)如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,现把平行四边形ABB1A11沿CC1折起如图2所示,连接B1C、B1A、B1A1.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB 1﹣A1的正弦值.19.(12.00分)为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望E(Y);(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望E(Z).20.(12.00分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.21.(12.00分)已知函数,且函数f(x)的图象在点(1,﹣e)处的切线与直线x+(2e+1)y﹣1=0垂直.(1)求a,b;(2)求证:当x∈(0,1)时,f(x)<﹣2.[选修4-4:极坐标与参数方程选讲](本小题满分10分)22.(10.00分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.[选修4-5:不等式选讲](本小题满分0分)23.已知a>0,b>0,函数f(x)=|x﹣a|+|x+b|的最小值为2.(1)求a+b的值;(2)证明:a2+a>2与b2+b>2不可能同时成立.2017-2018学年河南省南阳市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知:如图,集合U为全集,则图中阴影部分表示的集合是()A.∁U(A∩B)∩C B.∁U(B∩C)∩A C.A∩∁U(B∪C)D.∁U(A∪B)∩C 【分析】阴影部分所表示的为在集合B中但不在集合A中的元素构成的部分,即在B中且在A的补集中.【解答】解:阴影部分所表示的为在集合A中但不在集合B,C中的元素构成的,故阴影部分所表示的集合可表示为A∩∁U(B∪C),故选:C.【点评】本题考查利用集合运算表示韦恩图中的集合、考查韦恩图是研究集合关系的常用工具.2.已知1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,则a+b=()A.﹣1 B.1 C.﹣3 D.3【分析】利用实系数方程的虚根成对定理,列出方程组,求出a,b即可.【解答】解:1+i是关于x的方程ax2+bx+2=0(a,b∈R)的一个根,一元二次方程虚根成对(互为共轭复数)..得:a=1,b=﹣2,a+b=﹣1.故选:A.【点评】本题考查实系数方程成对定理的应用,考查计算能力.3.已知双曲线C的一条渐近线的方程是:y=2x,且该双曲线C经过点,则双曲线C的方程是()A.B.C.D.【分析】设出双曲线方程代入点的坐标,然后求解双曲线方程即可.【解答】解:由题可设双曲线的方程为:y2﹣4x2=λ,将点代入,可得λ=﹣4,整理即可得双曲线的方程为.故选:D.【点评】本题考查双曲线的简单性质的应用以及双曲线方程的求法,考查计算能力.4.已知:f(x)=asinx+bcosx,,若函数f(x)和g(x)有完全相同的对称轴,则不等式g(x)>2的解集是()A.B.C.D.【分析】若函数f(x)和g(x)有完全相同的对称轴,则这两个函数的周期是一样的,即ω=1.通过解不等式g(x)>2求得x的取值范围.【解答】解:由题意知,函数f(x)和g(x)的周期是一样的,故ω=1,不等式g(x)>2,即,解之得:.故选:B.【点评】考查了正弦函数的对称性.根据函数的对称性求、求出ω是解决本题的关键.5.已知各项均为正数的等比数列{a n},a3•a5=2,若f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),则f'(0)=()A.B.C.128 D.﹣128【分析】令f(x)=x•g(x),其中g(x)=(x﹣a1)(x﹣a2)…(x﹣a7),利用函数的导数求解即可.【解答】解:令f(x)=x•g(x),其中g(x)=(x﹣a1)(x﹣a2)…(x﹣a7),则f'(x)=g(x)+x•g'(x),故,各项均为正数的等比数列{a n},a3•a5=2,,故.故选:B.【点评】本题考查函数的导数的应用,数列的简单性质的应用,考查转化思想以及计算能力.6.已知:,则目标函数z=2x﹣3y()A.z max=﹣7,z min=﹣9 B.,z min=﹣7C.z max=﹣7,z无最小值D.,z无最小值【分析】画出可行域,利用目标函数的几何意义,求解函数的最值即可.【解答】解:画出的可行域,如图:A(0,3),,C(4,5),目标函数z=2x﹣3y经过C时,目标函数取得最大值,z max=﹣7,没有最小值.故选:C.【点评】本题考查线性规划的简单应用,目标函数的最值考查数形结合的应用,是基础题.7.设f(x)=e1+sinx+e1﹣sinx,x1、,且f(x1)>f(x2),则下列结论必成立的是()A.x1>x2B.x1+x2>0 C.x1<x2D.>【分析】根据条件判断函数是偶函数,结合条件判断函数的单调性,进行判断即可.【解答】解:f(x)=f(﹣x),故f(x)是偶函数,而当时,f'(x)=cosx•e1+sinx﹣cosx•e1﹣sinx=cosx•(e1+sinx﹣e1﹣sinx)>0,即f(x)在是单调增加的.由f(x1)>f(x2),可得f(|x1|)>f(|x2|),即有|x1|>|x2|,即,故选:D.【点评】本题主要考查函数单调性的应用,根据条件判断函数的奇偶性和单调性是解决本题的关键.8.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积S=()A.10πB.C.D.12π【分析】判断三视图复原的几何体的形状,通过已知的三视图的数据,求出该多面体的外接球的表面积.【解答】解析:该多面体如图示,外接球的半径为AG,HA为△ABC外接圆的半径,HG=1,,故,∴该多面体的外接球的表面积.故选:B.【点评】本题考查多面体的外接球的表面积的求法,考查空间几何体三视图、多面体的外接球等基础知识,考查空间想象能力、运算求解能力,考查函数与方程思想,是中档题.9.执行如图的程序框图,若输出S的值是2,则a的值可以为()A.2014 B.2015 C.2016 D.2017【分析】根据题意,模拟程序框图的运行过程,根据输出的S值即可得出该程序中a的值.【解答】解:模拟程序的运行,可得:S=2,k=0;满足条件k<a,执行循环体,可得:S=﹣1,k=1;满足条件k<a,执行循环体,可得:,k=2;满足条件k<a,执行循环体,可得:S=2,k=3;…,∴S的值是以3为周期的函数,当k的值能被3整除时,不满足条件,输出S的值是2,a的值可以是2016.故选:C.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,从而得出正确的结论,是基础题.10.我们把顶角为36°的等腰三角形称为黄金三角形.其作法如下:①作一个正方形ABCD;②以AD的中点E为圆心,以EC长为半径作圆,交AD延长线于F;③以D为圆心,以DF长为半径作⊙D;④以A为圆心,以AD长为半径作⊙A交⊙D于G,则△ADG为黄金三角形.根据上述作法,可以求出cos36°=()A.B.C.D.【分析】根据做法,图形如图所示,△ADG即为黄金三角形,不妨假设AD=AG=2,则,由余弦定理即可求出【解答】解:根据做法,图形如图所示,△ADG即为黄金三角形,不妨假设AD=AG=2,则,由余弦定理可得cos36°==故选:B.【点评】本题考查了黄金三角形的定义作法和余弦定理,属于中档题11.已知抛物线E:y2=2px(p>0),过其焦点F的直线l交抛物线E于A、B=﹣tan∠AOB,则p的值是()两点(点A在第一象限),若S△OABA.2 B.3 C.4 D.5【分析】利用三角形的面积推出,设A(x1,y1),B(x2,y2),则x1x2+y1y2=﹣3,通过,代入求解即可.【解答】解:,即,不妨设A(x1,y1),B(x2,y2),则x1x2+y1y2=﹣3,即有,又因为,故:p=2.故选:A.【点评】本题考查抛物线的简单性质的应用,直线与抛物线的位置关系的应用,是中档题.12.已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1【分析】方法一:验证,当时,f(x)=lnx与g(x)=x2﹣x在点(1,0)处有共同的切线,即可;方法二:将方程整理得,设,则由题意,直线是函数f(x)的一条切线,不妨设切点为(x0,y0),列出方程组求解即可.【解答】解:方法一:验证,当时,f(x)=lnx与g(x)=x2﹣x在点(1,0)处有共同的切线y=x﹣1.方法二:将方程整理得,设,则由题意,直线是函数f(x)的一条切线,不妨设切点为(x0,y0),则有:,解之得:x0=1,y0=1,.故选:B.【点评】本题考查函数与方程的应用,求出方程的平方,直线与抛物线的位置关系的应用.二、填空题:13. 1.028≈ 1.172(小数点后保留三位小数).【分析】根据1.028=(1+0.02)8,利用二项式定理展开,可得它的近似值.【解答】解:1.028=(1+0.02)8=+++×0.023+…+≈=+++×0.023=1+8×0.02+28×0.0004+56×0.000008=1.172,故答案为:1.172【点评】本题主要考查二项式定理的应用,属于基础题.14.已知向量=(1,2),=(﹣2,﹣4),||=,若(+)=,则与的夹角为.【分析】设=(x,y),根据题中的条件求出x+2y=﹣,即=﹣,再利用两个向量的夹角公式求出cosθ的值,由此求得θ的值.【解答】解:设=(x,y),由向量=(1,2),=(﹣2,﹣4),||=,且(+)=,可得﹣x﹣2y=,即有x+2y=﹣,即=﹣,设与的夹角为等于θ,则cosθ===﹣.再由0≤θ≤π,可得θ=,故答案为:.【点评】本题主要考查两个向量的夹角公式的应用,求出=﹣是解题的关键,属于中档题15.已知:,则cos2α+cos2β的取值范围是.【分析】由已知利用二倍角公式化简可求cos2α+cos2β=3(cosβ﹣sinα),由,得sinα的范围,从而可求,进而得解.【解答】解:∵,∴cos2α+cos2β=1﹣2sin2α+2cos2β﹣1=2(sinα+cosβ)(cosβ﹣sinα)=3(cosβ﹣sinα),∵由,得,,易得:,∴,∴.故答案为:.【点评】本题主要考查了二倍角公式在三角函数化简求值中的应用,考查了正弦函数的性质及其应用,考查了计算能力和转化思想,属于基础题.16.在四边形ABCD中,∠ABC=90°,,△ACD为等边三角形,则△ABC的外接圆与△ACD的内切圆的公共弦长=1.【分析】以AC为x轴,AC的中点为坐标原点建立坐标系,分别求出△ABC的外接圆与△ACD的内切圆的方程,联立求得交点,利用两点间的距离公式求得两圆公共弦长.【解答】解:以AC为x轴,AC的中点为坐标原点建立坐标系,则A(﹣1,0),C(1,0),B(0,1),D(0,﹣),∴△ABC的外接圆的方程x2+y2=1,①△ACD的内切圆方程为,即,②联立①②可得两圆交点坐标为(,﹣),(,﹣),∴两圆的公共弦长为.故答案为:1.【点评】本题考查圆的方程的求法,考查圆与圆位置关系的应用,是中档题.三、解答题:17.(12.00分)已知数列{a n}的前n项和为S n,且满足a n=2S n+1(n∈N*).(1)求数列{a n}的通项公式;(2)若b n=(2n﹣1)•a n,求数列{b n}的前n项和T n.【分析】(1)当n=1时计算可知a1=﹣1,当n≥2时将a n=2S n+1与a n﹣1=2S n﹣1+1作差可知a n=﹣a n﹣1,进而可知数列{a n}是首项为﹣1,公比为﹣1的等比数列;(2)通过(1)可知,分n为奇偶两种情况讨论即可.【解答】解:(1)当n=1时,a1=2S1+1=2a1+1,解得a1=﹣1.当n≥2时,有:a n=2S n+1,a n﹣1=2S n﹣1+1,两式相减、化简得a n=﹣a n﹣1,所以数列{a n}是首项为﹣1,公比为﹣1的等比数列,从而.(2)由(1)得,当n为偶数时,b n+b n=2,;﹣1当n为奇数时,n+1为偶数,T n=T n+1﹣b n+1=(n+1)﹣(2n+1)=﹣n.所以数列{b n}的前n项和.【点评】本题考查数列的通项公式和前n项和公式,考查分类讨论的思想,注意解题方法的积累,属于中档题.18.(12.00分)如图1,在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,现把平行四边形ABB1A11沿CC1折起如图2所示,连接B1C、B1A、B1A1.(1)求证:AB1⊥CC1;(2)若,求二面角C﹣AB 1﹣A1的正弦值.【分析】(1)取CC1的中点O,连接OA,OB1,AC1,说明AO⊥CC1,OB1⊥CC1,推出CC1⊥平面OAB1,然后证明AB1⊥CC1;(2)证明AO⊥OB1,以O为原点,以OC,OB1,OA为x,y,z轴建立空间直角坐标系,求出平面AB1C的法向量,平面A1B1A的法向量,利用空间向量的数量积求解二面角C﹣AB1﹣A1的正弦值即可.【解答】证明:(1)取CC1的中点O,连接OA,OB1,AC1,∵在平行四边形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,∴△ACC1,△BCC1为正三角形,则AO⊥CC1,OB1⊥CC1,又∵AO∩OB1=O,∴CC1⊥平面OAB1,∵AB1⊂平面OAB1∴AB1⊥CC1;…4分(2)∵∠ABB1=60°,AB=4,AA1=2,C、C1分别为AB、A1B1的中点,∴AC=2,,∵,则,则三角形AOB1为直角三角形,则AO⊥OB1,…6分以O为原点,以OC,OB1,OA为x,y,z轴建立空间直角坐标系,则C(1,0,0),B1(0,,0),C1(﹣1,0,0),A(0,0,),则则,=(0,,),=(1,0,),设平面AB 1C的法向量为,则,令z=1,则y=1,,则,设平面A 1B1A的法向量为,则,令z=1,则x=0,y=1,即,…8分则…10分∴二面角C﹣AB1﹣A1的正弦值是.…12分.【点评】本题考查二面角的平面角的求法,直线与平面垂直的判定定理以及性质定理的应用,考查计算能力与空间想象能力.19.(12.00分)为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望E(Y);(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望E(Z).【分析】(Ⅰ)利用条件,可得设备M的数据仅满足一个不等式,即可得出结论;(Ⅱ)易知样本中次品共6件,可估计设备M生产零件的次品率为0.06.(ⅰ)由题意可知Y~B(2,),于是E(Y)=2×=;(ⅱ)确定Z的取值,求出相应的概率,即可求出其中次品个数Z的数学期望E (Z).【解答】解:(Ⅰ)P(μ﹣σ<X≤μ+σ)=P(62.8<X≤67.2)=0.8≥0.6826,P(μ﹣2σ<X≤μ+2σ)=P(60.6<X≤69.4)=0.94≥0.9544,P(μ﹣3σ<X≤μ+3σ)=P (58.4<X≤71.6)=0.98≥0.9974,因为设备M的数据仅满足一个不等式,故其性能等级为丙;…(4分)(Ⅱ)易知样本中次品共6件,可估计设备M生产零件的次品率为0.06.(ⅰ)由题意可知Y~B(2,),于是E(Y)=2×=;…(8分)(ⅱ)由题意可知Z的分布列为故E(Z)=0×+1×+2×=.…(12分)【点评】本题考查概率的计算,考查正态分布曲线的特点,考查数学期望,考查学生的计算能力,属于中档题.20.(12.00分)平面直角坐标系xOy中,已知椭圆的左焦点为F,离心率为,过点F且垂直于长轴的弦长为.(I)求椭圆C的标准方程;(Ⅱ)设点A,B分别是椭圆的左、右顶点,若过点P(﹣2,0)的直线与椭圆相交于不同两点M,N.(i)求证:∠AFM=∠BFN;(ii)求△MNF面积的最大值.【分析】(1)运用椭圆的离心率公式和过焦点垂直于对称轴的弦长,结合a,b,c的关系解得a,b,可得椭圆的方程;(II)方法一、(i)讨论直线AB的斜率为0和不为0,设A(x1,y1),B(x2,y2),AB方程为x=my﹣2,代入椭圆方程,运用韦达定理和判别式大于0,运用直线的斜率公式求斜率之和,即可得证;(ii)求得△MNF的面积,化简整理,运用基本不等式可得最大值.方法二、(i)由题知,直线AB的斜率存在,设直线AB的方程为:y=k(x+2),设A(x1,y1),B(x2,y2),联立椭圆方程,消去y,可得x的方程,运用韦达定理和判别式大于0,再由直线的斜率公式,求得即可得证;(ii)求得弦长|MN|,点F到直线的距离d,运用三角形的面积公式,化简整理,运用换元法和基本不等式,即可得到所求最大值.【解答】解:(1)由题意可得,令x=﹣c,可得y=±b=±,即有,又a2﹣b2=c2,所以.所以椭圆的标准方程为;(II)方法一、(i)当AB的斜率为0时,显然∠AFM=∠BFN=0,满足题意;当AB的斜率不为0时,设A(x1,y1),B(x2,y2),AB方程为x=my﹣2,代入椭圆方程,整理得(m2+2)y2﹣4my+2=0,则△=16m2﹣8(m2+2)=8m2﹣16>0,所以m2>2.,可得==.则k MF+k NF=0,即∠AFM=∠BFN;(ii)当且仅当,即m2=6.(此时适合△>0的条件)取得等号.则三角形MNF面积的最大值是.方法二(i)由题知,直线AB的斜率存在,设直线AB的方程为:y=k(x+2),设A(x1,y1),B(x2,y2),联立,整理得(1+2k2)x2+8k2x+8k2﹣2=0,则△=64k4﹣4(1+2k2)(8k2﹣2)=8﹣16k2>0,所以.,可得=∴k MF+k NF=0,即∠AFM=∠BFN;(ii),点F(﹣1,0)到直线MN的距离为,即有==.令t=1+2k2,则t∈[1,2),u(t)=,当且仅当,即(此时适合△>0的条件)时,,即,则三角形MNF面积的最大值是.【点评】本题考查椭圆的方程的求法,注意运用离心率公式和过焦点垂直于对称轴的弦长,考查直线和椭圆方程联立,运用韦达定理和判别式大于0,以及直线的斜率公式,考查基本不等式的运用:求最值,属于中档题.21.(12.00分)已知函数,且函数f(x)的图象在点(1,﹣e)处的切线与直线x+(2e+1)y﹣1=0垂直.(1)求a,b;(2)求证:当x∈(0,1)时,f(x)<﹣2.【分析】(1)由f(1)=﹣e,得a﹣b=﹣1,由f'(1)=2e+1,得到a﹣4b=2,由此能求出a,b.(2)f(x)<﹣2,即证,令g(x)=(2﹣x3)e x,,由此利用导数性质能证明f(x)<﹣2.【解答】解:(1)因为f(1)=﹣e,故(a﹣b)e=﹣e,故a﹣b=﹣1①;依题意,f'(1)=2e+1;又,故f'(1)=e(4a﹣b)+1=2e+1,故4a﹣b=2②,联立①②解得a=1,b=2;(2)由(1)得,要证f(x)<﹣2,即证;令g(x)=(2﹣x3)e x,,g'(x)=﹣e x(x3+3x2﹣2)=﹣e x(x+1)(x2+2x﹣2)令g'(x)=0,因为x∈(0,1),e x>0,x+1>0,故,所以g(x)在上单调递增,在单调递减.而g(0)=2,g(1)=e,当时,g(x)>g(0)=2当时,g(x)>g(1)=e故当x∈(0,1)时,g(x)>2;而当x∈(0,1)时,,故函数所以,当x∈(0,1)时,ϕ(x)<g(x),即f(x)<﹣2.【点评】本题考查导数的应用,考查导数的几何意义,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.[选修4-4:极坐标与参数方程选讲](本小题满分10分)22.(10.00分)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位),且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=6sinθ.(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值.【分析】(I)利用x=ρcosθ,y=ρsinθ可将圆C极坐标方程化为直角坐标方程;(II)先根据(I)得出圆C的普通方程,再根据直线与交与交于A,B两点,可以把直线与曲线联立方程,用根与系数关系结合直线参数方程的几何意义,表示出|PA|+|PB|,最后根据三角函数的性质,即可得到求解最小值.【解答】解:(Ⅰ)由ρ=6sinθ得ρ2=6ρsinθ,化为直角坐标方程为x2+y2=6y,即x2+(y﹣3)2=9.(Ⅱ)将l的参数方程代入圆C的直角坐标方程,得t2+2(cosα﹣s inα)t﹣7=0.由△=(2cosα﹣2sinα)2+4×7>0,故可设t1,t2是上述方程的两根,所以,又直线l过点(1,2),故结合t的几何意义得|PA|+|PB|=|t1|+|t2|=|t1﹣t2|====2.所以|PA|+|PB|的最小值为2.【点评】此题主要考查参数方程的优越性,及直线与曲线相交的问题,在此类问题中一般可用联立方程式后用韦达定理求解即可,属于综合性试题有一定的难度.[选修4-5:不等式选讲](本小题满分0分)23.已知a>0,b>0,函数f(x)=|x﹣a|+|x+b|的最小值为2.(1)求a+b的值;(2)证明:a2+a>2与b2+b>2不可能同时成立.【分析】(1)运用绝对值不等式的性质可得f(x)的最小值为a+b,即可得到所求最小值;(2)运用反证法,结合二次不等式的解法,即可得证.【解答】解:(1)∵a>0,b>0,∴f(x)=|x﹣a|+|x+b|≥|(x﹣a)﹣(x+b)|=|a+b|=a+b,∴f(x)min=a+b,由题设条件知f(x)min=2,∴a+b=2;证明:(2)∵a+b=2,而,故ab≤1.假设a2+a>2与b2+b>2同时成立.即(a+2)(a﹣1)>0与(b+2)(b﹣1)>0同时成立,∵a>0,b>0,则a>1,b>1,∴ab>1,这与ab≤1矛盾,从而a2+a>2与b2+b>2不可能同时成立.【点评】本题考查绝对值不等式的性质以及不等式的证明,考查反证法的运用,以及运算能力和推理能力,属于中档题.。
湖北省黄冈中学2018届高三(上)期末考试数学试题(理科)第Ⅰ卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数1ii+在复平面中所对应的点到原点的距离为()A.12B.22C.1 D.22.设集合222{|1},{|1},{(,)|1}.A x y xB y y xC x y y x==-==-==-,则下列关系中不正确的是()A.A C=∅B.B C=∅C.B A⊆D.A B C=3.给出两个命题:p: |x|=x的充要条件是x为正实数;q: 存在反函数的函数一定是单调函数.则下列复合命题中的真命题是()A.p且q B.p或q C.┓p且q D.┓p或q4.设向量a与b的模分别为6和5,夹角为120°,则||a b+等于()A.23B.23-C.91D.315.若5(1)ax-的展开式中3x的系数是80,则实数a的值为()A.-2 B.22C.34D.26.已知函数f(x)是定义在R上的奇函数,当x<0时,1()3xf x⎛⎫= ⎪⎝⎭,那么11(0)(9)f f--+-的值为()A.3 B.-3 C.2 D.-27.若国际研究小组由来自3个国家的20人组成,其中A国10人,B国6人,C国4人,按分层抽样法从中选10人组成联络小组,则不同的选法有()种.A .10206AB .53210646A A AC .53210646C C CD .5321064C C C8.二次函数2(1)(21)1y n n x n x =+-++,当n 依次取1,2,3,4,…,n ,…时,图象在x 轴上截得的线段的长度的总和为( ) A .1B .2C .3D .49.平面α、β、γ两两互相垂直,点A α∈,点A 到β、γ的距离都是3,P 是α上的动点,P 到β的距离是到点A 距离的2倍,则点P 的轨迹上的点到γ的距离的最小值是( ) A .33-B .323-C .63-D .310.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用,浴用时,已知每分钟放水34升,在放水的同时注水,t 分钟注水2t 2升,当水箱内水量达到最小值时,放水自动停止,现假定每人洗浴用水65升,则该热水器一次至多可供( ) A .3人洗澡B .4人洗澡C .5人洗澡D .6人洗澡第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置上.) 11.不等式(2)|3|0x x -->的解集为________________.12.湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下一个直径为12cm ,深2cm 的空穴,则该球的表面积为_____________cm 2.(24S R π=球)13.已知抛物线22(0)y px p =>的焦点为F ,AB 是过焦点F 的弦,且AB 的倾斜角为30°,O AB ∆ 的面积为4,则p =____________.14.数列{a n }满足:a 1=1,且对任意的m 、*n ∈N 都有:m n m n a a a mn +=++,则12320081111a a a a ++++=_____________.15.直线l :(0)x my n n =+>过点(4,43)A ,若可行域300x my n x y y +⎧⎪-⎨⎪⎩≤≥≥的外接圆的直径为1633,则实数n的值为________________.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分12分)已知向量(1tan ,1),(1sin 2cos 2,3)x x x =-=++-b a ,记().f x =b a (1)求f (x )的值域及最小正周期; (2)若6224f f ααπ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,其中0,2πα⎛⎫∈ ⎪⎝⎭,求角.α17.(本小题满分12分)设在12个同类型的零件中有2个次品,抽取3次进行检验,每次任取一个,并且取出不再放回,若以ξ表示取出次品的个数. 求ξ的分布列,期望及方差.18.(本小题满分12分)已知数列{a n }的前n 项和为S n (0n S ≠),且*11120(2,),.2n n n a S S n n a -+=∈=N ≥(1)求证:1n S ⎧⎫⎨⎬⎩⎭是等差数列;(2)求a n ; (3)若2(1)(2)n n b n a n =-≥,求证:22223 1.n b b b +++<19.(本小题满分12分)在三棱锥P —ABC 中,1,2AB BC AB BC PA ⊥==,点O 、D 分别是AC 、PC 的中点,OP ⊥ 底面ABC .(1)求证OD ∥平面P AB ; (2)求二面角A —BC —P 的大小.20.(本小题满分13分)已知函数32()f x x ax bx c =+++的图象经过原点,且在x =1处取得极值,直线23y x =+到曲线()y f x =在原点处的切线所成的角为45°. (1)求()f x 的解析式;(2)若对于任意实数α和β恒有不等式|(2sin )(2sin )|f f m αβ-≤成立,求m 的最小值.21.(本小题满分14分)以点A 为圆心,以2cos 04πθθ⎛⎫<< ⎪⎝⎭为半径的圆内有一点B ,已知||2sin AB θ=,设过点B 且与圆A内切于点T 的圆的圆心为M .(1)当θ取某个值时,说明点M 的轨迹P 是什么曲线;(2)点M 是轨迹P 上的动点,点N 是A 上的动点,把|MN |的最大值记为()f θ,求()f θ的取值范围.PDACBO参考答案(理)1.B2.D3.D4.D5.D6.C7.D8.A9.A 10.B 11.(2,3)(3,)+∞12.400π13.214.4016200915.816.(1)根据条件可知:()(1tan )(1sin 2cos 2)3f x x x x =-++-2cos sin (2cos 2sin cos )3cos x xx x x x-=+-222(cos sin )3x x =--2cos23x =-因为f (x )的定义域为{|,},2x x k k ππ≠+∈Z ∴f (x )的值域为(5,1]--,f (x )的最小正周期为.π (2)2cos 2cos 2(cos sin )22sin 6.22424f f ααπππααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-+=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以,3sin 42πα⎛⎫+=⎪⎝⎭,又因为0,2πα⎛⎫∈ ⎪⎝⎭,所以2,4343ππππαα+=+=或 所以5.1212ππαα==或 17.ξ的可能值为0,1,2. 若ξ=0表示没有取出次品,其概率为032103126(0)11C C P C ξ===;同理()1211210210331212911,(2).2222C C C C P P C C ξξ====== ∴ξ的分布为ξ0 1 2 p611922122∴69110131122222E ξ=++=,22216191115012.21122222244D ξ⎛⎫⎛⎫⎛⎫=-+-+-= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 18.(1)∵120n n n a S S -+=,∴12n n n a S S -=-, 又∵1,n n n S S a --= ∴*1112(2,)n n n n S S --=∈N ≥ ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,且12.n n S = (2)当2n ≥时,1111.22(1)2(1)n n n a S S n n n n -=-=-=--- 当n =1时,112a =不成立. ∴1(1),21(2).2(1)n n a n n n ⎧=⎪⎪=⎨⎪-⎪-⎩≥(3)12(1)n n b n a n=-=,∴221111(2)(1)1n b n n n n n n =<=---≥.∴左边1111111112231n n n<-+-++-=-<-显然成立.19.(1)∵O 、D 分别为AC 、PC 的中点,∴OD ∥P A . 又P A ⊂≠平面P AB ,∴OD ∥平面P AB .(2)∵,,.AB BC OA OC OA OB OC ⊥=∴==又∵OP ⊥平面ABC ,∴P A=PB=PC ,取BC 中点E ,连结PE 和OE ,则,.OE BC PE BC ⊥⊥∴OEP ∠是所求二面角的平面角.又1124OE AB PA ==,易求得5.4PE PA = 在直角PO E ∆中,15cos 15OEP ∠=, ∴二面角A —BC —P 的大小为15arccos.1520.(1)由题意有2(0)0,()32f f x x ax b '==++,且(1)320,f a b '=++=又曲线()y f x =在原点处的切线的斜率(0),k f b '== 而直线23y x =+到此切线所成的角为45°, ∴21tan 4512b b-==+,解得b = -3. 代入320a b ++=得a =0,故f (x )的解析式为33.x x - (2)由2()333(1)(1)f x x x x '=-=-+可知,f (x )在(,1]-∞-和[1,)+∞上递增;在[-1,1]上递减,又(2)2,(1)2,(1)2,(2)2,f f f f -=--==-=∴f (x )在[-2,2]上的最大值和最小值分别为-2,2. 又∵2sin α、2sin [2,2]β∈-, ∴|(2sin )(2sin )|4f f αβ-≤. 故4m ≥,即m 的最小值为4.21.(1)连MT 、MB 、MA ,如图答所示.∵|MT|+|MA|=|AT|,|MT|=|MB|, ∴||||||2cos MA MB AT θ+==为定值,又||2sin AB θ=,因为0,,2cos 2sin 4πθθθ⎛⎫∈∴> ⎪⎝⎭,∴动点M 的轨迹P 是以A 、B 为焦点,长半轴长为cos θ, 半焦距长为sin θ的椭圆.(2)椭圆P 的中心为O ,长轴在直线AB 上,设其左顶点为M 1,射线BA 与A 交于N 1点,则|M 1N 1|是|MN |的最大值,即11111111()||,()||||||(||||)||(cos sin )2cos f M N f M N M A AN M O OA AN θθθθθ===+=++=++3cos sin 10sin()θθθϕ=+=+(其中ϕ是锐角,且tan 3ϕ=).∵0,0,tan 344ππθθϕϕϕ<<<+<+=∴当2πθϕ+=时,sin()θϕ+取最大值1;∴当4πθ=时,sin()θϕ+取最小值,此时min 222sin(+)sin (sin cos )4210πθϕϕϕϕ⎛⎫=+=+= ⎪⎝⎭ ∴22sin()110θϕ<+≤,2210sin()10.θϕ<+≤故22()10,<≤即()fθfθ的取值范围是(22,10].。
2017-2018学年度上学期期末考试高三年级数学科(理科)试卷第I卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知是虚数单位,则复数--一的虚部是()1-iA. -1B. 1C.D.【答案】Bfl - i? 2i 21(1 + i) 2 + 2i (1+护【解析】因为,所以的虚部是,故选1- i 1 - i 十1) 2 1 - jB.2. 设集合J - I ;,[• = •:.•::.二上,则()A. I'- I IB.C.:丨|D.【答案】C【解析】•••集合=「:/::• j•.•集合• - ■故选C43. 若:=.,且为第二象限角,则站;()4 3 4 3A. B. ——C. 一D.3 4 3 斗【答案】B4 3 sina 3【解析】因为■■■••■■■■:■=-,且为第二象限角,所以n =, ,故选B.5 5 COSOL44. 已知向量与的夹角为,,仃=〉,叮;;•】|- ()A. .. -B. 2C. ..D. 4【答案】B- 一, ]【解析】因为厂二所以口I,「:| =〔•::•:= I • —:- i = - i, ■■■. : h|--.4 -■ - I■- ' -:-',故选 B.5.某四棱锥的三视图如图所示,则该四棱锥的外接球半径为()4主轴【答案】B【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力, 属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正, 宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响 6. 已知数列 的前••项和■■- -ii-''卜:[,若 ,则()A. '-1''-1■ , B. I 「巴「巴 C.::■, D. 宀一[「些【答案】D【解析】由卜J ,得\ | -:八「卜:」: 两式相减可得,L 是以 为 公差的等差数列,;■- 是递减数列,:;・」「—.,故选D.■ x 十 y-2 < 07.若凡y 满足约束条件 x-2y-2 < 0 ,则z = x-y 的最大值是() ,2x-y + 2 > 0A. -2B. 0C. 2D. 4 【答案】CA. 1B.2C.D.2 2【解析】由三视图可知, 该四棱锥是底面为边长为的正方形,一条长为 的 侧棱与底面垂直,将该棱锥补成棱长为 I 的正方体,则棱锥的外接球就是正方体的外接球, 正方体外接球的直径就是正方体的对角线,即,故选B.当直线X X 「经过点上;时,直线的截距最小 最大,所以, 的最大值为;:-厂-::故选C. 【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题 •求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线) ;(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最 后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8. 把四个不同的小球放入三个分别标有 1〜3号的盒子中,不允许有空盒子的放法有( ) A. 12 种 B. 24 种 C. 36 种 D. 48 种 【答案】C【解析】从•个球中选出 个组成复合元素有 种方法,再把■■个元素(包括复合元素) 放入:个不同的盒子中有种放法,所以四个不同的小球放入三个分别标有1? 3号的盒子中,不允许有空盒子的放法有故选C.兀兀9. 已知函数 ,现将 的图象向左平移 个单位,再将所得图象上各点的A. | - IB. I'- l|C. 卜D. I "|【答案】A横坐标缩短为原来的倍,纵坐标不变,得到函数.7 - 的图象,【解析】将函数f(x) = 2sin(2x + 71向左平移 兀一个单位,可得对应的函数解析式7t 71*2、.,再将所得图象上各点的横坐标缩短为原来的631倍,纵坐J—■0 < 4x < -3E- 1 -二':故选A 点睛:本题主要考查了三角函数的图象变换及三角函数性质,属于基础题;图象的伸缩变换 的规律:(1把函数的图像向左平移h ;h 小个单位长度,则所得图像对应的解析式为■- :..:•、||'|,遵循“左加右减”;(2)把函数e 图像上点的纵坐标保持不变,横坐标变 为原来的°)倍(tn > 0),那么所得图像对应的解析式为 y = f (—x ).2 p 210. 已知椭圆—i 的左右焦点分别为、,过 的直线 与过 的直线 交于点,设点32的坐标 ,若〕,则下列结论中不正确的是()2 2X : V :X ; V :7,也対A.B.C. 山:小上::;::’1D. — —:3232 3 2【答案】A【解析】由题意可得椭圆的半焦距C - -.3-2 — 1,且由1_ _可知点Pix _,.y _.i 在以线段「一二为直径的圆上,则:•:,+ y 二1 ................... ,故A 不正确 3 2662故选A11. 某班有三个小组,甲、乙、丙三人分属不同的小组•某次数学考试成绩公布情况如下 :甲和三人中的第3小组那位不一样,丙比三人中第 1小组的那位的成绩低,三人中第 3小组的 那位比乙分数高.若甲、乙、丙三人按数学成绩由高到低排列,正确的是( )A.甲、乙、丙B. 甲、丙、乙C.乙、甲、丙 D. 丙、甲、乙【答案】B【解析】甲和三人中的第 ■■小组那位不一样,说明甲不在第 :小组;三人中第■■小组那位比乙分标不变,得到的图象对应的函数解析式为兀 nt r 兀:;:三二;,贝U 1:: ..7T数高,说明乙不在第3组,说明丙在第3组,又第3组成绩低于第1组,大于乙,这时可得乙为第2组,甲为第1组,那么成绩从高到低为:甲、丙、乙,故选 B.12. 已知函数ire :「心::」在处取得极大值,则实数的取值范围是()1 1A. : 一:B. - IC. ] : I--'D. ! ]. .•:【答案】D【解析】由题意得函数匚;:的定义域为:门.・八,M il?.- .:■,■. I .1•:' ||..:■■:.若:;I在丨处取极大值,则:;N在:::I |递增,在门.-:递减,则I;在〕.-:恒成立,11KX 一、故;] 在」.•"恒成立x-11lnx 1---- lnx令,:、I :,贝UW x—1 J hfx)= ---------------- <0(x-1)2•••上「在1 上为减函数lnx 1■/ 二=.-=i x-JX-l L IX• •• 故选D点睛:本题考查函数极值问题,转化到不等式恒成立问题.不等式恒成立问题常见方法:①分离参数沦心恒成立(匚上” 1:;」二可)或亡i' -':恒成立(即可);②数形结合乜- I:•::-图象在】:-£汽-上方即可);③讨论最值丄「或:1 ' 恒成立;④分类讨论参数.第n卷二、填空题(本大题共4小题,每题5分,共20分,把答案填在答卷纸的相应位置上)13. 已知实数x满足5x_1l0Jx= S x,则玄=____________ .【答案】4【解析】由:.:i■■.■■■■■" = ;■",得= 即,解得-〉• J |;,即,故答案为.4 4 14. 如图是一个算法的流程图,则输出的a的值是___________ .当输入I:-,第一次循环,:.-:「一-:;第二次循环,「-」「:•::第三次循环,"::上?;第四次循环,J 八•「:;第五次循环,;| ?止「,结束循环输出3 -,故答案为•【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题•解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构 还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的 试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可 15.已知双曲线的两个焦点为 卜:,J 」:、•. ,渐近线为y = ; j :,则双曲线的标准方程 为 ___________ .2 2【答案】二丄I8 2【解析】•••双曲线的两个焦点为 . 、 ,焦点在 轴上•••渐近线b 1a 2T :■十:'二丁.■?' = : J'''二x 2 y 2【解析】执行程序框图, 【答案】11•••双曲线的方程为-一I8 2.•. ; I , • ; 故答案为二一匚I8 2点睛:求双曲线的标准方程的基本方法是待定系数法•具体过程是先定形,再定量,即先确 定双曲线标准方程的形式,然后再根据,,及渐近线之间的关系,求出,的值.s s16.等比数列 的前.•项和记为 ,若 -,则工3nS2n【答案】.al (!-Q2T ,)1—□ 【解析】设等比数列 的首项为,公比为..,%S3n ] -q q 2" I q 114 14 I 2 十丨 7 ““宀 t7,故答案为.九引(1 占 q 1' 12+133三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. ■..■■I"'中,角「-.I ,;.的对边分别为•::■」•,.6 (1)求的值;2(2)若■■- =,■-, 边上的高为,求 •的值.,兀L【答案】⑴.;(2).【解析】试题分析:(1)由\:二— ',根据两角和的正弦公式可得::s '_兀4而可得tanA = $,进而可得心=亍(2)结合(1),由面积相等可得bc=-,由余弦定理可得::I :' - ■.,配方后可其求得 ''='试题解析:(1)T 、I 门| I :二1,•.的i 「= •. r飞3 1厂2 1 兀4 (2)由已知, .•,•.••,.•• h -:-2¥3 23318. 甲、乙两名同学准备参加考试,在正式考试之前进行了十次模拟测试,测试成绩如下: 甲:137, 121 , 131 , 120, 129, 119, 132, 123, 125, 133 乙:110, 130, 147, 127, 146, 114, 126, 110, 144, 146(1)画出甲、乙两人成绩的茎叶图,求出甲同学成绩的平均数和方差,并根据茎叶图,写出甲、乙两位同学平均成绩以及两位同学成绩的中位数的大小关系的结论:(2)规定成绩超过127为“良好”,现在老师分别从甲、乙两人成绩中各随机选出一个,求选出成绩“良好”的个数的分布列和数学期望.(注:方差,其中为「•、的平均数)n. -【答案】(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据根据所给数据,利用茎叶图的作法可得茎叶图,根据茎叶图可得甲乙两人成绩的中位数,根据平均值公式可得甲乙两人的平均成绩根据方差公式可得甲的方程;:」=['.,比较两人的成绩的中位数及平均成绩即可的结果;(2).的可能取值为0, 1 , 2, 分别求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得■的数学期望..试题解析:(1)茎叶图如图7*---------------------------------- ---------------------- H91)00 495 3 1 011673 J 1 71)146 67 4乙的均值为:,中位数为.;甲的平均值为•,中位数为I",甲的方差为•,所以甲的中位数大于乙的中位数,甲的平均成绩小于乙的平均成绩;(2)由已知,〔的可能取值为0, 1, 2,分布列为:牛=.」,y',1心;=二:=.【方法点睛】本题主要考查茎叶图的画法、方差与平均值的求法、中位数的定义以及离散型随机变量的分布列与数学期望,属于中档题•求解该离散型随机变量的分布列与数学期望,首项要理解问题的关键,其次要准确无误的随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19. 如图,在底面是菱形的四棱锥点3.7?中,上"I平面冷二,仝—£严,.',点二.F分别为二一;二:的中点,设直线与平面交于点.(1)已知平面:丄「.Ti平面2…;I ,求证:沁;(2)求直线.与平面所成角的正弦值.【答案】⑴证明见解析;(2)【解析】试题分析:(1)由三角形中位线定理可得几:-记门,利用线面平行的判定定理可得•平面,在根据线面平行的性质定理可得;(2)由勾股定理可得」丄:,•/平面-■■.:?■,由此可以点为原点,直线二0分别为轴建立空间直角坐标系,利用两直线垂直数量积为零列出方程组,分别求出直线..的方向向量与平面的法向量,利用空间向量夹角余弦公式•试题解析:(1 )••*汎心,.:平面,:平面.•.迅1平面比D,「■-平面,平面T'l 平面;一1•••_山71.(2)V底面是菱形,为的中点. •••£/ I - ■■■■ .■- :•」I八门•/ 平面,则以点为原点,直线Fmm分别为轴建立如图所示空间直角坐标系则 c :./)</ :叵寫;m•••二卯;.広「门,「丨「,'- I ' :!设平面「:-[的法向量为•】.-,有.- y I -门::得门:I ■., 7- t ::设直线•.与平面所成角为则「一•直线..与平面二二所成角的正弦值为'■.【方法点晴】本题主要考查线面平行的性质与判定以及利用空间向量求线面角,属于难题•空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3 )设出相应平面的法向量,禾U用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离•20. 已知直线■■" 与抛物线i :!::交于宀1;两点.(1)若--L',求…的值;(2)以.为边作矩形.沁•二?,若矩形二;的外接圆圆心为,求矩形.沁•二?的面积.【答案】⑴;(2)30.【解析】试题分析:(1)1: J:;- 5与厂心联立得y". <■ + ■:,设■■- '■■■■! I ■,根据韦达定理可得:结合2S:=二可列出关于•的方程,从而可得结果;(2)设弦.的中点为⑴,设圆心二-, nt比+力>'M -111 1 -m则•,讥=2-1------------ 2= - 1 厂由| ■■: - .--n得,可得「『一〔,根据点到直线距离公式可得厂;=-,根据弦2 2长公式可得:•.,从而可得矩形的面积.试题解析:(1 —心与厂心联立得- "Ju :.•: g 丄OB, A OA- OB = 02-1----------- 2= - 1• I • : _ .:丨-• •丨川-!2__2-•面积为|.-3| - |匚二-匸21. 已知函数ir ■ ;?■?'.:' >■2:.■<.:■:■-二':三(1)时,求在上的单调区间;(2)且,均恒成立,求实数的取值范围x-1【答案】(1)单调增区间是,单调减区间是;(2) .【解析】试题分析:(1)根据,对求导,再令,再根据定义域,求得在-上是单调递减函数,由,即可求出在上的单调区间;(2)通过时,化简不等式,时,化简不等式,'::-I时,在◎十⑴;上单调递增,^ - I符合题意;时,时,都出现矛盾结果;得到的集合.试题解析:(1) 时,.U-Hz,设-当•时,,则在上是单调递减函数,即在x-上是单调递减函数,= 0 I v 兀丘2 时,v 0 ;0 vx < I 时,f(x) > 0•••在上的单调增区间是,单调减区间是;加+ 1 (2) I 时,二J」::二: .<1 .< 「,即二山’■■■'■ ■- ■■■■ 1 时,.■: 1 .■::,即二2a+l;X… ,(2)设弦.的中点为,则———:, ,设圆心.,禾U用函数的导数, 通过导函数的符号,判断单调性,推出,•卩-「I=二,• :口■....y :在a :. - .■ I 上单调递增•••瓷;L 时,;:;「:.:■ I : : ; —r I 时, '•:-::—■・.■:; ■■- I 时,•二 I I' ,” ■■:':■ - ] ■时,;c :、::匚•在:I. -' - |,上单调递减,.•.当—;::w 十.;时,.:.;、.::■ I : :■,与 时, 矛盾;舍::■ ■-1时,设一.1为―I 和0中的最大值,当一 I•- 「时, f •:匚 •在•上单调递减•••当-■■■ ■- < I 时,:「丨::■,与「:.一:| 时,矛盾;舍 综上,点睛:通过导数证明不等式或研究不等式恒成立问题的基本思路是:以导函数和不等式为基 础,单调性为主线,最(极)值为助手,从数形结合、分类讨论等多视角进行探究,经常是 把不等式问题转化为判断函数的单调性、求函数的最值,利用最值得出相应结论,其中分类 讨论是经常用到的数学思想方法. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分 •做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑•X = —Ai + tcn^fx. (为参数,匸兰:且a# ;),以原点°为极点,兀轴正半轴为极轴建立极坐标系,曲线 直线与曲线交于•两点,且占」沁. (1)求的大小;(2)过-分别作 的垂线与 轴交于两点,求"疝| . 【答案】⑴;(2)4.【解析】试题分析:(1)根据加减消元法可得直线直角坐标方程,根据极坐标极径含义可得 I|AB|到直线•的距离,根据点到直线距离公式可解得的大小(2)根据投影可得:,即得I■:: - I 时, :l I.结果试题解析:( 1 )由已知,直线I 的方程为:“.、:「■,「,T |二;l ,亠,匚亠 |3lanct +"口 J |AB| 、到直线啲距离为3,则,解之得.“ii 、-Jinn%卜】 -T:::.;・:且 ,—■:=2 6、 |AB| (2)cos30D23.已知函数•:、:, E(1) 当 时,解不等式 「宀―(2) 若存在■,使;-n 1 k ■成立,求 的取值范围论,去掉式中的绝对值符号,解相应的不等式,最后取并即可;(2)由:- ■<-则可得 ' -〕 ,求出 的取值范围.试题解析:(1)由已知 「— - I1 1时,解得 ,则;ZZ■时,解得、# 口;贝y ■ r 9 9 •时,解得 ,则z2 19综上:解集为■卡“ > Y2 T(2)v \:;|....- |/.-■< 严■ l ;|- ::■■■ ■:.••• 山卜 I- :-1当且仅当:「且卜宀丨:十1时等号成立•4• :•,解之得 或 ,•的取值范围为 p 、w -⑴]【解析】试题分(1)当三-时,原不等式可化为:、-:■-,通过对 取值范围的【答案】。
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】,∴故选:B2. 已知实数满足,则()A. B. C. D.【答案】A【解析】∵,∴,解得:,∴故选:A3. 某工厂生产甲、乙、丙三种不同型号的产品,产品的数量分别为:460,350,190.现在用分层抽样的方法抽取一个容量为100的样本,下列说法正确的是()A. 甲抽取样品数为48B. 乙抽取样品数为35C. 丙抽取样品数为21D. 三者中甲抽取的样品数最多,乙抽取的样品数最少【答案】B【解析】设甲、乙、丙抽取样品数分别为,则解得:,故选:B4. “直线的倾斜角大于”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】∵直线的倾斜角大于∴,或∴或∴“直线的倾斜角大于”是“”的必要不充分条件故选:B5. 太极图是以黑白两个鱼形纹组成的圆形图案,它形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理,展现了一种互相转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆(为坐标圆点)被曲线分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为()A. B. C. D.【答案】B【解析】设大圆的半径为R,则:,则大圆面积为:,小圆面积为:,则满足题意的概率值为:.本题选择B选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,据此求解几何概型即可.6. 已知正项等比数列满足,且,则数列的前9项和为()A. B. C. D.【答案】C【解析】∵正项等比数列满足,∴,即,,又∴,公比∴故选:C7. 记表示不超过的最大整数,如.执行如图所示的程序框图,输出的值是()A. 4B. 5C. 6D. 7【答案】C【解析】运行程序的循环结构,依次可得接着可得:,不符合,则跳出循环结构,输出.故选:C点睛:本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8. 已知抛物线的焦点到准线的距离为2,过点且倾斜角为的直线与拋物线交于两点,若,垂足分别为,则的面积为()A. B. C. D.【答案】D【解析】如图:抛物线C:y2=2px(p>0)的焦点F到其准线l的距离为2,可得p=2.∴y2=4x.过焦点且倾斜角为60°的直线y=x﹣与抛物线交于M,N两点,,解得M(3,2),N(,﹣).若MM′⊥l,NN′⊥l,垂足分别为M′(﹣1,2),N′(﹣1,﹣),则△M′N′F的面积为:.故选:D.9. 如图所示,网格纸上小正方形的边长为1,图中画出的是某几何体的三视图,则该几何体的表面积为()A. B. C. D.【答案】A【解析】由三视图可知,该几何体为一个正方体挖去一个半圆锥得到的几何体,故所求表面积2.故选:A点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.10. 已知直线截圆所得的弦长为,点在圆上,且直线过定点,若,则的取值范围为()A. B.C. D.【答案】D【解析】在依题意,解得,因为直线:,故;设MN的中点为,则,即,化简可得,所以点Q的轨迹是以为圆心,为半径的圆,所以的取值范围为,的取值范围为.故选:D11. 已知函数在上单调递增,且,则实数的取值范围为()A. B. C. D.【答案】C【解析】依题意,;,由,可得:;∵,故,故符合题意,故,故,,因为,故,故实数的取值范围为故选:C12. 已知关于的不等式的解集中只有两个整数,则实数的取值范围为()A. B. C. D.【答案】A【解析】依题意,,令,则, 令,则,则在上单调递增,又,∴存在,使得,∴,即,在单调递增,当,,即,在单调递减,∵,,且当时,,又,,,故要使不等式的解集中只有两个整数,a的取值范围应为.故选:A点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 的展开式中,含的项的系数为__________.【答案】【解析】通项为令,解得:,故含的项的系数为.故答案为:14. 已知函数,当时,函数的最小值与最大值之和为__________.【答案】【解析】依题意,,时,,sin,∴,函数的最小值与最大值之和为.故答案为:15. 已知实数满足则的最小值为__________.【答案】【解析】作出不等式组所对应的可行域,如图所示:当过点A时,有最小值为.故选:点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.16. 已知数列满足,若,则数列的首项的取值范围为__________.【答案】【解析】依题意,设∵,,故,故是以为首项,公比为3的等比数列,故,由,整理得,∵,故故.故答案为:三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知中,角所对的边分别是,的面积为,且,. (1)求的值;(2)若,求的值.【答案】(I )(2).【解析】试题分析:(1)由,可得:,再利用同角关系易得,又,故;(2)由,得,由正弦定理,得,可得,联立二者可得的值.试题解析:(1)因为,得,得,即,所以,又,所以,故,又∵,故,即,所以,故,故.(2),所以,得①,又,所以,在中,由正弦定理,得,即,得②,联立①②,解得.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.18. 共享单车因绿色、环保、健康的出行方式,在国内得到迅速推广.最近,某机构在某地区随机采访了10名男士和10名女士,结果男士、女士中分别有7人、6人表示“经常骑共享单车出行”,其他人表示“较少或不选择骑共享单车出行”.(1)从这些男士和女士中各抽取一人,求至少有一人“经常骑共享单车出行”的概率;(2)从这些男士中抽取一人,女士中抽取两人,记这三人中“经常骑共享单车出行”的人数为,求的分布列与数学期望.【答案】(1)(2)见解析【解析】试题分析:(1)记“从这些男士和女士中各抽取一人,至少有一人“经常骑共享单车出行”为事件,利用概率乘法公式及加法公式得到所求概率;(2)的取值为0,1,2,3,明确相应的概率值,得到分布列及相应的数学期望.试题解析:(1)记“从这些男士和女士中各抽取一人,至少有一人“经常骑共享单车出行”为事件,则 .(2)显然的取值为0,1,2,3,,,,,故随机变量的分布列为的数学期望.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;.....................19. 已知正四棱锥的各条棱长都相等,且点分别是的中点.(1)求证:;(2)若平面,且,求的值.【答案】(1)见解析(2)【解析】试题分析:(1)由题意易证:., 所以平面,从而证得结果;(2)建立空间直角坐标系,平面的法向量为,因为平面,所以,从而得到的值.试题解析:(1)设,则为底面正方形中心,连接,因为为正四梭锥.所以平面,所以.又,且,所以平面;因为平面,故.(2)作出点如图所示,连接.因为两两互相垂直,如图建立空间直角坐标系.设,其中,则,所以,设平面的法向量为,又,所以,即,所以,令,所以因为平面,所以,即.解得,所以.20. 已知椭圆的离心率为,且过点.过椭圆右焦点且不与轴重合的直线与椭圆交于两点,且.(1)求椭圆的方程;(2)若点与点关于轴对称,且直线与轴交于点,求面积的最大值.【答案】(I ) (2)最大值为1.【解析】试题分析:(1)由题意布列关于的方程组,解之即可;(2)设直线,直线与椭圆方程联立可得:,由题设知直线的方程为,令得,即点,表示面积,利用换元法转化函数结构然后求最值即可.试题解析:(I )依题意,解得,故椭圆的方程为;(2)依题意,椭圆右焦点坐标为,设直线,直线与椭圆方程联立化简并整理得,∴,由题设知直线的方程为,令得,∴点;故(当且仅当即时等号成立)∴的面积存在最大值,最大值为1.点睛:在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.21. 已知函数.(1)求函数的单调增区间;(2)设,若,对任意成立,求实数的取值范围.【答案】(1)(2).【解析】试题分析:(1)依题意,,从而易得函数的单调增区间;(2)结合函数的性质分类讨论a≤1和a>1两种情况即可求得实数a的取值范围.试题解析:(1)依题意,,令,解得,故函数的单调增区间为;(2)当时,对任意的都有;当时,对任意的,都有;故对成立,或对恒成立.而,设函数.则对恒成立,或对恒成立,,①当时,∵,∴,∴恒成立,所以在上递增,,故在上恒成立,符合题意.②当时,令得,令得,故在上递减,所以而,设函数,则,∵恒成立,∴在上递增,恒成立,∴在上递增,恒成立.即,而不合题意.综上①②,故实数的取值范围为.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在极坐标系中,曲线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,曲线的参数方程为(为参数).(1)求曲线的直角坐标方程和曲线的普通方程;(2)若曲线与曲线交于两点,为曲线上的动点,求面积的最大值.【答案】(1),(2).【解析】试题分析:(1) 曲线的直角坐标方程为,曲线的普通方程为;(2) 联立圆与直线的方程,得到两曲线的交点坐标,从而求得,再用点到直线距离表示,利用三角函数的有界性求最值即可.试题解析:(1)曲线的直角坐标方程为,曲线的普通方程为.(2)联立圆与直线的方程,可求两曲线交点坐标分别为则,又到的距离,当时,,面积最大值为.23. 选修4-5:不等式选讲已知.(1)求不等式的解集;(2)若,证明:.【答案】(1)(2)见解析【解析】试题分析:(1)对分类讨论,去掉绝对值转化为具体不等式,解之即可;(2)由(1)明确的范围,分别判断与的符号,问题得证.试题解析:(1)由得,∴.(2)∵,∴,,∴,∴,∴,,∴.。