平行线综合运用
- 格式:docx
- 大小:337.68 KB
- 文档页数:6
平行线的判定与性质的综合应用专题练习平行线的判定与性质的综合运用专题一、推理填空题1.已知:如图,DE∥BC,∠ADE=∠XXX,将说明∠1=∠2成立的理由填写完整。
解:因为DE∥BC,所以∠ADE=∠XXX。
又因为DE∥BC,所以DB∥EF。
由平行线性质可知,∠1=∠ADE=∠XXX∠2.2.已知:如图所示,∠1=∠2,∠A=∠3.求证:XXX。
证明:因为∠1=∠2,所以XXX。
又因为∠A=∠3,所以AC∥BD。
由平行线性质可知,AC∥DE。
3.已知:如图,∠XXX∠ADC,BF、DE分别平分∠ABC 与∠ADC,且∠1=∠3.求证:AB∥DC。
证明:因为∠XXX∠ADC,所以∠XXX∠ADC。
又因为BF、DE分别平分∠ABC与∠ADC,所以∠1=∠ABC,∠3=∠ADC。
由∠1=∠3可得,∠2=∠ADC。
由平行线性质可知,AB∥DC。
二、证明题4.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数。
证明:因为AB∥CD,所以∠A+∠D=180º。
又因为DE⊥AE,所以∠ADE=90º。
由∠A=37º可得,∠ADE=53º。
由三角形内角和定理可得,∠D=80º。
5.如图,已知AB∥CD,∠1=100°,∠2=120°,求∠α的度数。
证明:因为AB∥CD,所以∠1+∠α+∠2=180º。
由∠1=100º,∠2=120º可得,∠α= -40º。
由于∠α是角度,所以∠α=320º。
6.如图,XXX,AE平分∠BAD,求证:XXX与AE相交于F,∠XXX∠EAF。
证明:因为XXX,所以∠BAD=∠ACD。
又因为AE平分∠BAD,所以∠XXX∠DAF。
由相邻角的性质可得,∠EAF+∠DAF=∠BAD=∠ACD。
又因为CD与AE相交于F,所以∠CFE+∠EAF+∠ACD=180º。
平行线的判定方法和综合运用平行线是指在同一个平面上,永远不会相交的两条直线。
判定两条直线是否平行主要有以下几种方法:使用坐标法、等角法、平行四边形法和斜率法。
第一种方法是使用坐标法。
假设两条直线的方程分别为y=ax+b和y=cx+d,其中a、b、c、d都是常数。
如果a=c,那么这两条直线是平行的。
这可以通过将两个方程进行比较,得到a=c的结论。
第二种方法是使用等角法。
如果两条直线的斜度相等,那么这两条直线是平行的。
斜度可以通过直线与x轴的夹角来表示。
假设两条直线的斜度分别为α和β,如果α=β,那么这两条直线是平行的。
第三种方法是使用平行四边形法。
如果两条直线分别与一条第三直线相交,在相交点处的内错角相等,那么这两条直线是平行的。
这可以通过画出平行四边形来验证。
假设两条直线分别为l1和l2,第三条直线为l3,如果在l1与l3的一个交点P上,l2与l3的另一个交点Q处出现内错角相等的情况,那么l1和l2是平行的。
最常用的方法是使用斜率法。
假设两条直线的斜率分别为m1和m2,那么如果m1=m2,那么这两条直线是平行的。
对于一条直线y=ax+b,斜率a可以通过直线与x轴的夹角来表示。
斜率的计算公式为a=tan(θ),其中θ是直线与x轴的夹角。
综合运用上述方法,我们可以进行一些平行线的应用问题的解答。
例如,给定一个平行四边形的两个对角线交点P,我们可以通过以下步骤来确定其他两个顶点Q和R的坐标。
首先,我们可以通过已知的斜率和点P的坐标来确定一条直线,然后使用斜率法找到与其平行的另一条直线的方程。
假设直线PQ的斜率为m,那么直线l1的方程可以表示为y-mx+c1=0,其中c1是常数。
使用已知点坐标P(x1, y1),我们可以得到c1=y1-mx1接下来,我们可以通过等角法找到另一条与直线l1平行的直线的方程。
假设直线QR的斜率为m,那么直线l2的方程可以表示为y-mx+c2=0,其中c2是常数。
使用已知点坐标P(x1, y1),我们可以得到c2=y1-mx1最后,我们可以使用这两条直线与x轴的交点来确定顶点Q和顶点R的坐标。
《平行线的性质和判定的综合应用》教案清华附中大兴学校初一数学组教学目标:(1)平行线的性质与判定的综合应用.(2)经历例题的分析过程,从中体会转化的思想和分析问题的方法,在教学活动中发展学生的合情推理意识,使学生逐步掌握说理基本方法.并在证明的过程中体会转化等数学思想; 进一步培养推理能力,体会数学在实际生活中的应用.教学重点:1.综合应用平行线的性质与判定解决问题.2.渗透数学模型的思想,体会转化的思想和分析问题的方法.教学难点:典型例题分析和综合运用.【教学过程】一、知识回顾对顶角的性质:__________________________.平行线的性质:性质1 :两直线平行,________________________.性质2 :两直线平行,________________________.性质3 :两直线平行,_______________________.平行线的判定:判定1: _________________,两直线平行.判定2: _________________,两直线平行.判定3: _________________,两直线平行.判定4:如果两条直线都与第三条直线平行,那么这条直线也互相________.学生活动——根据定理填空,画出相应的几何图形,写出几何语言.设计意图:以填空形式复习所有新学习的知识点,可以结合各定理的几何图形和几何语言进行复习,目的是加深对定理的认识和熟练掌握.二、例题讲解【例1】(1)已知:如图,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.解:∵∠1=72°,∠2=72°(已知)∴_______________∴_______________(______________________)∴_______________(______________________)又∵∠3=60°(已知)∴∠4=_______________.(2)已知:如图,∠1=72°,∠2=72°,∠3=60°,求∠5的度数.(3)已知:如图,∠1=72°,∠2=72°,∠3=60°,求∠6的度数.学生活动——认真分析条件,用彩色笔在图中标注,独立完成第1小题填空,和第2小题规范过程的书写.用多种方法解决第三题并说出做每步推理的依据. 教师活动——以填空形式给出第一题,注重理由填写,引导学生用多种方法解决第三题.设计意图:第一套题组非常简单,是平行线性质与判定最简单的综合运用,第三小题加入了对顶角和邻补角知识点,强化综合分析的方法,强化推导和书写的规范性.提炼平行线的性质与判定定理间的关系,形成解题策略.三、深入探究【例2】(1)已知:如图,DG ∥BC ,∠1=∠2求证:EF ∥CD证明:∵DG ∥BC (已知)∴∠1=_______(________________________) 又∵∠1=∠2(已知)∴____________ ∴EF ∥CD.(________________________)(2)已知:如图,∠ADG=∠B ,∠1=∠2求证:∠BEF=∠BDC.21EG D AB C21EGD ABC(3)已知:如图,CD ⊥AB ,EF ⊥AB,∠1=∠2求证:∠AGD=∠ACB.学生活动——独立完成对第1小题填空的填写,和老师一起思考、分析、讨论第二题,完成逻辑推理和书写过程.结合前两道题的思考尝试独立解决第三题. 教师活动——教师主要以讲第二题为主,画推导图,从已知条件出发,层层推理,直到得出结论.设计意图:如果直接给出第三题,对于初学平行线性质和判定的学生来说太难了,通过前两题的分析,逐步递进,化简难度.四、拓展提高【问题】如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子反射时,∠1=∠2,∠3=∠4,∠2和∠3有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?解读:已知条件:如图,AB ∥CD ,∠1=∠2,∠3=∠4.猜想:(1)∠2和∠3有什么关系,并说明理由;(2)试说明:PM ∥NQ .解:(1)答:∠2____∠3.理由如下: ∵ AB ∥CD ,∴ ∠2____∠3(两直线平行,_______________) 学生活动——将实际问题转化为几何问题,用所学几何知识来解决.教师活动——引导学生如何把实际问题转化为几何问题,并运用所学知识来解决.设计意图:提升学生利用所学几何知识解决实际问题的意识,培养学生将实际问题转化为数学知识及几何语言的能力,拓展学生应用能力.21EGDB C五、自我评价(1)平行线的性质与判定的区别是什么?(2)在解决具体问题过程中,你能区别什么时候需要使用平行线的性质,什么时候需要使用平行线的判定吗?。
专题06平行线中三角尺综合运用1.(2022秋•天山区校级期末)把一块直尺与一块三角板如图放置,若∠1=38°,则∠2的度数是()A.128°B.138°C.142°D.152°2.(2022秋•和平区校级期末)将直尺和三角板按如图所示的位置放置.若∠1=40°,则∠2度数是()A.60°B.40°C.80°D.70°3.(2022秋•通川区期末)已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=35°,则∠2的度数是()A.45°B.35°C.30°D.25°4.(2022秋•长清区期末)如图,直角三角板的直角顶点放在直线b上,且a∥b,∠1=55°,则∠2的度数为()A.35°B.45°C.55°D.25°5.(2022秋•丹东期末)若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE 6.(2022•定远县模拟)将一副三角板按如图所示放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有()A.①③B.①②④C.③④D.①②③④7.(2022春•秦淮区校级月考)已知直线a∥b,将一块含30°角的直角三角板(∠BAC=30°,∠ACB=90°)按如图所示的方式放置,并且顶点A,C分别落在直线a,b上,若∠1=22°.则∠2的度数是()A.38°B.45°C.52°D.58°8.(2022春•龙岗区校级期中)一副直角三角板如图放置(∠F=∠ACB=90°,∠E=45°,∠A=60°),如果点C在FD的延长线上,点B在DE上,且AB∥CF,则∠DBC的度数为()A.10°B.15°C.18°D.30°9.(2022春•宁阳县期末)将含30°角的一个直角三角板和一把直尺如图放置,若∠1=50°,则∠2等于()A.80°B.100°C.110°D.120°10.(2022春•罗庄区期末)将直角三角板按照如图方式摆放,直线a∥b,∠1=136°,则∠2的度数为()A.44°B.45°C.46°D.56°11.(2022春•盐田区校级期中)如图,m∥n∥l,一块三角板按图所示摆放,则下列结论正确的有()①∠1+∠2=90°;②∠3+∠4=∠5;③∠5+∠6−∠1=90°;④∠5+∠6=∠2+2∠4.A.①②③B.①③④C.①②④D.①②③④12.(2022春•蜀山区期末)将一副直角三角板按如图所示的方式叠放在一起,若AC∥DE,则∠BCE的度数为()A.65°B.70°C.75°D.80°13.(2022•深圳)一副三角板如图所示放置,斜边平行,则∠1的度数为()A.5°B.10°C.15°D.20°14.(2022春•玄武区期末)将两个形状相同,大小不同的三角板按如图所示方式放置,C是公共顶点,且∠ACB=∠A'CB'=90°,∠B=∠B'=60°.对于下列三个结论,其中正确的结论有()①∠1+∠ACB'=180°;②∠B'DA﹣∠1=90°;③如果∠1=30°,那么AB∥CB'.A.①②B.②③C.①③D.①②③15.(2022•南召县模拟)将一块含30°角的直角三角板和一把直尺按如图所示的方式摆放,若∠2=40°,则∠1的度数为()A.10°B.15°C.20°D.25°16.(2022秋•城关区校级期末)同学们以“一块直角三角板和一把直尺”开展数学活动,提出了很多数学问题,请你解答:(1)如图1,∠α和∠β具有怎样的数量关系?请说明理由;(2)如图2,∠DFC的平分线与∠EGC的平分线相交于点Q,求∠FQG的大小.17.(2022秋•渝中区校级期末)已知,AB∥CD,直线FE交AB于点E,交CD 于点F,点M在线段EF上,过M作射线MR、MP分别交射线AB、CD于点N、Q.(1)如图1,当MR⊥MP时,求∠MNB+∠MQD的度数;(2)如图2,若∠DQP和∠MNB的角平分线交于点G,求∠NMQ和∠NGQ的数量关系;(3)如图3,当MR⊥MP,且∠EFD=60°,∠EMR=20°时,作∠MNB的角平分线NG.把一三角板OKI的直角顶点O置于点M处,两直角边分别与MR和MP重合,将其绕点O点顺时针旋转,速度为5°每秒,当OI落在MF 上时,三角板改为以相同速度逆时针旋转.三角板开始运动的同时∠BNG绕点N以3°每秒的速度顺时针旋转,记旋转中的∠BNG为∠B'NG',当NG'和NA重合时,整个运动停止.设运动时间为t秒,当∠B'NG'的一边和三角板的一直角边互相平行时,请直接写出t的值.18.(2020秋•景德镇期末)含30度角的直角三角板和直尺按如图所示方式放置,直尺与三角板的外围边缘分别交于A,B,C,D四点.(1)若∠3=95°,试求∠2的大小.(2)∠1与∠2的和是否的定值,若为定值,请求出该定值;若不为定值,请说明理由.19.(2022春•顺德区校级月考)如图1,把一块含30°的直角三角板ABC的BC 边放置于长方形直尺DEFG的EF边上.(1)填空:∠1=°,∠2=°(2)如图2,现把三角板绕B点逆时针旋转n°,当0<n<90,且点C恰好落在DG边上时,①请直接写出∠1=°,∠2=°(结果用含n的代数式表示);②若∠2恰好是∠1的倍,求n的值.(3)如图1三角板ABC的放置,现将射线BF绕点B以每秒2°的转速逆时针旋转得到射线BM,同时射线QA绕点Q以每秒3°的转速顺时针旋转得到射线QN,当射线QN旋转至与QB重合时,则射线BM、QN均停止转动,设旋转时间为t(s).①在旋转过程中,若射线BM与射线QN相交,设交点为P.当t=20(s)时,则∠QPB=°②在旋转过程中,是否存在BM∥QN.若存在,求出此时t的值;若不存在,请说明理由.20.(2022•南谯区校级开学)如图,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图③,MN与CD相交于点E,求∠CEN的度数;(3)将图①中的三角尺COD绕点O按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第几秒时,MN恰好与CD平行;第几秒时,MN恰好与直线CD垂直.21.(2022春•新罗区期中)如图1,直线DE上有一点O,过点O在直线DE上方作射线OC.将一直角三角板AOB(∠OAB=30°)的直角顶点放在点O 处,一条直角边OA在射线OD上,另一边OB在直线DE上方.将直角三角板绕着点O按每秒20°的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,此时,∠BOC与∠BOE之间有何数量关系?并说明理由;(2)在旋转的过程中,若射线OC的位置保持不变,且∠COE=140°.①当边AB与射线OE相交时(如图3),则∠AOC﹣∠BOE的值为;②当边AB所在的直线与OC平行时,求t的值.22.(2022春•岳阳期末)如图,已知∠DCF和∠ECF互为邻补角,∠DCF=α(0<α<90°),将一个三角板的直角顶点放在点C处(注:∠ACB=90°,∠ABC=60°).(1)如图1,使三角板的短直角边BC与射线CD重合,若α=40°,则∠ACF =.(2)如图2,将图1中的三角板ABC绕点C顺时针旋转60°,试判断此时AB与DE的位置关系,并说明理由.(3)如图3,将图1中的三角板ABC绕点C顺时针旋转β(0<β<90°),使得∠ACE=∠BCF,此时α和β满足什么关系?请说明理由.(4)将图1中的三角板绕点C以每秒5°的速度沿顺时针方向旋转一周,在旋转的过程中,第t秒时,AC恰好与直线CF重合,求t的值(用含α的式子表示).23.(2022春•平南县期末)如图已知∠MON=α(0°<α<90°),有一块三角板ABC,其中∠ACB=90°,∠BAC=30°,现将该三角板如图所示放置,使顶点B始终落在ON上,过点A作DA∥ON交OM于点E.(1)如图1,若BC∥OM,∠CAD=40°,请求出α的大小;(2)若∠BAE的平分线AP交ON于点P;①如图2,当AP∥OM,且α=60°时,请说明:BC∥OM;②如图3,将三角板ABC沿直线ON从左往右平移,且在平移的过程中,始终保持BC∥OM不变,请探究∠OPA与α之间的数量关系,并直接写出你的结论.24.(2022春•莆田期末)李想是一位善于思考的学生,在一次数学活动课上,他将一块含有60°的直角三角板摆放在一组平行线上展开探究.已知直线EF ∥GH,直角三角板ABC中,∠ACB=90°,∠CAB=60°,点C为直线EF 上一定点.将直角三角板ABC绕点C转动,当点A在直线GH上时,点B也恰好在直线GH上.(1)如图1,求∠ECB的度数;(2)如图2,若点A在直线EF上方,点B在GH下方,BC与GH交于点Q,作∠ACE的角平分线并反向延长与∠CQH的角平分线交于点O.在直角三角板ABC绕点C转动的过程中,∠O的度数是否保持不变?若不变,求出∠O 的度数;否则,请说明理由;(3)如图3,直角三角板ABC绕点C转动,若点A在直线EF,GH之间(不含EF,GH上),点B在GH下方,AB,BC分别与GH交于点P,Q.设∠FCB=n°,是否存在正整数m和n,使得∠APH=m∠FCB,若存在,请求出m和n的值;若不存在,请说明理由.25.(2022春•岳池县期中)已知在三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,在长方形DEFG中,DE‖GF.如图①,若将三角板ABC的顶点A放在长方形的边GF上,AB⊥DE于点N,BC与DE相交于点M,则∠EMC的度数是多少呢?若过点C作CH‖GF,则CH‖DE,这样就将∠CAF转化为∠HCA,∠EMC转化为∠MCH,从而可以求得∠EMC的度数.(1)请你直接写出:∠CAF=°,∠EMC=°;(2)若将三角板ABC按图②所示方式摆放(AB与DE不垂直),请你猜想∠EMC与∠CAF的数量关系,并证明你的猜想;(3)请在图②中探究∠BAG与∠BMD有何数量关系?并说明理由.26.(2021秋•南岗区校级期末)已知:直线AB∥CD,一块三角板EFH,其中∠EFH=90°,∠EHF=60°.(1)如图1,三角板EFH的顶点H落在直线CD上,并使EH与直线AB相交于点G,若∠2=2∠1,求∠1的度数;(2)如图2,当三角板EFH的顶点F落在直线AB上,且顶点H仍在直线CD上时,EF与直线CD相交于点M,试确定∠E、∠AFE、∠MHE的数量关系;(3)如图3,当三角板EFH的顶点F落在直线AB上,顶点H在AB、CD之间,而顶点E恰好落在直线CD上时得△EFH,在线段EH上取点P,连接FP并延长交直线CD于点T,在线段EF上取点K,连接PK并延长交∠CEH 的角平分线于点Q,若∠Q﹣∠HFT=15°,且∠EFT=∠ETF,求证:PQ∥FH.27.(2021秋•王益区期末)已知:∠AOB=α(0°<α<90°),一块三角板CDE 中,∠CED=90°,∠CDE=30°,将三角板CDE如图所示放置,使顶点C 落在OB边上,经过点D作直线MN∥OB交OA边于点M,且点M在点D 的左侧.(1)如图,若CE∥OA,∠NDE=45°,则α=°;(2)若∠MDC的平分线DF交OB边于点F,①如图,当DF∥OA,且α=60°时,试说明:CE∥OA;②如图,当CE∥OA保持不变时,试求出∠OFD与α之间的数量关系.28.(2022春•睢阳区期末)问题情境:我们知道,“如果两条平行被第三条直线所截,所截得的同位角相等,内错角相等,同旁内角互补”,所以在某些探究性度量中通过“构造平行线”可以起到转化角的作用.已知三角板ABC中,∠BAC=60°,∠B=30°,∠C=90°,长方形DEFG 中,DE∥GF.问题初探:如图(1),若将三角板ABC的顶点A放在长方形的边GF上,BC与DE相交于点M,AB⊥DE于点N.则∠EMC的度数是多少呢?若过点C作CH∥GF,则CH∥DE,这样就将∠CAF转化为∠HCA,∠EMC转化为∠MCH,从而可以求得∠EMC的度数为….(1)请你直接写出:∠CAF=°,∠EMC=°.类比再探:(2)若将三角板ABC按图(2)所示方式摆放(AB与DE不垂直),请你猜想∠EMC与∠CAF的数量关系?并说明理由.方法迁移:(3)请你总结(1),(2)解决问题的思路,在图(2)中探究∠BAG与∠BMD 的数量关系?并说明理由.29.(2019春•南开区校级月考)如图1,点B,点C分别在线段AD、线段MN 上,且∠NCE+∠CEB﹣∠ABE=180°.(1)求证:AD∥MN;(2)如图2,把一个三角板的直角顶点放在点C处,三角板直角边在射线CI,CG上,其中CG平分∠ECM,BF平分∠DBE,交CI于点F,当∠CEB=80°时,求∠CFB的度数,写出推导过程;(3)在(2)的条件下,如图3,过点E作EH∥BF,交CG于点H,当∠CHE =α,∠BFI=β,请直接写出α和β的关系式.30.(2020春•海陵区校级期末)如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠CBM、∠NDC,判断BF与DG的位置关系,并说明理由.。
无棣县埕口中学中考数学专题复习 综合运用平行线的断定和性质解题 新人教版一、 求角的度数例1 (2021),如图,∠1 =∠2 =∠3 = 55°,那么∠4的度数等于〔 〕.A .115°B .120°C .125°D .135°分析 由∠1 =∠2可得到l 1∥l 2,然后再根据平行线的有关性求得∠4的度数。
解 设∠2的对顶角为∠5,∠4的对顶解为∠6,因为∠1=∠2,∠2=∠5,所以∠1=∠5,所以l 1∥l 2,所以∠3+∠6=180°,又因为∠3=55°,所以∠6=180°-55°=125°,所以∠4=125°。
故答案选C 。
点评 由题目给出的角的关系推平行,再由平行关系推其它角的关系是常用的数学方法.二、确定角之间的关系例2 如图,AD ⊥BC 于D ,EF ⊥BC 于F ,且∠E =∠1,问∠BAD 和∠CAD 相等吗?并说明理由.F ED C BA1分析 由AD ⊥BC ,EF ⊥BC 可知EF ∥AD ,再根据平行线的有关性质,尽量发挥图中某些充当“桥〞角色的角的作用,即可得到∠BAD 和∠CAD 的关系。
解 答:∠BAD 和∠CAD 相等理由如下:因为AD ⊥BC ,EF ⊥BC ,所以∠EFD=∠ADC=90°,所以EF ∥AD ,所以∠E=∠CAD ,∠1=∠BAD ,又因为∠1=∠E ,所以∠BAD=∠CAD.点评 复杂的图形中分析出根本图形是学习数学的一大根本功,如此题中∠EFD 与∠ADC 是EF 与AD 被BC 所截所成的同位角,∠1与∠BAD 是EF 、AD 被AB 所截所成的内错角,∠E 与∠CAD 是EF 、AD 被EC 所截所成的同位角.要说明两个角相等,除了我们所学的性质之外,“桥〞的作用也是不可无视的,即等量代换,此题中∠E =∠1就起到一个过渡的作用,也就是“桥〞的作用.三、 判断两直线平行例3 如图,∠A =∠F ,∠C =∠D ,问BD 与CE 平行吗?并说明理由.FE DCB A分析 要说明BD 与CE 平行,只要说明∠D =∠CEF 就可以根据同位角相等,两直线平行,得出BD ∥CE.解 答:BD ∥CE理由如下:因为∠A =∠F ,所以AC ∥DF ,∠C =∠CEF ,又因为∠C =∠D ,所以∠D =∠CEF , 所以BD ∥CE点评 以上的解题过程中,∠C 起到了“∠C=∠ABD 或者∠D+∠CED=180°或者∠C+∠DBC=180°来说明BD ∥CE ,所以还有三种方法,有兴趣的同学可以试一试.四、巧用辅助线解题例4 如图〔1〕,1l ∥2l ,∠ABC =120°,1l ⊥AB ,那么α的度数是____分析 平行线有一个非常重要的作用,就是角的传递,在此题中虽然知道1l ∥2l ,但却与∠ABC 无法建立联络,因此我们可以过点B 作一条与1l 平行的直线3l ,根据“平行于同一条直线的两条直线平行〞的性质可得到3l ∥2l ,进而可以建立起∠ABC 与∠α的联络 解 如图过点B 作3l ∥1l ,因为1l ⊥AB ,所以3l ⊥AB ,所以∠γ=90°,因为∠ABC=120°,所以∠β=120°-90°=30°,又因为3l ∥1l ,1l ∥2l ,所以3l ∥2l ,所以∠α=∠β=30°. 点评 此题辅助线的作法还可以表达为:过点B 作3l ⊥AB.适当添加辅助线是解数学题的重要手段.这里过直线外一点作直线的平行线,是常用的辅助线之一.辅助线在解题过程中起铺路架桥的作用,有化难为易之成效,是解数学图形题常用技巧.作辅助线要注意作法的表达,辅助线要画成虚线.在一道题中反复应用平行线的性质和断定,这是以后在证题过程中经常使用的方法,见到平行应想到 有关的角相等或者互补;见到有关的角相等或者互补,就应想到能否判断直线间的平行关系.把平行线的断定与性质严密地结合在一起,也就是把直线平行和角相等联络在一起,这样解题就能得心应手.励志赠言经典语录精选句;挥动**,放飞梦想。
第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,表达民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决方法〔一〕重点平行线的性质公理及平行线性质定理的推导.〔二〕难点平行线性质与判定的区别及推导过程.〔三〕解决方法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习稳固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤〔一〕明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.〔二〕整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习稳固新知.〔三〕教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题〔出示投影片1〕.1.如图1,〔1〕∵〔〕,∴〔〕.〔2〕∵〔〕,∴〔〕.〔3〕∵〔〕,∴〔〕.2.如图2,〔1〕,那么与有什么关系?为什么?〔2〕,那么与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又效劳于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形〔见图4〕,当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,答复出不管怎样画截线,所得的同位角都相等.根据学生的答复,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的根底上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手答复.【教法说明】在前面复习引入的第2题的根底上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也鼓励了学生的学习兴趣.教师根据学生答复,给予肯定或指正的同时板书.[板书]∵〔〕,∴〔两条直线平行,同位角相等〕.∵〔对项角相等〕,∴〔等量代换〕.师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手答复以下问题.教师根据学生表达,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵〔〕,∴〔两直线平行,同位角相等〕.∵〔邻补角定义〕,∴〔等量代换〕.即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵〔见图6〕,∴〔两直线平行,同位角相等〕.∵〔〕,∴〔两直线平行,内错角相等〕.∵〔〕,∴.〔两直线平行,同旁内角互补〕〔板书在三条性质对应位置上.〕尝试反响,稳固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习〔出示投影片2〕:如图7,平行线、被直线所截:图7〔1〕从,可以知道是多少度?为什么?〔2〕从,可以知道是多少度?为什么?〔3〕从,可以知道是多少度,为什么?【教法说明】练习目的是稳固平行线的三条性质.变式训练,培养能力完成练习〔出示投影片3〕.如图8是梯形有上底的一局部,量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师防止包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,标准学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵〔梯形定义〕,∴,〔两直线平行,同旁内角互补〕.∴.∴.变式练习〔出示投影片4〕1.如图9,直线经过点,,,.〔1〕等于多少度?为什么?〔2〕等于多少度?为什么?〔3〕、各等于多少度?2.如图10,、、、在一条直线上,.〔1〕时,、各等于多少度?为什么?〔2〕时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言表达,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,假设学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.〔四〕总结、扩展〔出示投影片1第1题和投影片5〕完成并比较.如图11,〔1〕∵〔〕,∴〔〕.〔2〕∵〔〕,∴〔〕.〔3〕∵〔〕,∴〔〕.学生活动:学生答复上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.〔出示投影6〕学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的根底上上升到理性认识,总结出平行线性质与判定的不同.稳固练习〔出示投影片7〕1.如图12,是上的一点,是上的一点,,,.〔1〕和平行吗?为什么?图12〔2〕是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了稳固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业〔一〕必做题课本第99~100页A组第11、12题.〔二〕选做题课本第101页B组第2、3题.作业答案A组11.〔1〕两直线平行,内错角相等.〔2〕同位角相等,两直线平行.两直线平行,同旁内角互补.〔3〕两直线平行,同位角相等.对顶角相等.12.〔1〕∵〔〕,∴〔内错角相等,两直线平行〕.〔2〕∵〔〕,∴〔两直线平行,同位角相等〕,〔两直线平行,同位角相等〕.B组2.∵〔〕,∴〔两直线平行,同位角相等〕,〔两直线平行,内错角相等〕.∵〔〕,∴〔两直线平行,同位角相等〕,〔同上〕.又∵〔已证〕,∴.∴.又∵〔平角定义〕,∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下列图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
平行线综合运用
区分直线平行的条件和平行线的特征 直线平行的条件
平行线的特征 同位角相等,两直线平行
两直线平行,同位角相等 内错角相等,两直线平行
两直线平行,内错角相等 同旁内角互补,两直线平行 两直线平行,同旁内角互补 由“数量关系”确定图形的“位置关系” 由图形的“位置关系”决定“数量关系”
例1、如图,AB CD ,直线l 平分,140AOE ∠∠=︒,则2∠=。
变式1-1、如图,,100AB CD B EF ∠=︒ ,平分,BEC EG EF ∠⊥,
则D E G ∠
=。
例2、(2015∙吉安期中)如图,一条公路修到河边时,需要拐弯绕湖
而过,如果第一次拐的120A ∠=︒,第二次拐的150B ∠=︒,第三次拐的角是C ∠,这时的道路恰好和第一次拐弯之前的道路平行,则C ∠=。
变式2-1、(2011∙曲靖)珠江流域某江段江水流向经过B C D 、、三点
拐弯后与原来相同,如图,若120,80ABC BCD ∠=︒∠=︒,则CDE ∠=。
例3、(2015∙枣庄)如图,把一块含有45︒的直角三角形的两个顶点
放在直尺的对边上,如果120∠=︒,那么2∠=。
变式3-1、(2014∙青岛模拟)将一副直尺三角尺如图放置,已知
AE BC ,则AFD ∠=。
变式3-2、如图,把三角板的直角顶点放在两条平行线a b 、上,已知
155∠=︒,则2∠=。
例4、如图,B E 、分别在AC DF 、上,若,AGB EHF C D ∠=∠∠=∠,
试判断A ∠与F ∠的关系,并说明理由。
变式4-1、(2014∙琼海期末)已知,AD BC FG BC ⊥⊥,垂足分别为D G 、,
且12∠=∠,猜想BDE ∠与C ∠有怎样的大小关系?试说明理由。
例5、如图,已知1,23,ACB FH AB ∠=∠∠=∠⊥于点,H CD 与AB
有什么关系?
变式5-1、(2012∙黄冈期中)如图,已知,,,12DG BC AC BC EF AB ⊥⊥⊥∠=∠,求证:CD AB ⊥。
误区警告:
1、忽视条件,思维定式
例6、同位角一定相等吗?
错解:相等
正解:不一定相等
警告:同位角、内错角、同旁内角仅仅反映两角之间的位置关系,他们没有确定的数
量关系。
如图,1∠与2∠是同位角,但它们不相等,只有在“两条平行线被第三条直线所截”的前提下,同位角才相等。
同样也只有在这个前提下,内错角相等,同旁内角互补。
2、思维不缜密,容易漏解
例7、若A ∠与B ∠的两边分别平行,则A ∠与B ∠的关系是。
错解:相等
正解:相等或互补
警告:错误的原因在于思维单一,只考了(1)存在的情况。
在(2)中,A ∠与B ∠互补。
平行线综合运用习题练习
1、下列说法错误的是( )。
.A 同旁内角互补,两直线平行 .B 两直线平行,内错角相等
.C 同位角相等 .D 对顶角相等
2、如图,已知,,60,50AB CD AD BC B EDA ∠=︒∠=︒ ,则CDO ∠=。
3、如图,,DE BC EF AB ,与BFE ∠互补的角共有个。
4、如图,直线
12,155,265l l ∠=︒∠=︒ ,则3∠=。
5、如图,根据下列条件,可以判定哪两条直线平行?并说明判定的依据。
(1)1C ∠=∠;(2)24∠=∠;(3)25180∠+∠=︒;(4)3B ∠=∠;
(5)62∠=∠
6、如图,下列推理及所注的理由正确的是( )。
.A 因为AB CD ,所以1D ∠=∠(内错角相等,两直线平行)
.B 因为32∠=∠,所以AB CD (同位角相等,两直线平行)
.C 因为AB CD ,所以34∠=∠(两直线平行,内错角相等)
.D 因为12∠=∠,所以AB CD (两直线平行,内错角相等)
7、如图,直线AB 和直线CD 被直线EF 所截,交点分别为
,E F A E F E F D ∠=∠、。
(1)直线AB 和直线CD 平行吗?为什么?
(2)若EM 是AEF ∠的平分线,FN 是EFD ∠平分线,则EM 与FN 平行吗?为什么?
8、如图,12,20,80BAC ACF ∠=∠∠=︒∠=︒。
(1)求2∠的度数;
(2)FC 与AD 平行吗?为什么?
(3)根据以上结论,能确定ADB ∠与FCB ∠的大小关系吗?
9、如图,,ABC ACB BD ∠=∠平分,A B C C E ∠平分
,A C B D B F F ∠∠=∠。
问:CE 与DF 的位置关系怎样?试说明理由。
10、如图,已知12180,,A C DA ∠+∠=︒∠=∠平分BDF ∠,那么BC 也平
分DBE ∠吗?为什么?
11、如图,AD BC ⊥于点,D EF BC ⊥于点F ,且1E ∠=∠。
问:
BAD ∠和CAD ∠相等吗?并说明理由。