平行线综合专题
- 格式:docx
- 大小:1.27 MB
- 文档页数:24
七年级下册数学《第五章相交线与平行线》5.3平行线的性质平行线性质定理性质定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠3(两直线平行,同位角相等).性质定理2:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,同位角相等.几何语言表示:∵a∥b(已知),∴∠2=∠4.(两直线平行,内错角相等).性质定理3:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.几何语言表示:∵a∥b(已知),∴∠1+∠2=180°(同旁内角互补,两直线平行).平行线的判定与性质(1)平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.(2)应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.(3)平行线的判定与性质的联系与区别:区别:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行.联系:性质与判定的已知和结论正好相反,都是角的关系与平行线相关.(4)辅助线规律,经常作出两平行线平行的直线或作出联系两直线的截线,构造出三类角.概念:判断一件事情的语句,叫做命题.【注意】(1).只要对一件事情作出了判断,不管正确与否,都是命题.(2).如果一个句子没有对某一件事情作出任何判断,那么它就不是命题.命题的组成每个命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【注意】在改写成“如果……那么……”的形式时,需对命题的语序进行调整或增减词语,使句子完整通顺,但不改变原意.真命题:如果题设成立,那么结论一定成立,这样的命题叫做真命题;假命题:题设成立时,不能保证结论一定成立,这样的命题叫做假命题.【注意】判断一个命题是假命题,只要举出一个反例,它符合命题的题设,但不满足结论就可以了.定理:经过推理证实的真命题叫做定理,定理可以作为继续推理论证的依据.【拓展】数学中有些命题的正确性是人们在长期实践中总结出来的,并把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.如直线公理:两点确定一条直线.证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明.()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式).【注意】(1)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是学过的定义、基本事实、定理等.(2).定理一定是真命题,但真命题不一定是定理.证明的一般步骤:①根据题意画出图形;②依据题设、结论,结合图形,写出已知、求证;③经过分析,找出由已知条件推出结论的方法,或依据结论探寻所需要的条件,再由题设进行挖掘,寻求证明的途径;④书写证明过程.是()A.40°B.50°C.60°D.70°【分析】由垂线可得∠ACB=90°,从而可求得∠B的度数,再结合平行线的性质即可求∠BCD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,∵∠A=50°,∴∠B=180°﹣∠ACB﹣∠A=40°,∵CD∥AB,∴∠BCD=∠B=40°.故选:A.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.解题技巧提炼两直线平行时,应联想到平行线的三个性质,由两条直线平行的位置关系得到两个相关角的数量关系,由角的关系求相应角的度数.【变式1-1】(2023秋•简阳市期末)如图,a∥b,∠1=40°,∠2=∠3,则∠4=()A.70°B.110°C.140°D.150°【分析】先根据a∥b,∠1=40°得出∠2+∠3的度数,由平角的定义得出∠5的度数,再由∠2=∠3得出∠2的度数,再得出∠2+∠5的度数,进而可得出结论.【解答】解:∵a∥b,∠1=40°,∴∠2+∠3=180°﹣40°=140°,∴∠5=180°﹣140°=40°,∵∠2=∠3,∴∠2=70°,∴∠2+∠5=70°+40°=110°,∴∠4=∠2+∠5=110°.故选:B.【点评】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.【变式1-2】(2022春•五莲县期末)如图,已知AB∥DE∥CF,若∠ABC=70°,∠CDE=130°,则∠BCD的度数为()A.10°B.15°C.20°D.35°【分析】由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF﹣∠DCF可求.【解答】解:∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF﹣∠DCF=70°﹣50°=20°.故选:C.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等;两直线平行,同旁内角互补.【变式1-3】(2021秋•霍州市期末)如图,如果AB∥EF、EF∥CD,若∠1=50°,则∠2+∠3的和是()A.200°B.210°C.220°D.230°【分析】由平行线的性质可用∠2、∠3分别表示出∠BOE和∠COF,再由平角的定义可得出答案.【解答】解:∵AB∥EF,∴∠2+∠BOE=180°,∴∠BOE=180°﹣∠2,同理可得∠COF=180°﹣∠3,∵O在EF上,∴∠BOE+∠1+∠COF=180°,∴180°﹣∠2+∠1+180°﹣∠3=180°,∴∠2+∠3=180°+∠1=180°+50°=230°,故选:D.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.【变式1-4】(2022秋•安岳县期末)已知∠1的两边分别平行于∠2的两边,若∠1=40°,则∠2的度数为.【分析】①图1时,由两直线平行,同位角相等,等量代换和角的和差计算出∠2的度数为40°;②图2时,同两直线平行,内错角相等,两直线平行,同旁内角互补,等量代换和角的和差计算出∠2的度数为140°.【解答】解:①若∠1与∠2位置如图1所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2=∠3,∴∠1=∠2,又∵∠1=40°,∴∠2=40°;②若∠1与∠2位置如图2所示:∵AB∥DE,∴∠1=∠3,又∵DC∥EF,∴∠2+∠3=180°,∴∠2+∠1=180°,又∵∠1=40°∴∠2=180°﹣∠1=180°﹣40°=140°,综合所述:∠2的度数为40°或140°,故答案为:40°或140°.【点评】本题综合考查了平行线的性质,角的和差,等量代换,邻补角性质,对顶角性质等相关知识点,重点掌握平行线的性质,难点是两个角的两边分别平行是射线平行,分类画出符合题意的图形后计算.【变式1-5】(2022春•海淀区月考)如图,点C在∠MON的一边OM上,过点C的直线AB∥ON,CD 平分∠ACM.当∠DCM=60°时,求∠O的度数.【分析】根据角平分线的定义,即可得到∠ACM的度数,进而得出∠OCB的度数,再依据平行线的性质,即可得到∠O的度数.【解答】解:∵CD平分∠ACM,∴∠ACM=2∠DCM.∵∠DCM=60°,∴∠ACM=120°.∵直线AB与OM交于点C,∴∠OCB=∠ACM=120°(对顶角相等),∵AB∥ON,∴∠O+∠OCB=180°(两直线平行,同旁内角互补),∴∠O=60°.【点评】本题主要考查了角的计算,平行线的性质以及角平分线的定义.解题的关键是熟练掌握平行线的性质:两直线平行,同旁内角互补.【变式1-6】(2023秋•海门区期末)如图,直线CE,DF相交于点P,且CE∥OB,DF∥OA.(1)若∠AOB=45°,求∠PDB的度数;(2)若∠CPD=45°,求∠AOB的度数;(3)像(1)(2)中的∠AOB,∠CPD称四边形PCOD的一组“对角”,则该四边形的另一组对角相等吗?请说明理由.【分析】(1)根据两直线平行,同位角相等即可求得答案;(2)根据两直线平行,同位角相等及两直线平行,内错角相等即可求得答案;(3)根据两直线平行,同旁内角互补即可证得结论.【解答】解:(1)∵DF∥OA,∠AOB=45°,∴∠PDB=∠AOB=45°;(2)∵CE∥OB,∴∠CPD=∠PDB,∵DF∥OA,∴∠PDB=∠AOB,∴∠AOB=∠CPD,∵∠CPD=45°,∴∠AOB=45°;(3)相等,理由如下:∵CE∥OB,DF∥OA,∴∠OCP+∠AOB=180°,∠CPD+∠ODP=180°,∵∠AOB=∠CPD,∴∠OCP=∠ODP.【点评】本题考查平行线性质,熟练掌握并利用平行线的性质是解题的关键.【变式1-7】(2021春•黄冈期中)如图,DB∥FG∥EC,A是FG上的一点,∠ADB=60°,∠ACE=36°,AP平分∠CAD,求∠PAG的度数.【分析】根据平行线的性质,可以得到∠DAG和∠CAG度数,然后根据AP平分∠CAD,即可得到∠PAG 的度数.【解答】解:∵DB∥FG∥EC,∴∠BDA=∠DAG,∠ACE=∠CAG,∵∠ADB=60°,∠ACE=36°,∴∠DAG=60°,∠CAG=36°,∴∠DAC=96°,∵AP平分∠CAD,∴∠CAP=48°,∴∠PAG=12°.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-8】(2023秋•原阳县校级期末)如图,已知AB∥CD,BE平分∠ABC.BE垂直于CE,求证:CE平分∠BCD.【分析】过E作EF∥AB交BC于点F,根据平行线的性质可求得∠ABC+∠BCD=180°,再结合垂线的定义可得∠ABE+∠DCE=90°,∠EBC+∠ECB=90°,再利用角平分线的定义可证明结论.【解答】证明:过E作EF∥AB交BC于点F,∴∠ABE=∠FEB,∵AB∥CD,∴EF∥CD,∠ABC+∠BCD=180°,∴∠DCE=∠FEC,∵BE⊥CE,∴∠BEF+∠CEF=∠ABE+∠DCE=90°,∴∠EBC+∠ECB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DCE=∠BCE,∴CE平分∠BCD.【点评】本题主要考查平行线的性质,角平分线的定义,垂线的定义,证明∠ABE+∠DCE=90°,∠EBC+∠ECB=90°是解题的关键.【例题2】已知,如图所示,四边形ABCD中,∠B=90°,DE平分∠ADC,CE平分∠DCB,∠1+∠2=90°,试说明DA⊥AB.【分析】由角平分线的定义和条件可得∠ADC+∠BCD=180°,可证明DA∥BC,再由平行线的性质可得到∠A=90°,可证明DA⊥AB.【解答】证明:∵DE平分∠ADC,CE平分∠DCB,∴∠ADC=2∠1,∠BCD=2∠2,∵∠1+∠2=90°,∴∠ADC+∠BCD=180°,∴AD∥BC,∴∠A+∠B=180°,∴∠A=180°﹣∠B=90°,∴DA⊥AB.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.解题技巧提炼准确识别图形,理清图中各角度之间的关系是解题的关键,再综合角平分线的定义、对顶角的性质及邻补角的定义求解.【变式2-1】(2022春•龙岗区期末)已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H,求证:CD⊥AB.【分析】先根据垂直的定义得出∠BHF=90°,再由∠1=∠ACB得出DE∥BC,故可得出∠2=∠BCD,根据∠2=∠3得出∠3=∠BCD,所以CD∥FH,由平行线的性质即可得出结论.【解答】证明:FH⊥AB(已知),∴∠BHF=90°.∵∠1=∠ACB(已知),∴DE∥BC(同位角相等,两直线平行),∴∠2=∠BCD.(两直线平行,内错角相等).∵∠2=∠3(已知),∴∠3=∠BCD(等量代换),∴CD∥FH(同位角相等,两直线平行),∴∠BDC=∠BHF=90°,(两直线平行,同位角相等)∴CD⊥AB.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.【变式2-2】如图,已知DA⊥AB,DE平分∠ADC,CE平分∠DCB,且∠1+∠2=90°,试说明BC⊥AB.【分析】过E作EF∥AD,交CD于F,求出∠FEC=∠2=∠BCE,根据平行线的判定推出BC∥EF,即可得出答案.【解答】解:过E作EF∥AD,交CD于F,则∠ADE=∠DEF,∵DE平分∠ADC,∴∠1=∠ADE,∴∠1=∠DEF,∵∠1+∠2=90°,∴∠DEC=90°,∴∠DEF+∠FEC=90°,∴∠2=∠FEC,∵CE平分∠DCB,∴∠2=∠BCE,∴∠FEC=∠BCE,∴BC∥EF,∴BC∥AD,∵DA⊥AB,∴BC⊥AB.【点评】本题考查了平行线的性质和判定,三角形内角和定理,角平分线定义的应用,能正确作出辅助线,并综合运用定理进行推理是解此题的关键.【变式2-3】(2022春•海淀区校级月考)如图,AD∥BE,∠B=∠D,∠BAD的平分线交BC的延长线于点E,CF平分∠DCE.求证:CF⊥AE.【分析】由AD∥BE,∠B=∠D,可推出∠B+∠BAD=180°,∠B=∠DCE,AB∥CD,再由角平分线定义可得:∠BAE=12∠BAD,∠FCG=12∠DCE,进而得出:∠CGF=12∠BAD,∠FCG=12∠B,可推出:∠CGF+∠FCG=12(∠BAD+∠B)=12×180°=90°,根据三角形内角和为180°,可得∠CFG=90°,由垂直定义可证得结论.【解答】证明:∵AD∥BE,∴∠DCE=∠D,∠B+∠BAD=180°,∵∠B=∠D,∴∠B=∠DCE,∴AB∥CD,∴∠CGF=∠BAE,∵AE平分∠BAD,∴∠BAE=12∠BAD,∴∠CGF=12∠BAD,∵CF平分∠DCE,∴∠FCG=12∠DCE,∴∠FCG=12∠B,∴∠CGF+∠FCG=12(∠BAD+∠B)=12×180°=90°,∴∠CFG=180°﹣(∠CGF+∠FCG)=180°﹣90°=90°,∴CF⊥AE.【点评】本题考查了平行线的性质和判定,角平分线定义,垂直定义,三角形内角和定理等知识,解题的关键是掌握平行线判定定理和性质定理.【例题3】(2023秋•深圳期末)太阳灶、卫星信号接收锅、探照灯及其他很多灯具都与抛物线有关.如图,从点O照射到抛物线上的光线OB,OC反射后沿着与PO平行的方向射出,已知图中∠ABO=44°,∠BOC=133°,则∠OCD的度数为()A.88°B.89°C.90°D.91°【分析】依题意得AB∥OP∥CD,进而根据平行线的性质得∠BOP=∠ABO=44°,∠OCD=∠POC,从而可求出∠POC=∠BOC﹣∠BOP=89°,进而可得∠OCD的度数.【解答】解:∵AB∥OP∥CD,∠ABO=44°,∴∠BOP=∠ABO=44°,∠OCD=∠POC,∵∠BOC=133°,∴∠POC=∠BOC﹣∠BOP=133°﹣44°=89°,∴∠OCD=∠POC=89°.故选:B.【点评】此题主要考查了平行线的性质,准确识图,熟练掌握平行线的性质是解决问题的关键.解题技巧提炼给出一个实际问题,联系平行线的性质解答实际问题,有时需要通过作辅助线构造平行线,同时还会综合运用平行线的判定和性质.【变式3-1】如图,在A、B两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B 两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是千米.【分析】根据方位角的概念,图中给出的信息,再根据已知转向的角度求解.【解答】解:根据两直线平行,内错角相等,可得∠ABG=48°,∵∠ABC=180°﹣∠ABG﹣∠EBC=180°﹣48°﹣42°=90°,∴AB⊥BC,∴A地到公路BC的距离是AB=8千米,故答案为:8.【点评】此题是方向角问题,结合生活中的实际问题,将解三角形的相关知识有机结合,体现了数学应用于实际生活的思想.【变式3-2】(2022春•沧县期中)某学员在驾校练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向左拐45°,第二次向左拐45°C.第一次向左拐60°,第二次向右拐120°D.第一次向左拐53°,第二次向左拐127°【分析】根据平行线的性质分别判断得出即可.【解答】解:∵两次拐弯后,按原来的相反方向前进,∴两次拐弯的方向相同,形成的角是同旁内角,且互补,故选:D.【点评】此题主要考查了平行线的性质,利用两直线平行,同旁内角互补得出是解题关键.【变式3-3】如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?【分析】根据平行线的性质结合条件可得∠1=∠2=∠3=∠4,可证得∠5=∠6,可证明l∥m,据此填空即可.【解答】解:∵AB∥CD(已知),∴∠2=∠3(两直线平行,内错角相等),∵∠1=∠2,∠3=∠4(已知),∴∠1=∠2=∠3=∠4(等量代换),∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(平角定义),即:∠5=∠6(等量代换),∴l∥m.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.【变式3-4】(2023秋•市南区期末)如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,当前支架OE与后支架OF正好垂直,∠ODC=32°时,人躺着最舒服,则此时扶手AB与靠背DM的夹角∠ANM=.【分析】由AB∥CD可求得∠BOD的度数,再根据OE∥DM即可求出∠ANM的度数.【解答】解:∵AB∥CD,∠ODC=32°,∴∠BOD=∠ODC=32°.∵OE⊥OF,∴∠EOF=90°,∴∠EOB=90°+32°=122°.∵OE∥DM,∠ANM=∠EOB=122°.故答案为:122°.【点评】本题考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解答本题的关键.【变式3-5】(2023秋•东莞市校级期末)如图为某椅子的侧面图,∠DEF=120°.DE与地面平行,∠ABD=50°,则∠ACB=.【分析】根据平行得到∠ABD=∠EDC=50°,再利用外角的性质和对顶角相等,进行求解即可.【解答】解:由题意得:DE∥AB,∴∠ABD=∠EDC=50°,∵∠DEF=∠EDC+∠DCE=120°,∴∠DCE=70°,∴∠ACB=∠DCE=70°,故答案为:70°.【点评】本题考查平行线的性质,三角形外角的性质,对顶角.熟练掌握相关性质,是解题的关键.【变式3-6】(2022•小店区校级开学)如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为()A.110°B.120°C.130°D.140°【分析】过点F作FM∥CD,因为AB∥CD,所以AB∥CD∥FM,再根据平行线的性质可以求出∠MFA,∠EFA,进而可求出∠EFM,再根据平行线的性质即可求得∠DEF.【解答】解:如图,过点F作FM∥CD,∵AB∥CD,∴AB∥CD∥FM,∴∠DEF+∠EFM=180°,∠MFA+∠BAG=180°,∴∠MFA=180°﹣∠BAG=180°﹣150°=30°.∵CG∥EF,∴∠EFA=∠AGC=80°.∴∠EFM=∠EFA﹣∠MFA=80°﹣30°=50°.∴∠DEF=180°﹣∠EFM=180°﹣50°=130°.故选:C.【点评】本题考查平行线的性质,解题关键是结合图形利用平行线的性质进行角的转化和计算.【变式3-7】(2023春•岱岳区期末)如图,EF,MN分别表示两面互相平行的镜面,一束光线AB照射到镜面MN上,反射光线为BC,此时∠1=∠2;光线BC经镜面EF反射后的反射光线为CD,此时∠3=∠4,试判断AB与CD的位置关系,并说明理由.【分析】先根据MN∥EF得出∠2=∠3,再由∠1=∠2,∠3=∠4可得出∠1=∠2=∠3=∠4,故可得出∠1+∠2=∠3+∠4,再由∠ABC=180°﹣(∠1+∠2),∠BCD=180°﹣(∠3+∠4),故可得出∠ABC=∠BCD,据此得出结论.【解答】解:AB∥CD.理由:∵MN∥EF,∴∠2=∠3,∵∠1=∠2,∠3=∠4,∴∠1=∠2=∠3=∠4,∴∠1+∠2=∠3+∠4,∵∠ABC=180°﹣(∠1+∠2),∠BCD=180°﹣(∠3+∠4),∴∠ABC=∠BCD,∴AB∥CD.【点评】本题考查的是平行线的判定与性质,熟知两直线平行,内错角相等是解题的关键.【例题4】(2022春•秦淮区校级月考)已知直线a∥b,将一块含30°角的直角三角板(∠BAC=30°,∠ACB =90°)按如图所示的方式放置,并且顶点A,C分别落在直线a,b上,若∠1=22°.则∠2的度数是()A.38°B.45°C.52°D.58°【分析】根据已知易得∠DAC=52°,然后利用平行线的性质即可解答.【解答】解:如图:∵∠1=22°,∠BAC=30°,∴∠DAC=∠1+∠BAC=52°,∵直线a∥b,∴∠2=∠DAC=52°,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.【变式4-1】(2022秋•琼海期中)如图,将三角板的直角顶点按如图所示摆放在直尺的一边上,则下列结论不一定正确的是()A.∠1=∠2B.∠2+∠3=90°C.∠3+∠4=180°D.∠1+∠2=90°【分析】根据平行线的性质定理求解.【解答】解:∵两直线平行,同位角相等,∴∠1=∠2,故选项A不符合题意;∠1+∠2不一定等于90°,故D符合题意;由题意可得:90°+∠2+∠3=180°,∴∠2+∠3=90°,故选项B不符合题意;∵两直线平行,同旁内角互补,∴∠3+∠4=180°,故选项C不符合题意;故选:D.【点评】本题主要考查平行线的性质,解题关键是熟练掌握平行线的性质定理.【变式4-2】(2023秋•榆树市校级期末)把一副三角板按如图所示摆放,使FD∥BC,点E落在CB的延长线上,则∠BDE的大小为度.【分析】由题意可得∠EDF=45°,∠ABC=60°,由平行线的性质可得∠BDF=∠ABC=60°,从而可求∠BDE的度数.【解答】解:由题意得:∠EDF=45°,∠ABC=60°,∵FD∥BC,∴∠BDF=∠ABC=60°,∴∠BDE=∠BDF﹣∠EDF=15°.故答案为:15.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.【变式4-3】(2023秋•新野县期末)如图,直线m∥n,且分别与直线l交于A,B两点,把一块含60°角的三角尺按如图所示的位置摆放,若∠2=98°,则∠1=.【分析】先根据平角的定义求出∠4的度数,再根据角平分线的性质即可得出答案.【解答】解:由已知可得,∠3=30°,∵∠2=98°,∴∠4=180°﹣∠2﹣∠3=52°,∵m∥n,∴∠1=∠4=52°.故答案为:52°.【点评】本题主要考查了平行线的性质,解题的关键是牢记平行线的性质.【变式4-4】(2022•大渡口区校级模拟)将一副直角三角板按如图所示的方式叠放在一起,若AC∥DE.则∠BAE的度数为()A.85°B.75°C.65°D.55°【分析】由题意得∠E=60°,∠DAE=∠B=90°,∠BAC=45°,由平行线的性质可求得∠CAE=120°,从而可求得∠CAD=30°,则∠BAD=15°,即可求∠BAE的度数.【解答】解:由题意得:∠E=60°,∠DAE=∠B=90°,∠BAC=45°,∵AC∥DE,∴∠E+∠CAE=180°,∴∠CAE=180°﹣∠E=120°,∴∠CAD=∠CAE﹣∠DAE=30°,∴∠BAD=∠BAC﹣∠CAD=15°,∴∠BAE=∠DAE﹣∠BAD=75°.故选:B.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质并灵活运用.【变式4-5】(2022秋•绿园区校级期末)如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为()A.40°B.35°C.30°D.25°【分析】将∠AEG,∠GEF的度数,代入∠AEF=∠AEG+∠GEF中,可求出∠AEF的度数,由AB∥CD,利用“两直线平行,内错角相等”,可求出∠DFE的度数,再结合∠HFD=∠DFE﹣∠EFH,即可求出∠HFD 的度数.【解答】解:∵∠AEG=20°,∠GEF=45°,∴∠AEF=∠AEG+∠GEF=20°+45°=65°.∵AB∥CD,∴∠DFE=∠AEF=65°,∴∠HFD=∠DFE﹣∠EFH=65°﹣30°=35°.故选:B.【点评】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.【变式4-6】(2023秋•盐城期末)将一副三角板按如图所示的方式摆放,其中∠ACB=∠ECD=90°,∠A=45°,∠D=60°.若AB∥DE,则∠ACD的度数为.【分析】过点C作CF∥AB,则有AB∥CF∥DE,从而可得∠ACF=∠A=45°,∠DEF=∠D=60°,即可求∠ACD的度数.【解答】解:过点C作CF∥AB,如图,∵AB∥DE,∴AB∥CF∥DE,∴∠ACF=∠A=45°,∠DEF=∠D=60°,∴∠ACD=∠ACF+∠DCF=105°.故答案为:105°.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.【例题5】如图所示,把一张长方形纸条ABCD沿EF折叠,若∠1=58°,则∠AEG的度数()A.58°B.64°C.72°D.60°【分析】由平行线的性质得∠DEF=∠1=58°,由折叠的性质得∠GEF=∠DEF=58°,再由平角定义求出∠AEG即可.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=58°,由折叠的性质得:∠GEF=∠DEF=58°,∴∠AEG=180°﹣58°﹣58°=64°;故选:B.【点评】本题考查了平行线的性质、翻折变换的性质、长方形的性质以及平角定义;熟练掌握平行线的性质和翻折变换的性质是解题的关键.【变式5-1】(2022秋•陈仓区期末)如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是()A.77°B.64°C.26°D.87°【分析】依据平行线的性质,即可得到∠AEG的度数,再根据折叠的性质,即可得出∠α的度数.【解答】解:∵矩形纸条ABCD中,AD∥BC,∴∠AEG=∠BGD'=26°,∴∠DEG=180°﹣26°=154°,由折叠可得,∠α=12∠DEG=12×154°=77°,故选:A.【点评】本题主要考查了平行线的性质,折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【变式5-2】(2023•台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为.【分析】利用平行线的性质和各角之间的关系即可求解.【解答】解:如图,标注三角形的三个顶点A、B、C.∠2=∠BAC=180°﹣∠ABC﹣∠ACB.∵图案是由一张等宽的纸条折成的,∴AB=AC,∴∠ABC=∠ACB.又∵纸条的长边平行,∴∠ABC=∠1=20°,∴∠2=∠BAC=180°﹣2∠ABC=180°﹣2∠1=180°﹣2×20°=140°.故答案为:140°.【点评】本题比较简单,主要考查了平行线的性质的运用.【变式5-3】(2022秋•昭阳区期中)如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE;若∠B=50°,则∠BDF的度数为()A.40°B.50°C.80°D.100°【分析】首先利用平行线的性质得出∠ADE=50°,再利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF,从而求出∠BDF的度数.【解答】解:∵BC∥DE,若∠B=50°,∴∠ADE=50°,又∵△ABC沿线段DE折叠,使点A落在点F处,∴∠ADE=∠EDF=50°,∴∠BDF=180°﹣50°﹣50°=80°,故选:C.【点评】此题主要考查了折叠问题与平行线的性质,利用折叠前后图形不发生任何变化,得出∠ADE=∠EDF是解决问题的关键.【变式5-4】(2023秋•阳城县期末)将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=.【分析】证明∠2=∠4,再利用三角形的外角的性质解决问题.【解答】解:如图,∵a∥b,∴∠2=∠5,由翻折变换的性质可知∠4=∠5,∴∠4=∠2,∵∠1=∠2+∠4=110°,∴∠2=∠4=55°,故答案为:55°.【点评】本题考查平行线的性质,翻折变换等知识,解题的关键是理解翻折变换的性质,属于中考常考题型.【变式5-5】(2022•沭阳县模拟)已知长方形纸条ABCD,点E,G在AD边上,点F,H在BC边上.将纸条分别沿着EF,GH折叠,如图,当DC恰好落在EA'上时,∠1与∠2的数量关系是()A.∠1+∠2=135°B.∠2﹣∠1=15°C.∠1+∠2=90°D.2∠2﹣∠1=90°【分析】根据折叠的性质和平角的定义解答即可.【解答】解:∵DC恰好落在EA'上,∴∠ED′G=90°,∴∠D′EG+∠D′GE=90°,∴∠A′EA+∠D′GD=360°﹣90°=270°,由折叠得,∠1=12∠A′EA,∠2=12∠D′GD,∴∠1+∠2=135°,故选:A.【点评】本题考查折叠的性质和角平分线的定义,由折叠的性质得到∠1=12∠A′EA,∠2=12∠D′GD是解题关键.【变式5-6】如图,长方形ABCD中,沿折痕CE翻折△CDE得△CD′E,已知∠ECD′被BC分成的两个角相差18°,则图中∠1的度数为()A.72°或48°B.72°或36°C.36°或54°D.72°或54°【分析】设∠FCD'=α,则∠BCE=α+18°或α﹣18°,分两种情况进行讨论:①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,分别根据∠BCD=90°列式计算即可.【解答】解:如图,设∠FCD'=α,则∠BCE=α+18°或α﹣18°,①当∠BCE=α+18°时,∠ECD'=2α+18°=∠DCE,∵∠BCD=90°,∴α+18°+2α+18°=90°,解得α=18°,∴∠CFD'=90°﹣18°=72°=∠1;②当∠BCE=α﹣18°时,∠ECD'=2α﹣18°=∠DCE,∵∠BCD=90°,∴α﹣18°+2α﹣18°=90°,解得α=42°,∴∠CFD'=90°﹣42°=48°=∠1;综上所述,图中∠1的度数为72°或48°,故选:A.【点评】本题主要考查了折叠问题,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【例题6】(2023秋•仁寿县期末)如图,在△ABC中,AD⊥BC,EF∥BC,EC⊥CF,∠EFC=∠ACF,则下列结论:①AD⊥EF;②CE平分∠ACB;③∠FEC=∠ACE;④AB∥CF.其中正确的结论个数是()A.1个B.2个C.3个D.4个【分析】根据平行线的性质得到AD⊥EF,故①符合题意;∠CEF=∠BCE,根据余角的性质得到∠CEF =∠ACE,故③符合题意;根据角平分线的定义得到CE平分∠ACB,故②符合题意;根据已知条件无法证明AB∥CF,故④不符合题意.【解答】解:∵AD⊥BC,EF∥BC,∴AD⊥EF,故①符合题意;∵EF∥BC,∴∠CEF=∠BCE,∵EC⊥CF,∴∠ECF=90°,∴∠CEF+∠F=∠ACE+∠ACF=90°,∵∠EFC=∠ACF,∴∠CEF=∠ACE,故③符合题意;∴∠ACE=∠BCE,∴CE平分∠ACB,故②符合题意;∵EC⊥CF,要使AB∥CF,则CE⊥AB,∵CE平分∠ACB,但AC不一定与BC相等,∴无法证明AB∥CF,故④不符合题意,故选:C.【点评】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形进行分析是解题的关键.【变式6-1】(2023秋•浚县期末)如图a∥b,c与a相交,d与b相交,下列说法:①若∠1=∠2,则∠3=∠4;②若∠1+∠4=180°,则c∥d;③∠4﹣∠2=∠3﹣∠1;④∠1+∠2+∠3+∠4=360°,正确的有()A.①③④B.①②③C.①②④D.②③【分析】根据平行线的性质和判定逐一进行判断求解即可.【解答】解:①若∠1=∠2,则a∥e∥b,则∠3=∠4,故此说法正确;②若∠1+∠4=180°,由a∥b得到,∠5+∠4=180°,则∠1=∠5,则c∥d;故此说法正确;③由a∥b得到,∠5+∠4=180°,由∠2+∠3+∠5+180°﹣∠1=360°得,∠2+∠3+180°﹣∠4+180°﹣∠1=360°,则∠4﹣∠2=∠3﹣∠1,故此说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故此说法错误.故选:B.【点评】此题考查了平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【变式6-2】(2022秋•南岗区校级期中)如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行,同旁内角互补可得∠2+∠BDC=180°,再根据两直线平行,内错角相等可得∠3=∠CDE,而∠CDE=∠1+∠BDC,整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF,∴∠2+∠BDC=180°,∠3=∠CDE,又∠BDC=∠CDE﹣∠1,∴∠2+∠3﹣∠1=180°.故选:D.【点评】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.【变式6-3】(2023春•镇江期中)如图,AB∥CF,∠ACF=80°,∠CAD=20°,∠ADE=120°.(1)直线DE与AB有怎样的位置关系?说明理由;(2)若∠CED=71°,求∠ACB的度数.【分析】(1)根据平行线的性质,得出∠BAC=∠ACF=80°,根据∠CAD=20°,求出∠BAD=60°,根据∠BAD+∠ADE=180°,即可得出结论;(2)根据平行线的性质得出∠B=∠CED=71°,根据三角形内角和定理求出∠ACB=29°.【解答】解:(1)DE∥AB;理由如下:∵AB∥CF,∠ACF=80°,∴∠BAC=∠ACF=80°,∵∠CAD=20°,∴∠BAD=∠BAC﹣∠DAC=60°,∵∠ADE=120°,∴∠BAD+∠ADE=60°+120°=180°,∴DE∥AB.(2)DE∥AB,∠CED=71°,∴∠B=∠CED=71°,∵∠BAC=80°,∴∠ACB=180°﹣∠B﹣∠BAC=180°﹣71°﹣80°=29°.【点评】本题主要考查了平行线的判定和性质,三角形内角和定理的应用,解题的关键是熟练掌握平行线的判定.【变式6-4】(2022春•舞阳县期末)如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB并交BD于H,且∠EHD+∠HBF=180°.(1)若∠F=30°,求∠ACB的度数;(2)若∠F=∠G,求证:DG∥BF.【分析】(1)由对顶角相等、同旁内角互补,两直线平行判定BF∥EC,则同位角∠ACE=∠F,再根据角平分线的性质即可求解;(2)结合已知条件,角平分线的定义,利用等量代换推知同位角∠BCE=∠G,则易证DG∥BF.【解答】(1)解:∵∠EHD+∠HBF=180°,∠EHD=∠BHC,∴∠BHC+∠HBF=180°,∴BF∥EC,∴∠ACE=∠F=30°,又∵CE平分∠ACB,∴∠ACB=2∠ACE=60°.故∠ACB的度数为60°;(2)证明:∵CE平分∠ACB,∴∠BCE=∠ACE,∵∠ACE=∠F,∠F=∠G,∴∠BCE=∠G,∴DG∥EC,又∵BF∥EC,∴DG∥BF.【点评】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.【变式6-5】(2022春•温江区校级期中)如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠D+∠AED=180°,∠C=∠EFG.。
平行线的判定与性质的综合应用专题练习平行线的判定与性质的综合运用专题一、推理填空题1.已知:如图,DE∥BC,∠ADE=∠XXX,将说明∠1=∠2成立的理由填写完整。
解:因为DE∥BC,所以∠ADE=∠XXX。
又因为DE∥BC,所以DB∥EF。
由平行线性质可知,∠1=∠ADE=∠XXX∠2.2.已知:如图所示,∠1=∠2,∠A=∠3.求证:XXX。
证明:因为∠1=∠2,所以XXX。
又因为∠A=∠3,所以AC∥BD。
由平行线性质可知,AC∥DE。
3.已知:如图,∠XXX∠ADC,BF、DE分别平分∠ABC 与∠ADC,且∠1=∠3.求证:AB∥DC。
证明:因为∠XXX∠ADC,所以∠XXX∠ADC。
又因为BF、DE分别平分∠ABC与∠ADC,所以∠1=∠ABC,∠3=∠ADC。
由∠1=∠3可得,∠2=∠ADC。
由平行线性质可知,AB∥DC。
二、证明题4.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数。
证明:因为AB∥CD,所以∠A+∠D=180º。
又因为DE⊥AE,所以∠ADE=90º。
由∠A=37º可得,∠ADE=53º。
由三角形内角和定理可得,∠D=80º。
5.如图,已知AB∥CD,∠1=100°,∠2=120°,求∠α的度数。
证明:因为AB∥CD,所以∠1+∠α+∠2=180º。
由∠1=100º,∠2=120º可得,∠α= -40º。
由于∠α是角度,所以∠α=320º。
6.如图,XXX,AE平分∠BAD,求证:XXX与AE相交于F,∠XXX∠EAF。
证明:因为XXX,所以∠BAD=∠ACD。
又因为AE平分∠BAD,所以∠XXX∠DAF。
由相邻角的性质可得,∠EAF+∠DAF=∠BAD=∠ACD。
又因为CD与AE相交于F,所以∠CFE+∠EAF+∠ACD=180º。
人教版七年级下册数学平行线的判定与性质综合题集一.平行线的判定(共1小题)1.将一副三角板中的两个直角顶点C叠放在一起(如图),其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)若∠BCD=112°,求∠ACE的度数;(2)试猜想∠BCD与∠ACE的数量关系,请说明理由;(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究∠BCD等于多少度时,CD ∥AB?请你直接写出答案.二.平行线的性质(共20小题)2.(2021春•阜南县期末)如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律;(3)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.3.(2021春•铁锋区期末)背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行,两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM∥CN,点B为平面内一点,AB⊥BC于B.问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC=.4.(2017秋•雨花区期末)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.5.(2019春•韶关期末)将一副三角板中的两个直角顶点C叠放在一起(如图①),其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)猜想∠BCD与∠ACE的数量关系,并说明理由;(2)若∠BCD=3∠ACE,求∠BCD的度数;(3)若按住三角板ABC不动,绕顶点C转动三角板DCE,试探究∠BCD等于多少度时CE∥AB,并简要说明理由.6.(2021春•龙岗区校级期中)如图,已知直线AB∥射线CD,∠CEB=100°,P是射线EB上一动点,过点P作PQ∥EC交射线CD于点Q,连接CP,作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF,交直线AB于点G.(1)若点P,F,G都在点E的右侧,求∠PCG的度数;(2)在(1)的条件下,若∠EGC﹣∠ECG=40°,求∠CPQ的度数;(3)在点P的运动过程中,是否存在这样的情形,使=?若存在,求出∠CPQ的度数;若不存在,请说明理由.7.(2021秋•揭东区期末)已知:如图所示,直线MN∥GH,另一直线交GH于A,交MN于B,且∠MBA=80°,点C为直线GH上一动点,点D为直线MN上一动点,且∠GCD=50°.(1)如图1,当点C在点A右边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC 的度数;(2)如图2,当点C在点A右边且点D在点B右边时,∠DBA的平分线交∠DCA的平分线于点P,求∠BPC 的度数;(3)当点C在点A左边且点D在点B左边时,∠DBA的平分线交∠DCA的平分线所在直线交于点P,请直接写出∠BPC的度数,不说明理由.8.(2021春•奉化区校级期末)已知,直线AB∥DC,点P为平面上一点,连接AP与CP.(1)如图1,点P在直线AB、CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC.(2)如图2,点P在直线AB、CD之间,∠BAP与∠DCP的角平分线相交于点K,写出∠AKC与∠APC之间的数量关系,并说明理由.(3)如图3,点P落在CD外,∠BAP与∠DCP的角平分线相交于点K,∠AKC与∠APC有何数量关系?并说明理由.9.(2020秋•罗湖区校级期末)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.10.(2021春•临邑县期末)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.11.(2017春•南安市期末)“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.12.(2021春•奉化区校级期末)如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P 作PQ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ的度数;若不存在,请说明理由.13.(2019春•河东区期末)已知:点A、C、B不在同一条直线上,AD∥BE(1)如图①,当∠A=58°,∠B=118°时,求∠C的度数;(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,QP⊥PB,直接写出∠DAC:∠ACB:∠CBE的值.14.(2021春•济南期中)如图,直线PQ∥MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点.(1)如图1,若∠1与∠2都是锐角,请写出∠C与∠1,∠2之间的数量关系并说明理由.(2)把直角三角形ABC如图2摆放,直角顶点C在两条平行线之间,CB与PQ交于点D,CA与MN交于点E,BA与PQ交于点F,点G在线段CE上,连接DG,有∠BDF=∠GDF,求的值.(3)如图3,若点D是MN下方一点,BC平分∠PBD,AM平分∠CAD,已知∠PBC=25°,求∠ACB+∠ADB 的度数.15.(2016春•深圳校级期中)平面内的两条直线有相交和平行两种位置关系(1)已知AB平行于CD,如a图,当点P在AB、CD外部时,∠BPD+∠D=∠B即∠BPD=∠B﹣∠D,为什么?请说明理由.如b图,将点P移动到AB、CD内部,以上结论是否仍然成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.16.(2019秋•道里区校级期中)已知:AF平分∠BAE,CF平分∠DCE.(1)如图①,已知AB∥CD,求证:∠AEC=∠C﹣∠A;(2)如图②,在(1)的条件下,直接写出∠E与∠F的关系.∠E=(用含有∠F的式子表示);(3)如图③,BD⊥AB,垂足为B,∠BDC=110°,∠AEC=40°,求∠AFC的度数.17.(2019春•荔湾区期末)如图,已知AB∥CD,直线FG分别与AB、CD交于点F、点G.(1)如图1,当点E在线段FG上,若∠EAF=40°,∠EDG=30°,则∠AED=°.(2)如图2,当点E在线段FG的延长线上,CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请证明你的结论;(3)如图3,在(2)的条件下,DM平分∠EDG,交AE于点K,射线AN将∠EAB分成∠EAN:∠NAB=1:2,且与DM交于点I,若∠DEA=22°,∠DIA=20°,求∠DKE的度数.18.(2019春•香洲区期末)如图1.直线AD∥EF,点B,C分别在EF和AD上,∠A=∠ABC,BD平分∠CBF.(1)求证:AB⊥BD;(2)如图2,BG⊥AD于点G,求证:∠ACB=2∠ABG;(3)在(2)的条件下,如图3,CH平分∠ACB交BG于点H,设∠ABG=α,请直接写出∠BHC的度数.(用含α的式子表示)19.(2020春•阳西县期末)已知AB∥CD,点C在点D的右侧,连接AD,BC,BE平分∠ABC,DE平分∠ADC,BE,DE相交于点E.(1)如图1,当点B在点A的左侧时,①若∠ABC=50°,∠ADC=70°,求∠BED的度数;②请直接写出∠BED与∠ABC,∠ADC的数量关系;(2)如图2,当点B在点A的右侧时,试猜想∠BED与∠ABC,∠ADC的数量关系,并说明理由.20.(2021春•利州区期末)小明同学在完成七年级上册数学的学习后,遇到了一些问题,请你帮他解决下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由;(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠FAD=60°,∠ABC=40°,求∠BED的度数;(3)将图2中的点B移到点A的右侧,得到图3,其他条件不变,若∠FAD=α°,∠ABC=β°,请你求出∠BED的度数(用含α,β的式子表示).21.(2019春•赣州期末)如图1,已知AB∥CD,∠B=20°,∠D=110°.(1)若∠E=50°,请直接写出∠F的度数;(2)探索∠E与∠F之间满足的数量关系,并说明理由;(3)如图2,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.三.平行线的性质(共1小题)22.(2021春•鼓楼区校级期中)如图,已知:点A、C、B不在同一条直线,AD∥BE.(1)求证:∠B+∠C﹣∠A=180°.(2)如图②,AQ、BQ分别为∠DAC、∠EBC的平分线所在直线,试探究∠C与∠AQB的数量关系;(3)如图③,在(2)的前提下,且有AC∥QB,直线AQ、BC交于点P,QP⊥PB,请求出∠DAC:∠ACB:∠CBE的值.四.平行线的判定与性质(共22小题)23.(2021秋•深圳期末)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F=135°,其中正确的有()A.1个B.2个C.3个D.4个24.(2021秋•禅城区期末)已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG =∠AGE,∠C=∠DGC.(1)求证:AB∥CD;(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.25.(2021秋•福田区校级期末)点E在射线DA上,点F、G为射线BC上两个动点,满足∠DBF=∠DEF,∠BDG =∠BGD,DG平分∠BDE.(1)如图1,当点G在F右侧时,求证:BD∥EF;(2)如图2,当点G在F左侧时,求证:∠DGE=∠BDG+∠FEG;(3)如图3,在(2)的条件下,P为BD延长线上一点,DM平分∠BDG,交BC于点M,DN平分∠PDM,交EF于点N,连接NG,若DG⊥NG,∠B﹣∠DNG=∠EDN,则∠B的度数为.26.(2021秋•嵩县期末)图1展示了光线反射定律:EF是镜面AB的垂线,一束光线m射到平面镜AB上,被AB 反射后的光线为n,则入射光线m,反射光线n与垂线EF所夹的锐角θ1=θ2.(1)在图1中,证明:∠1=∠2.(2)图2中,AB,BC是平面镜,入射光线m经过两次反射后得到反射光线n,已知∠1=30°,∠4=60°,判断直线m与直线n的位置关系,并说明理由.(3)图3是潜望镜工作原理示意图,AB,CD是平行放置的两面平面镜.请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?27.(2021秋•九龙县期末)如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∥BC;(2)若FP⊥AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.28.(2019•重庆开学)如图1,直线MN与直线AB、CD分别交于点E、F,∠MEB与∠DFN互补.(1)若∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(2)如图2,在(1)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,请说明理由.29.(2021秋•南岗区校级期末)已知:直线AB∥CD,一块三角板EFH,其中∠EFH=90°,∠EHF=60°.(1)如图1,三角板EFH的顶点H落在直线CD上,并使EH与直线AB相交于点G,若∠2=2∠1,求∠1的度数;(2)如图2,当三角板EFH的顶点F落在直线AB上,且顶点H仍在直线CD上时,EF与直线CD相交于点M,试确定∠E、∠AFE、∠MHE的数量关系;(3)如图3,当三角板EFH的顶点F落在直线AB上,顶点H在AB、CD之间,而顶点E恰好落在直线CD上时得△EFH,在线段EH上取点P,连接FP并延长交直线CD于点T,在线段EF上取点K,连接PK并延长交∠CEH的角平分线于点Q,若∠Q﹣∠HFT=15°,且∠EFT=∠ETF,求证:PQ∥FH.30.(2021春•庆云县期末)已知:如图(1)直线AB、CD被直线MN所截,∠1=∠2.(1)求证:AB∥CD;(2)如图(2),点E在AB,CD之间的直线MN上,P、Q分别在直线AB、CD上,连接PE、EQ,PF平分∠BPE,QF平分∠EQD,则∠PEQ和∠PFQ之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P点作PH∥EQ交CD于点H,连接PQ,若PQ平分∠EPH,∠QPF:∠EQF=1:5,求∠PHQ的度数.31.(2021春•鼓楼区期末)珠江某河段两岸安置了两座可旋转探照灯A,B.如图1,2所示,假如河道两岸是平行的,PQ∥MN,且∠BAM=2∠BAN,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视,且灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图3,若两灯同时转动,在灯A射线到达AN之前,若两灯发出的射线AC与BC交于点C,过C作∠ACD 交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系,并说明理由.32.(2021春•福田区校级月考)某学习小组发现一个结论:已知直线a∥b,若直线c∥a,则c∥b.他们发现这个结论运用很广,请你利用这个结论解决以下问题:已知直线AB∥CD,点E在AB、CD之间,点P、Q分别在直线AB、CD上,连接PE、EQ.(1)如图1,运用上述结论,探究∠PEQ与∠APE+∠CQE之间的数量关系.并说明理由;(2)如图2,PF平分∠BPE,QF平分∠EQD,当∠PEQ=130°时,求出∠PFQ的度数;(3)如图3,若点E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延长线交PF于点F,当∠PEQ =80°时,请直接写出∠PFQ的度数.33.(2021春•罗湖区校级期末)如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.34.(2021春•饶平县校级期末)已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.35.(2020春•湘桥区期末)(1)如图1,AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数.小明想到了以下方法(不完整),请填写以下结论的依据:如图1,过点P作PM∥AB,∴∠1=∠AEP=40°()∵AB∥CD,(已知)∴PM∥CD,()∴∠2+∠PFD=180°.()∵∠PFD=130°,∴∠2=180°﹣130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)如图2,AB∥CD,点P在AB,CD外,问∠PEA,∠PFC,∠P之间有何数量关系?请说明理由;(3)如图3所示,在(2)的条件下,已知∠P=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数是.(直接写出答案,不需要写出过程)36.(2020春•香洲区校级期中)如图,AD交BC于点D,点F在BA的延长线上,点E在线段CD上,EF与AC 相交于点G,∠BDA+∠CEG=180°.(1)证明AD∥EF;(2)若点H在FE的延长线上,且∠EDH=∠C,∠F=∠H,则∠BAD和∠CAD相等吗?请说明理由;(3)在(2)的条件下,若FH⊥BC,∠C=30°,求∠F的度数.37.(2020春•海勃湾区期末)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,求∠HPQ 的度数.38.(2020春•广宁县期末)探索:小明在研究数学问题:已知AB∥CD,AB和CD都不经过点P,探索∠P与∠C 的数量关系.发现:在图1中,:∠APC=∠A+∠C;如图5小明是这样证明的:过点P作PQ∥AB∴∠APQ=∠A()∵PQ∥AB,AB∥CD.∴PQ∥CD()∴∠CPQ=∠C∴∠APQ+∠CPQ=∠A+∠C即∠APC=∠A+∠C(1)为小明的证明填上推理的依据;(2)应用:①在图2中,∠P与∠A、∠C的数量关系为;②在图3中,若∠A=30°,∠C=70°,则∠P的度数为;(3)拓展:在图4中,探究∠P与∠A,∠C的数量关系,并说明理由.39.(2019春•茂名期中)如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.(1)请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当∠E=90°保持不变时,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,请确定∠BAE与∠MCD的数量关系,并说明理由;(3)如图3,在(1)的结论下,P为线段AC上的一个定点,点Q为直线CD上的一个动点,当点Q在射线CD上运动时(点C除外)∠BAC与∠CPQ+∠CQP有何数量关系?为什么?40.(2019春•东莞市校级月考)(1)如图①,AB∥CD,点E在直线AB与CD之间,连接AE、CE.证明:∠A+∠C=∠E;(2)当点E在如图②的位置时,AB∥CD,证明:∠A+∠E+∠C=360°;(3)如图③,点E、F、G在直线AB与CD之间,AB∥CD,连接AE、EF、FG、CG,若∠EFG=28°,则∠A+∠E+∠G+∠C=°.41.(2017春•广州期末)图1展示了光线反射定律:EF是镜面AB的垂线,一束光线m射到平面镜AB上,被AB 反射后的光线为n,则入射光线m,反射光线n与垂线EF所夹的锐角θ1=θ2.(1)在图1中,证明:∠1=∠2.(2)图2是潜望镜工作原理示意图,AB,CD是平行放置的两面平面镜.请解释进入潜望镜的光线m为什么和离开潜望镜的光线n是平行的?(3)图3中,AB,BC是平面镜,入射光线m经过两次反射后,反射光线n与m平行但方向相反,求∠ABC的度数.42.(2017春•长兴县期末)如图甲所示,已知点E在直线AB上,点F,G在直线CD上,且∠EFG=∠FEG,EF 平分∠AEG.(1)判断直线AB与直线CD是否平行,并说明理由.(2)如图乙所示,H是AB上点E右侧一动点,∠EGH的平分线GQ交FE的延长线于点Q,设∠Q=α,∠EHG =β①若∠HEG=40°,∠QGH=20°,求∠Q的度数.②判断:点H在运动过程中,α和β的数量关系是否发生变化?若不变,求出α和β的数量关系;若变化,请说明理由.43.(2015春•越秀区期末)如图1,在四边形ABCD中,∠ABC+∠ADC=180°,BE、DF分别是∠ABC与∠ADC 的平分线,∠ADF与∠AFD互余.(1)试判断直线BE与DF的位置关系,并说明理由;(2)如图2,延长CB、DF相交于点G,过点B作BH⊥FG,垂足为点H,试判断∠FBH与∠GBH的大小关系,并说明理由.44.(2013春•福田区期末)把下面的说理过程补充完整.已知:如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的关系,并说明理由.解:∠AED=∠C∵∠1+∠ADG=180°(平角定义),∠1+∠2=180°(已知)∴∠2=∠ADG()∴EF∥AB()∴∠3=∠ADE()∵∠3=∠B(已知)∴∠B=()∴DE∥BC()∴∠AED=∠C()五.平移的性质(共2小题)45.(2017春•硚口区期末)如图1,将线段AB平移至DC,使点A与点D对应,点B与点C对应,连AD、BC.(1)填空:AB与CD的位置关系为,BC与AD的位置关系为;(2)点E、G都在直线CD上,∠AGE=∠GAE,AF平分∠DAE交直线CD于F,①如图2,若G、E为射线DC上的点,∠FAG=30°,求∠B的度数;②如图3,若G、E为射线CD上的点,∠FAG=α,求∠C的度数.46.(2016秋•吉林期末)如图,点C、M、N在射线DQ上,点B在射线AP上,且AP∥DQ,∠D=∠ABC=80°,∠1=∠2,AN平分∠DAM.(1)试说明AD∥BC的理由;(2)试求∠CAN的度数;(3)平移线段BC.①试问∠AMD:∠ACD的值是否发生变化?若不会,请求出这个比值;若会,请找出相应变化规律;②若在平移过程中存在某种位置,使得∠AND=∠ACB,试求此时∠ACB的度数.。
专题03平行线与三角形综合特训(压轴30题)一.选择题(共7小题)1.将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有()A.5个B.4个C.3个D.2个【答案】A【解答】解:如图,根据题意得:AB∥CD,∠FEG=90°,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,∠2+∠4=90°;故(1),(2),(3),(4)正确;∴∠1+∠3=90°.故(5)正确.∴其中正确的共有5个.故选:A.2.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6B.7C.8D.9【答案】B【解答】解:五边形的内角和为(5﹣2)×180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B.3.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC上,将△ABC沿着DE重叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.140°B.130°C.110°D.70°【答案】A【解答】解:∵四边形ADA′E的内角和为(4﹣2)•180°=360°,而由折叠可知∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′,∴∠AED+∠A′ED+∠ADE+∠A′DE=360°﹣∠A﹣∠A′=360°﹣2×70°=220°,∴∠1+∠2=180°×2﹣(∠AED+∠A′ED+∠ADE+∠A′DE)=140°.故选:A.4.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是()A.2008B.2009C.2010D.2011【答案】C【解答】解:由图中可知:1个三角形组成的图形的周长是3;2个三角形组成的图形的周长是3+1=4;3个三角形组成的图形的周长是3+2=5;…那么2008个这样的三角形镶嵌而成的四边形的周长是3+2007=2010.故选:C.5.如图,在△ABC中,BE,CE,CD分别平分∠ABC,∠ACB,∠ACF,AB∥CD,下列结论:①∠BDC=∠BAC;②∠BEC=90°+∠ABD;③∠CAB=∠CBA;④∠ADB+∠ABC=90°,其中正确的为()A.①②③B.①②④C.②③④D.①②③④【答案】C【解答】解:∵CD平分∠ACF,∠ACF=∠ABC+∠BAC,∴∠ACD=∠DCF=∠ACF=∠ABC+∠BAC.∵∠DCF=∠DBC+∠BDC=∠ABC+∠BDC,∴∠BAC=∠BDC,即∠BAC=2∠BDC,①错误;∵CE平分∠ACB,∴∠ACE=∠ACB,∵∠ACB+∠ACF=180°,∴∠ACE+∠ACD=90°,即∠ECD=90°,∴∠BEC=∠ECD+∠CDB=90°+∠CDB,∵CD∥AB,∴∠CDB=∠ABD,∴∠BEC=90°+∠ABD,故②正确;∵BD平分∠CBA,∴∠CBA=2∠ABD=2∠CDB,∵∠BAC=2∠BDC,∴∠CAB=∠CBA,故③正确;∵BD平分∠ABC,CD平分∠ACF,∴AD为△ABC外角∠MAC的平分线,∴∠MAC=2∠MAD,∵∠MAC=∠ABC+∠ACB,∠MAD=∠ABD+∠ADB,∠ABC=2∠ABD,∴∠ACB=2∠ADB,∴∠ADB=∠ACE,∵CD∥AB,∴∠ABC=∠DCF=∠ACD,∵∠ACE+∠ACD=90°,∴∠ADB+∠ABC=90°,故④正确.故选:C.6.如图,在△ABC中,延长CA至点F,使得AF=CA,延长AB至点D,使得BD=2AB,=36,则S△ABC为()延长BC至点E,使得CE=3CB,连接EF、FD、DE,若S△DEFA.2B.3C.4D.5【答案】A【解答】解:如图,连接AE,CD,设△ABC的面积为m.∵BD=2AB,∴△BCD的面积为2m,△ACD的面积为3m,∵AC=AF,∴△ADF的面积=△ACD的面积=3m,∵EC=3BC,∴△ECA的面积=3m,△EDC的面积=6m,∵AC=AF,∴△AEF的面积=△EAC的面积=3m,∴△DEF的面积=m+2m+6m+3m+3m+3m=18m=36,∴m=2,∴△ABC的面积为2,故选:A.7.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16【答案】C【解答】解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的多边形的边数为13或14或15,故选:C.二.填空题(共8小题)8.如图所示,在三角形ABC中,AC=3AE,三角形ABD的面积是三角形ADC面积的2倍,则阴影部分的面积占三角形ABC面积的=.【答案】.【解答】解:连接OC,=S△EOC,则S△AOES△ODC=S△BOD,=S△ABD,又∵S△ADC+S△ODC=(S△AOB+S△BOD),∴S△AOC=S△AOB∴S△AOC=m,设S△AOE=2m,S△AOC=3m,S△AOB=6m,则S△OEC=S△BEC=S△ABC,∵S△ABD=S四边形EODC=6m,∴S△AOB=4m,S△BOD=8m,∴S△ODC=21m,∴S△ABC∴阴影部分的面积占三角形ABC面积de=.9.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC =36°,则∠CAP=54°.【答案】见试题解答内容【解答】解:过P点作PF⊥BA于F,PN⊥BD于N,PM⊥AC于M,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,又∵PF⊥BA于F,PM⊥AC于M,∴∠FAP=∠PAC.∵∠BPC=36°,∴∠ABP=∠PBC=(x﹣36)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣36°)﹣(x°﹣36°)=72°,∴∠CAF=108°,∴∠FAP=∠PAC=54°.故答案为:54°.10.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=.∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010=.【答案】见试题解答内容【解答】解:∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∠ACD=2∠A1CD,∠ABC=2∠A1BC,∴2∠A1CD=∠A+2∠A1BC,即∠A1CD=∠A+∠A1BC,∴∠A1==,由此可得∠A2010=.故答案为:,.11.已知△ABC中,∠A=α.在图(1)中∠B、∠C的角平分线交于点O1,则可计算得∠BO1C=90°+;在图(2)中,设∠B、∠C的两条三等分角线分别对应交于O1、O2,则∠BO2C=60°+α;请你猜想,当∠B、∠C同时n等分时,(n﹣1)条等分角线分别对应交于O1、O2,…,O n﹣1,如图(3),则∠BO n﹣1C=+(用含n和α的代数式表示).【答案】见试题解答内容【解答】解:在△ABC中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O2B和O2C分别是∠B、∠C的三等分线,∴∠O2BC+∠O2CB=(∠ABC+∠ACB)=(180°﹣α)=120°﹣α;∴∠BO2C=180°﹣(∠O2BC+∠O2CB)=180°﹣(120°﹣α)=60°+α;在△ABC中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,B和O n﹣1C分别是∠B、∠C的n等分线,∵O n﹣1BC+∠O n﹣1CB=(∠ABC+∠ACB)=(180°﹣α)=﹣∴∠O n﹣1.C=180°﹣(∠O n﹣1BC+∠O n﹣1CB)=180°﹣(﹣)∴∠BO n﹣1=+.故答案为:60°+α;+.12.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=20度.【答案】见试题解答内容【解答】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.13.如图,在△ABC中,∠A=α、∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC 与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2010BC与∠A2010CD的平分线相交于点A2011,得∠A2011,则∠A2011=.【答案】见试题解答内容【解答】解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1=180°﹣∠ACD﹣∠ACB﹣∠ABC=180°﹣(∠ABC+∠A)﹣(180°﹣∠A﹣∠ABC)﹣∠ABC=∠A=;同理可得,∠A2=∠A1=,…∴∠A2011=.故答案为:.14.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为17.5°;第n个三角形中以A n为顶点的底角的度数为.【答案】见试题解答内容【解答】解:∵在△ABA1中,∠B=40°,AB=A1B,∴∠BA1A=(180°﹣∠B)=(180°﹣40°)=70°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=×70°=35°;同理可得,∠DA3A2=×70°=17.5°,∠EA4A3=×70°,以此类推,第n个三角形的以A n为顶点的底角的度数=.故答案为:17.5°,.15.如图a是长方形纸带,∠DEF=α°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是(180﹣3α)°(用含α的代数式表示).【答案】180﹣3α.【解答】解:∵AD∥BC,∠DEF=α°,∴∠BFE=∠DEF=α°,∴∠EFC=180°﹣α°(图a),∴∠BFC=∠BFC=180°﹣α°﹣α°=180°﹣2α°(图b),∴∠CFE=180°﹣2α°﹣α°=180°﹣3α°(图c).故答案为:180﹣3α.三.解答题(共15小题)16.已知ABCD为四边形,点E为边AB延长线上一点.【探究】:(1)如图1,∠ADC=110°,∠BCD=120°,∠DAB和∠CBE的平分线交于点F,则∠AFB=25°;(2)如图2,∠ADC=α,∠BCD=β,且α+β>180°,∠DAB和∠CBE的平分线交于点F,则∠AFB=;(用α,β表示)(3)如图3,∠ADC=α,∠BCD=β,当∠DAB和∠CBE的平分线AG,BH平行时,α,β应该满足怎样的数量关系?请证明你的结论;【挑战】:如果将(2)中的条件α+β>180°改为α+β<180°,再分别作∠DAB和∠CBE的平分线,若两平分线所在的直线交于点F,则∠AFB与α,β有怎样的数量关系?请画出图形并直接写出结论.【答案】(1)25°;(2);(3)若AG∥BH,则α+β=180°;90°﹣.【解答】解:(1)如图1.∵BF平分∠CBE,AF平分∠DAB,∴∠FBE=∠CBE,∠FAB=∠DAB.∵∠D+∠DCB+∠DAB+∠ABC=360°,∴∠DAB+∠ABC=360°﹣∠D﹣∠DCB=360°﹣120°﹣110°=130°.又∵∠F+∠FAB=∠FBE,∴∠F=∠FBE﹣∠FAB===(180°﹣130°)=25°;(2)如图2.由(1)得:∠AFB=,∠DAB+∠ABC=360°﹣∠D﹣∠DCB.∴∠AFB==.(3)若AG∥BH,则α+β=180°.证明:如图3.若AG∥BH,则∠GAB=∠HBE.∵AG平分∠DAB,BH平分∠CBE,∴∠DAB=2∠GAB,∠CBE=2∠HBE.∴∠DAB=∠CBE.∴AD∥BC.∴∠DAB+∠DCB=α+β=180°.挑战:如图4.∵AM平分∠DAB,BN平分∠CBE,∴∠BAM=,.∵∠D+∠DAB+∠ABC+∠BCD=360°,∴∠DAB+∠ABC=360°﹣∠D﹣BCD=360°﹣α﹣β.∴∠DAB+180°﹣∠CBE=360°﹣α﹣β.∴∠DAB﹣∠CBE=180°﹣α﹣β.∵∠ABF与∠NBE是对顶角,∴∠ABF=∠NBE.又∵∠F+∠ABF=∠MAB,∴∠F=∠MAB﹣∠ABF.∴∠F===90°﹣.17.已知直线MN与PQ互相垂直,垂足为O,点A在射线OQ上运动,点B在射线OM上运动,点A,B均不与点O重合.(1)如图1,AI平分∠BAO,BI平分∠ABO,则∠AIB=135°.(2)如图2,AI平分∠BAO交OB于点I,BC平分∠ABM,BC的反向延长线交AI的延长线于点D.①若∠BAO=30°,则∠ADB=45°.②在点A,B的运动过程中,∠ADB的大小是否会发生变化?若不变,求出∠ADB的度数;若变化,请说明理由.(3)如图3,已知点E在BA的延长线上,∠BAO的平分线AI,∠OAE的平分线AF与∠BOP的平分线所在的直线分别相交于点D,F.在△ADF中,如果有一个角的度数是另一个角的3倍,请直接写出∠ABO的度数.【答案】(1)135°;(2)①45°,②不变.∠ADB=45°(3)60°或45°.【解答】解:(1)∵AI平分∠BAO,BI平分∠ABO,∴,∴∠BIC=180°﹣∠IBA﹣∠IAB=====90°+α,∵直线MN与PQ互相垂直,垂足为O,∴∠BOA=90°,∴,故答案为:135°.(2)①∵直线MN与PQ互相垂直,垂足为O,∴∠BOA=90°,∵∠BAO=30°,∴∠ABM=120°,∵AI平分∠BAO交OB于点I,BC平分∠ABM,∴,∠BAD==15°,∴∠ADB=∠CBA﹣∠BAD=60°﹣15°=45°,故答案为:45.②不变,∠ADB=45°.设∠BAO=α,∵AI平分∠BAO交OB于点I,BC平分∠ABM,∴,∠MBA=90°+α,,∴∠ADB=∠CBA﹣∠BAD=45,∴不变,∠ADB=45°.(3)∵∠BAO的平分线AI,∠OAE的平分线AF,∴∠DAF=90°,∵一个角是另一角的3倍,∴分两种情况讨论:①当∠DAF=3∠ADF时,∠ADF=30°,∵OF为∠BOP的平分线,∴∠DOA=135°,∴∠OAI=15°,∴∠OAB=30°,∴∠OBA=90°﹣30°=60°;②当∠AFD=3∠ADF时,∠ADF=22.5°,∵OF为∠BOP的平分线,∴∠DOA=135°,∴∠OAI=22.5°,∴∠OAB=45°,∴∠OBA=90°﹣45°=45°.∴∠OBA等于60°或45°.18.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【答案】见试题解答内容【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍去);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍去).∴∠ABO为60°或45°.19.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系∠A+∠C=90°;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】见试题解答内容【解答】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.20.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;(4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系.【答案】见试题解答内容【解答】解:(1)证明:过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.(2)∠3=∠2﹣∠1;证明:过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPF﹣∠QPE,∴∠3=∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.证明:过P作PQ∥l1∥l2;同(1)可证得:∠3=∠CEP+∠DFP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠CEP+∠DFP+∠1+∠2=360°,即∠3=360°﹣∠1﹣∠2.(4)过P作PQ∥l1∥l2;①当P在C点上方时,同(2)可证:∠3=∠DFP﹣∠CEP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠DFP﹣∠CEP+∠2﹣∠1=0,即∠3=∠1﹣∠2.②当P在D点下方时,∠3=∠2﹣∠1,解法同上.综上可知:当P在C点上方时,∠3=∠1﹣∠2,当P在D点下方时,∠3=∠2﹣∠1.21.如图1,已知线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系;(2)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系(直接写出结论即可)【答案】见试题解答内容【解答】解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)∵∠D=40°,∠B=36°,∴∠OAD+40°=∠OCB+36°,∴∠OCB﹣∠OAD=4°,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,又∵∠DAM+∠D=∠PCM+∠P,∴∠P=∠DAM+∠D﹣∠PCM=(∠OAD﹣∠OCB)+∠D=×(﹣4°)+40°=38°;(3)根据“8字形”数量关系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,所以,∠OCB﹣∠OAD=∠D﹣∠B,∠PCM﹣∠DAM=∠D﹣∠P,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,∴(∠D﹣∠B)=∠D﹣∠P,整理得,2∠P=∠B+∠D.22.如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O(a)若∠A=60°,求∠BOC的度数;(b)若∠A=n°,则∠BOC=90°+n°;(c)若∠BOC=3∠A,则∠A=36°;(2)如图(2),在△A′B′C′中的外角平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数;(3)上面(1),(2)两题中的∠BOC与∠B′O′C′有怎样的数量关系?【答案】见试题解答内容【解答】解:(1)(a)∵∠ABC、∠ACB的平分线相交于点O,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC +∠ACB )=(180°﹣∠A )=×(180°﹣60°)=60°,∴∠BOC =180°﹣60°=120°;(b ))∵∠ABC 、∠ACB 的平分线相交于点O ,∴∠1=∠ABC ,∠2=∠ACB ,∴∠1+∠2=(∠ABC +∠ACB )=(180°﹣∠A )=×(180°﹣n °)=90°﹣n °,∴∠BOC =180°﹣(90°﹣n °)=90°+n °.故答案为:90°+n °;(c )∵∠ABC 、∠ACB 的平分线相交于点O ,∠BOC =3∠A ,∴∠1=∠ABC ,∠2=∠ACB ,∴∠1+∠2=(∠ABC +∠ACB )=(180°﹣∠A )=90°﹣∠A ,∴90°﹣∠A +3∠A =180°,解得∠A =36°故答案为:36°;(2)∵∠A ′=40°,∴∠A ′的外角等于180°﹣40°=140°,∵△A ′B ′C ′另外的两外角平分线相交于点O ′,三角形的外角和等于360°,∴∠1+∠2=×(360°﹣140°)=110°,∴∠B ′O ′C ′=180°﹣110°=70°;(3)∵由(1)知,∠BOC =,由(2)知,∠B ′O ′C ′=180°﹣,∴∠B ′O ′C ′=180°﹣∠BOC .23.已知,BC ∥OA ,∠B =∠A =100°,试回答下列问题:(1)如图1所示,求证:OB ∥AC ;(2)如图2,若点E 、F 在BC 上,且满足∠FOC =∠AOC ,并且OE 平分∠BOF .试求∠EOC 的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.【答案】见试题解答内容【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,又∵∠B=∠A,∴∠A+∠O=180°,∴OB∥AC;(2)∵∠B+∠BOA=180°,∠B=100°,∴∠BOA=80°,∵OE平分∠BOF,∴∠BOE=∠EOF,又∵∠FOC=∠AOC,∴∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°;(3)结论:∠OCB:∠OFB的值不发生变化.理由为:∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2=;24.有一款灯,内有两面镜子AB、BC,当光线经过镜子反射时,入射角等于反射角,即图1、图2中的∠1=∠2,∠3=∠4.(1)如图1,当AB⊥BC时,说明为什么进入灯内的光线EF与离开灯的光线GH互相平行.(2)如图2,若两面镜子的夹角为α°(0<α<90)时,进入灯内的光线与离开灯的光线的夹角为β°(0<β<90),试探索α与β的数量关系.(3)若两面镜子的夹角为α°(90<α<180),进入灯内的光线与离开灯的光线所在直线的夹角为β°(0<β<90).直接写出α与β的数量关系.【答案】见试题解答内容【解答】(1)证明:如图1所示:∵∠1=∠2,又∵∠5=180°﹣∠1﹣∠2=180°﹣2∠2,∴∠5=180°﹣2∠2,同理∠6=180°﹣2∠3,∵∠2+∠3=90°,∴∠5+∠6=180°,∴EF∥GH,即进入灯内的光线EF与离开灯的光线GH互相平行.(2)解:2α+β=180°,理由如下:如图2所示:由(1)所证,有∠5=180°﹣2∠2,∠6=180°﹣2∠3,∵∠2+∠3=180°﹣∠α,∴∠β=180°﹣∠5﹣∠6=2(∠2+∠3)﹣180°=2(180°﹣∠α)﹣180°=180°﹣2∴α与β的数量关系为:2α+β=180°,(3)解:2α﹣β=180°.25.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=105°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请直接写出α,β所满足的数量关系式;(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.【答案】(1)105°;(2)β﹣α=90°(或α﹣β=﹣90°等均正确);(3)BE∥DF,理由见答案.【解答】解:(1)∵四边形ABCD的内角和为360°,∴α+β=∠A+∠BCD=360°﹣(∠ABC+∠ADC),∵∠MBC和∠NDC是四边形ABCD的外角,∴∠MBC=180°﹣∠ABC,∠NDC=180°﹣∠ADC,∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC),=105°;(2)β﹣α=90°(或α﹣β=﹣90°等均正确).理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CBD=180°﹣∠BCD=180°﹣β,在△BDG中,∠BGD=45°,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴(α+β)+180°﹣β+45°=180°,∴β﹣α=90°.(3)BE∥DF.理由:如图2,过点C作CP∥BE,则∠EBC=∠BCP,∴∠DCP=∠BCD﹣∠BCP=β﹣∠EBC,由(1)知∠MBC+∠NDC=α+β,∵α=β,∴∠MBC+∠NDC=2β,又∵BE、DF分别平分∠MBC和∠NDC,∴∠EBC+∠FDC=(∠MBC+∠NDC)=β,∴∠FDC=β﹣∠EBC,又∵∠DCP=β﹣∠EBC,∴∠FDC=∠DCP,∴CP∥DF,又CP∥BE,∴BE∥DF.26.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=70°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.【答案】见试题解答内容【解答】解:(1)如图,延长DE交AB于H,∵AB∥CD,∴∠D=∠AHE=40°,∵∠AED是△AEH的外角,∴∠AED=∠A+∠AHE=30°+40°=70°,故答案为:70;(2)∠EAF=∠AED+∠EDG.理由:∵AB∥CD,∴∠EAF=∠EHC,∵∠EHC是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵∠EAI:∠BAI=1:2,∴设∠EAI=α,则∠BAE=3α,∵∠AED=22°,∠I=20°,∠DKE=∠AKI,又∵∠EDK+∠DKE+∠DEK=180°,∠KAI+∠KIA+∠AKI=180°,∴∠EDK=α﹣2°,∵DI平分∠EDC,∴∠CDE=2∠EDK=2α﹣4°,∵AB∥CD,∴∠EHC=∠EAF=∠AED+∠EDG,即3α=22°+2α﹣4°,解得α=18°,∴∠EDK=16°,∴在△DKE中,∠EKD=180°﹣16°﹣22°=142°.27.如图,在△ABC中,BD、CD分别是∠ABC、∠ACB的平分线,BP、CP分分别是∠ABC、∠ACB的外角平分线.(1)当∠A=40°时,分别求∠D和∠P的度数.(2)当∠A的大小变化时,试探究∠D+∠P的度数是否变化.如果不变化,求出∠D+∠P的值;如果变化,请说明理由.【答案】见试题解答内容【解答】解:(1)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵BD、CD分别是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,在△BCD中,∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣(90°﹣∠A)=90°+∠A=90°+20°=110°;∵BP、CP分别是∠ABC与∠ACB的外角平分线,∴∠CBP=∠CBE,∠BCP=∠BCF,∴∠CBP+∠BCP=∠CBE+∠BCF=(∠CBE+∠BCF)=(∠A+∠ACB+∠A+∠ABC)=(180°+∠A),∴∠BPC=180°﹣(∠CBP+∠BCP)=180°﹣(180°+∠A)=90°﹣∠A=90°﹣×40°=70°.(2)∠D+∠P的值不变.∵由(1)知∠D=90°+∠A,∠P=90°﹣∠A,∴∠D+∠P=180°.28.直线MN与直线PQ相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,若∠AOB=80°,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,若∠AOB=80°,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM 的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=50°;DE、CE又分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为:∠CED=65°.(3)如图3,若∠AOB=90°,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ 的角平分线及其延长线相交于E、F,则∠EAF=90°;(4)如图3,若AF,AE分别是∠GAO,∠BAO的角平分线,∠AOB=90°,在△AEF 中,如果有一个角是另一个角的4倍,则∠ABO的度数=36°或45°.【答案】见试题解答内容【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ相交于O,∴∠AOB=80°,∴∠OAB+∠OBA=80°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=50°,∴∠AEB=130°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ相交于O,∴∠AOB=80°,∴∠OAB+∠OBA=80°,∴∠PAB+∠MBA=280°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=140°,∴∠F=50°,∴∠FDC+∠FCD=140°,∴∠CDA+∠DCB=220°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=115°,∴∠E=65°;故答案为:50°,65°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°;故答案为:90°;(4)在△AEF中,∵有一个角是另一个角的4倍,故有:①∠EAF=4∠E,∠E=22.5°,∠ABO=45°;②∠EAF=4∠F,∠E=67.5°,∠ABO=135°(舍去);③∠F=4∠E,∠E=18°,∠ABO=36°;④∠E=4∠F,∠E=72°,∠ABO=144°(舍去).∴∠ABO为36°或45°.故答案为:36°或45°.29.(1)如图1,AC平分∠DAB,∠1=∠2.求证:AB∥CD;(2)如图2,在(1)的条件下,AB的下方两点E、F,满足:BF平分∠ABE,CF平分∠DCE,若∠CFB=20°,∠DCE=70°,求∠ABE的度数;(3)如图3,在(1)、(2)的条件下,若P是射线BE上一点,G是CD上任一点,PQ 平分∠BPG,PQ∥GN,GM平分∠DGP,求∠MGN的度数.【答案】见试题解答内容【解答】(1)证明:∵AC平分∠DAB,∴∠1=∠CAB,∵∠1=∠2,∴∠2=∠CAB,∴AB∥CD;(2)解:如图2,∵BF平分∠ABE,CF平分∠DCE,∴∠DCF=∠DCE=35°,∠ABE=2∠ABF,∵CD∥AB,∴∠2=∠DCF=35°,∵∠2=∠CFB+∠ABF,∠CFB=20°,∴∠ABF=15°,∴∠ABE=2∠ABF=30°;(3)解:如图3,根据三角形的外角性质,∠1=∠BPG+∠B,∵PQ平分∠BPG,GM平分∠DGP,∴∠GPQ=∠BPG,∠MGP=∠DGP,∵AB∥CD,∴∠1=∠DGP,∴∠MGP=(∠BPG+∠B),∵PQ∥GN,∴∠NGP=∠GPQ=∠BPG,∴∠MGN=∠MGP﹣∠NGP=(∠BPG+∠B)﹣∠BPG=∠B,根据前面的条件,∠B=30°,∴∠MGN=×30°=15°.30.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数.(2)如图(2)若∠AOC=150°,求∠BOD的度数.(3)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.【答案】见试题解答内容【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;(2)如图2,若∠AOC=150°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=360°﹣150°﹣90°﹣90°=30°;(3)∠AOC与∠BOD互补.∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补.(4)OD⊥AB时,∠AOD=30°,CD⊥OB时,∠AOD=45°,CD⊥AB时,∠AOD=75°,OC⊥AB时,∠AOD=60°,即∠AOD角度所有可能的值为:30°、45°、60°、75°.。
七年级数学上册平行线的性质综合练习题在七年级数学上册中,平行线是一个非常重要的概念。
掌握平行线的性质对于解决各种数学问题至关重要。
本文将为大家提供一些关于平行线性质的综合练习题,帮助大家巩固对平行线的理解和应用。
练习题1:判断平行根据图中的线段关系,判断下列线段是否平行。
题1.1:AB与CD题1.2:EF与GH题1.3:IJ与KL练习题2:平行线的判定利用平行线的判定定理,判断下列命题是否成立。
题2.1:若两条线段的斜率相等,则它们平行。
题2.2:若两条线段的倾斜角相等,则它们平行。
题2.3:若两条线段的截距相等,则它们平行。
练习题3:平行线的性质根据平行线的性质,回答下列问题。
题3.1:若两条平行线与一条横切线相交,那么相交线与两条平行线之间的夹角关系是什么?题3.2:若两条平行线与一条横切线相交,那么相交线与所形成的平行线内部的角关系是什么?题3.3:若两条平行线与一条横切线相交,那么两条平行线之间的相应角相等。
练习题4:平行线的应用利用平行线的性质,解决下列实际问题。
题4.1:在一个长方形中,对角线互相垂直交于点O。
若AB是长方形的一条边,且与BD平行,求证:AOCD是一个平行四边形。
题4.2:已知一个梯形ABCD,且AB∥CD,AD与BC的长度相等。
若角BAD的度数为60°,求证:BCD为等腰梯形。
练习题5:平行线的证明根据给出的条件和结论,选择合适的命题证明方法,完成以下证明。
题5.1:已知AB∥CD,角ABC和角BCD互为邻补角,求证:角ABC和角BCD是等角。
题5.2:已知AB∥CD,AO是线段AB的中点,CO与BD垂直交于点O,求证:AO=OC。
练习题6:解决实际问题利用平行线的性质,解决下列实际问题。
题6.1:一条直线上有两个房子,从房子A到房子B的距离为500米,从房子B到直线的另一侧距离为200米。
已知这两条线段都与另一条平行线相交于点C,求从房子A到点C的距离。
321C D G FN MGF E D C B A“平行线的判定和性质”综合训练例题:1.同位角 ,内错角 , 两直线平行。
同旁内角 ,2.如图1, (1)∵AC ∥ED (已知), ∴∠2=_____ ( ) (2)∵AB ∥_____(已知),∴∠2+∠AED=180°( ) (3)∵AC ∥_____(已知),∴∠C=∠1( ) 图1 图2 图33.如图2,下面推理中,正确的是( )(A)∵∠A+∠D=180°,∴AD ∥BC(B)∵∠C+∠D=180°,∴AB ∥CD(C)∵∠A+∠D=180°,∴AB ∥CD(D)∵∠A+∠C=180°,∴AB ∥CD4.如图3,若∠ 1=∠ 2,则下列结论中正确的个数是( )个.(1)∠ 3=∠ 4;(2)AB ∥ DC ;(3)AD ∥ BC.(A) 0 (B) 1 (C) 2 (D) 35.下列说法中,错误的是( )(A)两直线平行,同位角的平分线互相平行(B)两直线平行,内错角的平分线互相平行(C)两直线平行,同旁内角的平分线互相平行(D)两直线平行,同旁内角的平分线互相垂直6.如图,EF ∥AD,∠1=∠2,∠BAC=70°.将求∠AGD 的过程填写完整.解:∵EF ∥AD ( )∴∠2= ( )又∵∠1=∠2( ) ∴∠1=∠3( ) ∴AB ∥ ( )∴∠BAC+______=180°( )∵∠BAC=70°;∴∠AGD=_______。
7.如右图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30 o , 求∠EAD 、∠DAC 、∠C 的度数。
8.如图所示,把一张长方形纸片ABCD 沿EF 折叠,若∠EFG=50°,求∠DEG 的度数.练习题: 一、填空.1.如图1,已知DF ∥AC,∠C=∠D,求证:∠AMB=∠2,请完善证明过程,并在括号内填上相应依据: 证明:∵DF ∥AC(已知), ∴∠D=∠1( ). ∵∠C=∠D(已知),∴∠1=∠ ( ), ∴DB ∥EC( ), ∴∠AMB=∠2( ).2.如图2,已知AD ∥BC,∠1=∠2,求证:∠3+∠4=180°,请完善证明过程,并在括号内填上相应依据:证明:∵AD ∥BC(已知), ∴∠1=∠3( ), ∵∠1=∠2(已知), ∴∠2=∠3( ), ∴______∥_____(), ∴∠3+∠4=180°( ). 3.如图3,已知∠1=∠A,∠2=∠B,求证MN ∥EF,请完善证明过程,并在括号内填上相应依据: 证明:∵∠1=∠A(已知), ∴_____∥_____( ). ∵∠2=∠B(已知),∴_____∥_____( ),∴MN ∥EF( ).4.如图4,ABC 是直线,∠1=115°,∠D=65°,要证AB ∥DE,请完善证明过程,并在括号内填上相应的依据:证明:∵ABC 是直线(已知),∴∠1+∠2=________°( ).∵∠1=115°(已知),∴∠2=_____°.∵∠D=65°,∴∠2=∠D( ),∴AB ∥DE( ).5.若两条平行线段被第三条直线所截,则同旁内角的平分线互相_____________.6.如图5,已知AB ∥CD,AD ∥BC,∠=60°,∠EDA=50°,则∠CDO=_____________.7.如图6,已知m ∥n ,∠1=105°,∠2=140°,则∠a =_____________. 8.如图7,已知AB ∥CD,∠1=43°,∠2=47°, 则∠B=_____________,∠ACB=_____________. 9.不相邻的两个直角,如果它们有一条公共边,那么另两条边相互_____________. 10.如图8,已知CD 平分∠ACB,DE ∥BC,∠AED=80°,则∠EDC=_____________. 11.如图9,(1)如果∠1=∠2,根据________,得DE ∥BC;(2)如果∠2+∠BED=180°,根据_________,得DE ∥BC;(3)如果∠EGF=∠GFC,根据 ,得DE ∥BC;(4)如果AB ∥GF,根据 ,得∠2=∠GFC;(5)如果AB ∥GF,根据 ,得∠A+∠FGA=180° (6)如果AB ∥GF,根据 ,得∠A=∠3.12.垂直于同一直线的两条直线(不重合)的位置关系是_____________.13.经过已知直线外一点,有且只有_____________条直线与已知直线平行.14.在同一平面内,两条直线(不重合)的位置关系有_________种,它们是 .15. 不相交的两条直线叫做平行线. 二、选择. 16.写出“对顶角的平分线在一条直线上”的已知、求证并画出图形:如图10,已知AB ,CD 相交于O ,OE 平分∠AOC.求证:E,O,F 在一条直线上.以上有错误的是( ).A.图形B.已知C.求证D.已知和求证都错17.在同一平面内有三条直线,如果要使其中两条且只有两条平行,那么它们( ).A.有三个交点B.有两个交点C.只有一个交点D.没有交点18.如图11,AB∥CD,若∠2是∠1的2倍,则∠2等于( ).A.60°B.120°C.90°D.150°19.如图12,若AB∥CD,则下列结论正确的是( ).A.∠3=∠4B.∠A=∠CC.∠3+∠1+∠1=180°D.∠3+∠1+∠A=180°20.如图13,FA⊥MN于A,HC⊥MN于C,指出下列各判断中,错误的是( ).A.由∠CAB=∠NCD,得AB∥CDB.由∠DCG=∠BAC,得AB∥CDC.由∠MAE=∠ACG,∠DCG=∠BAE,得AB∥CDD.由∠MAB=∠ACD,得AB∥CD21.如图14,已知∠1=∠2,∠3=∠4,求证:AC∥DF,BC∥EF.证明过程如下:证明:∵∠1=∠2(已知),∴AC∥DF,(A.同位角相等,两直线平行)∵∠3=∠5.(B.内错角相等,两直线平行)又∵∠3=∠4(已知),∴∠5=∠4,(C.等量代换)∴BC∥EF.(D.内错角相等,两直线平行)上述理由填错的是( ).22.如图15,若∠1是它的补角的3倍,∠2等于它的余角,则AB和CD的关系是( ).A.平行B.相交C.平行或相交D.不能确定23.下列语句中,不能判定两直线平行的是( ).A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角相等,两直线平行D.同一平面内,垂直于同一直线的两条直线平行三、解答.24.证明:垂直于同一直线的两条直线平行.(要求写出已知、求证,作图,并写证明过程)25.如图16,已知AB,CD分别垂直EF于B,且∠DCF=60°,∠1=30°.求证:BM=AF.26.如图17,已知∠4=∠B,∠1=∠3.求证:AC平分∠BAD.27.如图18,已知BD平分∠ABC,∠1=∠2.求证:AB∥CD.28.如图19,已知在△ABC中,EF⊥AB,CD⊥AB,G在AC边上,∠1=∠2.求证:∠AGD=∠ACB.29.如图20,已知AB∥CD,∠BAE=30°,∠DCE=60°,EF,EG三等分∠AEC.(1)求∠AEF的度数;(2)求证:EF∥AB.30.如图21,已知AB∥CD,∠BAE=40°,∠ECD=70°,EF平分∠AEC,求∠AEF的度数.31.如图22,已知AB∥CD,∠3=30°,∠1=70°,求∠A–∠2的度数.32.如图23,已知∠1=∠2,AB∥CD.求证:CD∥EF.。
相交线与平行线专题复习2一、平行的性质和判定相结合的综合问题类型一:与平行线有关的计算问题:【例1】(2013•恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70° B.80° C.90° D.100练习:1. 如图,已知∠1=∠2=∠3=55°,则∠4的度数为()A.55° B.75° C.105° D.125°2.已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.类型二:已知一组角和一组平行线的证明问题【例2】如图,已知∠1=∠2,CE∥BF,则AB∥CD吗?为什么?练习:3.如图,EF∥AD,∠1 =∠2,∠BAC = 70°,求∠AGD的度数。
D E B CA4.如图,已知AB∥DE,∠3=∠E,且AE平分∠BAD,试判断AD与BC的关系?请说明理由.类型三:已知两个角的证明问题【例3】如图,已知∠A=∠1,∠C=∠D。
试说明FD∥BC。
练习:5.如图,已知∠AGD=∠ACB,∠1=∠2。
求证:CD∥EF。
4.如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
2BDFAC1E21BDEFGAC35.如图:已知∠B =∠BGD ,∠DGF =∠F ,求证:∠B + ∠F =180°.类型四:有垂直和一对相等的角的证明问题【例4】已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.练习:6.如图,C D ⊥AB 于D ,FG ⊥AB 于G ,ED ∥BC,试说明21∠=∠.F21GEDCBA7.如图,CD ⊥AB 于D ,E 是BC 上一点,EF ⊥AB 于F ,∠1=∠2.试说明∠BDG+∠B=180°.8.已知AD ⊥BC ,FG ⊥BC ,垂足分别为D 、G ,且∠1=∠2,猜想∠BDE 与∠C 有怎样的大小关系?试说明理由.二、平移问题:类型一:平移的概念及性质1.下列说法中,不正确的是( )A.平移不改变图形的形状和大小B.平移中,图形上的每个点移动的距离可以不同C.经过平移,图形的对应线段、对应角分别相等D.经过平移,图形的对应点的连线相等 类型二:平移的有关计算2.如图所示,是两个重叠的直角三角形,将其中的△ABC 沿着BC 方向平移BE 的长得到△DEF ,已知AB=8,BE=5,DH=3,则CF 的长是______,阴影部分的面积是_______。
中考数学模拟题汇总《平行线的证明》专项练习(附答案解析)一、综合题1.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.2.如图,在矩形ABCD中,E是BC边上的点,AE=BC ,DF⊥AE,垂足为F,连接DE。
(1)求证:AB=DF;(2)若CE=1,AF=3,求DF的长。
3.如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D在同一直线上,且AB∥DE,连接AE.(1)求证:△ABC≌△DCE.(2)当BC=5,AC=12时,求AE的长.4.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).若在射线BA上存在点F,使SΔDCF=SΔFDE,请直接写出相应的BF的长.5.如图, ∠1+∠2=180° , ∠DEF=∠A , ∠BED=70° .(1)求证: EF//AB :(2)求∠ACB的度数.6.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.7.在△ABC中,点D在直线AB上,在直线BC上取一点E,连接AE,DE,使得 AE=DE,DE交AC于点G,过点D作DF∥AC,交直线BC于点F,∠EAC=∠DEF.(1)当点E在BC的延长线上,D为AB的中点时,如图1所示.①求证:∠EGC=∠AEC;②若DF=3,求BE的长度;(2)当点E在BC上,点D在AB的延长线上时,如图2所示,若CE=10,5EG=2DE,求AG的长度.8.如图1,在Rt△ABC中,∠C=90°,AC=BC=2√2,点D、E分别在边AC、AB上,AD=DE=12AB,连接DE .将△ADE绕点A顺时针方向旋转,记旋转角为θ .(1)(问题发现)①当θ=0°时,BECD =;②当θ=180°时,BECD=;(2)(拓展研究)试判断:当0°≤θ<360°时,BECD的大小有无变化?请仅就图2的情形给出证明;(3)(问题解决)在旋转过程中,求出BE的最大值.9.如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,的值;①求BCAEEG最小值.②若点G为AE上一点,求OG+ 1210.如图,已知在菱形ABCD中,AB=5,cosB=3,点E、F分别在边BC、CD上,AF的延长5∠BAD.线交BC的延长线于点G,且∠EAF=12(1)求证:AE2=EC⋅EG;(2)如果点F是边CD的中点,求S△ABE的值;(3)延长AE、DC交于点H,联结GH、AC,如果△AGH与△ABC相似,求线段BE的长.11.如图,四边形ABCD中,AB∥CD,点O在BD上,以O为圆心的圆恰好经过A、B、C三点,⌢=CE⌢,连接OA、OF.⊙O交BD于E,交AD于F,且AE(1)求证:四边形ABCD是菱形;(2)若∠AOF=3∠FOE,求∠ABC的度数.,过点C作CD∥AB,点E在边AC上,AE=CD,联结12.在△ABC中,AB=AC=10,sin∠BAC= 35AD,BE的延长线与射线CD、射线AD分别交于点F、G.设CD=x,△CEF的面积为y.(1)求证:∠ABE=∠CAD.(2)如图,当点G在线段AD上时,求y关于x的函数解析式及定义域.(3)若△DFG是直角三角形,求△CEF的面积.13.在ΔABC中,∠A=90°,AB=8cm,AC=6cm,点M,点N同时从点A出发,点M沿边AB以4cm/s的速度向点B运动,点N从点A出发,沿边AC以3cm/s 的速度向点C运动(点M不与A,B重合,点N不与A,C重合),设运动时间为xs .(1)求证:ΔAMN∽ΔABC;(2)当x为何值时,以MN为直径的⊙O与直线BC相切?(3)把ΔAMN沿直线MN折叠得到ΔMNP,若ΔMNP与梯形BCNM重叠部分的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?14.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD=OB .连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45∘ .(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求EF的值.FG15.小东在做九上课本123页习题:“1:√2也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:√2.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.16.在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF//BC,交射线CA于点F.请解答下列问题:(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DE=2AE=6,则CF=.参考答案与解析1.【答案】(1)证明:∵MN∥BC,CE平分∠ACB,CF平分∠ACD,∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,∴OE=OC,OC=OF,∴OE=OF(2)解:当O运动到AC中点时,四边形AECF是矩形,∵AO=CO,OE=OF,∴四边形AECF是平行四边形,∵∠ECA+∠ACF= 12∠BCD,∴∠ECF=90°,∴四边形AECF是矩形2.【答案】(1)证明:在矩形ABCD中∴BC=AD AD∥BC,∠B=∠C=90°∴∠DAF=∠AEB∵DF⊥AE,AE=BC,∴∠AFD=90°=∠B,AE=AD∴△ABE≌△DFA,∴AB=DF(2)解:由(1)可得△ABE≌△DFA,∴AF=BE=3,DF=AB=CD∴∠DFE=∠DCE∴△DFE≌△DCE,∴CE=EF=1,AE=4在Rt△ABE中,AB= √42−32 = √73.【答案】(1)证明:∵AB∥DE,∴∠BAC=∠D.在△ABC和△DCE中,{∠B=∠DCE∠BAC=∠DAC=DE∴△ABC≌△DCE(AAS)(2)解:由(1)可得△ABC≌△DCE,∴CE=BC=5,在Rt△ACE中,AE=√AC2+CE2=√122+52=13.4.【答案】(1)DE∥AC;S1=S2(2)解:如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,{∠ACN=∠DCM∠CMD=∠N=90°AC=CD,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2(3)解:如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD= 12∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB= 12×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,{DF1=DF2∠CDF1=∠CDF2CD=CD,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD= 12×60°=30°,又∵BD=4,∴BE= 12×4÷cos30°=2÷√32= 4√33,∴BF1= 4√33,BF2=BF1+F1F2= 4√33+ 4√33= 8√33,故BF的长为4√33或8√33.5.【答案】(1)解:∵∠1+∠DFE=180°,∴∠1+∠2=180°.∴∠DFE=∠2,∴EF//AB;(2)解:∵EF//AB , ∴∠DEF=∠BDE. 又∵∠DEF=∠A , ∴∠BDE=∠A , ∴DE//AC , ∴∠ACB=∠DEB. 又∵∠DEB=70°, ∴∠ACB=70°.6.【答案】(1)解:连接OF ;根据切线长定理得:BE=BF ,CF=CG ,∠OBF=∠OBE ,∠OCF=∠OCG ; ∵AB ∥CD ,∴∠ABC+∠BCD=180°, ∴∠OBE+∠OCF=90°, ∴∠BOC=90°(2)解:由(1)知,∠BOC=90°.∵OB=6cm ,OC=8cm ,∴由勾股定理得到:BC= √OB 2+OC 2 =10cm ,∴BE+CG=BC=10cm(3)解:∵OF ⊥BC ,∴∠BFO=∠OFC=90°∵∠BOC=90°∴∠BOF+∠COF=90°,∠COF+∠FCO=90°。
2022-2023学年人教版初中下册数学七年级经典精练---平行线及其判定综合题一.选择题(共6小题)1.下列说法中,正确的是()A.有公共顶点且有一条公共边的两个角互为邻补角B.不相交的两条直线叫做平行线C.同一平面内,过一点有且只有一条直线与已知直线垂直D.两条直线被第三条直线所截,同位角相等2.下列说法正确的是()A.垂直于同一条直线的两直线互相垂直B.经过一点有且只有一条直线与已知直线平行C.如果两条直线被第三条直线所截,那么同位角相等D.从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离3.在同一个平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.无法确定4.若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行5.如图,在下列条件中,能够证明AD∥CB的条件是()A.∠1=∠4B.∠B=∠5C.∠1+∠2+∠D=180°D.∠2=∠36.如图,若AB∥CD,CD∥EF,那么∠BCE等于()A.∠1+∠2B.∠2﹣∠1C.180°﹣∠2+∠1D.180°﹣∠1+∠2二.填空题(共6小题)7.如图,这是顺义区第一座互通式立交桥——燕京桥,如果将顺平路和通顺路看做是两条直线,那么这两条直线的位置关系是.①相交②不相交③平行④在同一平面内⑤不在同一平面内8.经过直线外一点,有且只有直线与这条直线平行.9.如图,在长方体ABCD﹣EFGH中,与棱EF异面且与平面EFGH平行的棱是.10.不相交的两条直线是平行线..(判断对错)11.如图,直线AB,CD被直线CE所截,∠C=100°,请写出能判定AB∥CD的一个条件:.12.在同一平面内,与已知直线a平行的直线有条;而经过直线外一点P,与已知直线a平行的直线有且只有条.三.解答题(共3小题)13.在同一个平面内,两条直线有哪几种位置关系?14.请举出生活中平行线的例子.15.如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(),∠AGC+∠AGD=180°(),所以∠BAG=∠AGC().因为EA平分∠BAG,所以∠1=().因为FG平分∠AGC,所以∠2=,得∠1=∠2(),所以AE∥GF().平行线及其判定综合题参考答案与解析一.选择题(共6小题)1.下列说法中,正确的是()A.有公共顶点且有一条公共边的两个角互为邻补角B.不相交的两条直线叫做平行线C.同一平面内,过一点有且只有一条直线与已知直线垂直D.两条直线被第三条直线所截,同位角相等【解答】解:A、只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角,原说法错误,故本选项不符合题意;B、在同一平面内,不相交的两条直线叫平行线,原说法错误,故本选项不符合题意;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,说法正确,故本选项符合题意;D、两直线平行,同位角相等,原说法错误,故本选项不符合题意.故选:C.【点评】本题考查了邻补角、平行线的概念、垂直的性质、同位角的概念,解题的关键是熟记相关概念并灵活运用.2.下列说法正确的是()A.垂直于同一条直线的两直线互相垂直B.经过一点有且只有一条直线与已知直线平行C.如果两条直线被第三条直线所截,那么同位角相等D.从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离【解答】解:A、同一平面内,垂直于同一条直线的两直线应是平行不是垂直,故该选项错误;B、根据平行线的性质可知经过直线外一点有且只有一条直线与已知直线平行,该选项错误;C、如果两条平行的直线被第三条直线所截,那么同位角才相等,故该选项错误;D、从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,这一说法是正确的,【点评】本题考查了平行线的性质和判定以及点到直线的距离定义,属于基础性题目.3.在同一个平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.无法确定【解答】解:在同一平面内两条不重合的直线的位置关系是平行和相交.故选:C.【点评】本题主要考查对平行线和相交线的理解和掌握,能熟练地运用性质进行说理是解此题的关键.4.若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.5.如图,在下列条件中,能够证明AD∥CB的条件是()A.∠1=∠4B.∠B=∠5C.∠1+∠2+∠D=180°D.∠2=∠3【解答】解:A、∠1=∠4,则AB∥DE,故选项错误;B、∠B=∠5,则AB∥DE,故选项错误;C、∵∠1+∠2+∠D=180°,即∠BAD+∠D=180°,∴AB∥DE,故选项错误;D、正确.【点评】本题考查了平行线的判定定理,正确理解同位角、内错角、同旁内角的定义是关键.6.如图,若AB∥CD,CD∥EF,那么∠BCE等于()A.∠1+∠2B.∠2﹣∠1C.180°﹣∠2+∠1D.180°﹣∠1+∠2【解答】解:∵AB∥CD,CD∥EF,∴∠1=∠BCD,∠DCE+∠2=180°,∴∠BCE=∠BCD+∠DCE=∠1+180°﹣∠2.故选:C.【点评】此题主要考查了平行公理及推论,正确掌握平行线的性质是解题关键.二.填空题(共6小题)7.如图,这是顺义区第一座互通式立交桥——燕京桥,如果将顺平路和通顺路看做是两条直线,那么这两条直线的位置关系是⑤.①相交②不相交③平行④在同一平面内⑤不在同一平面内【解答】解:如果将顺平路和通顺路看做是两条直线,那么这两条直线的位置关系是不在同一平面内.故答案为:⑤.【点评】本题考查了平行线和相交线,掌握相关定义是解答本题的关键.8.经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:一条.【点评】本题考查了平行公理,平行公理:经过直线外一点,有且只有一条直线与这条直线平行.9.如图,在长方体ABCD﹣EFGH中,与棱EF异面且与平面EFGH平行的棱是棱AD,棱BC..【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.10.不相交的两条直线是平行线.×.(判断对错)【解答】解:不相交的两条直线是平行线,错误,应为同一平面内,不相交的两条直线是平行线.故答案为:×.【点评】此题主要考查了平行线的定义,关键是注意“同一平面”.11.如图,直线AB,CD被直线CE所截,∠C=100°,请写出能判定AB∥CD的一个条件:∠1=100°(答案不唯一).【解答】解:能判定AB∥CD的一个条件:∠1=100°(答案不唯一),理由如下:∵∠C=100°,∠1=100°,∴∠C=∠1,∴AB∥CD,故答案为:∠1=100°(答案不唯一).【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.12.在同一平面内,与已知直线a平行的直线有无数条;而经过直线外一点P,与已知直线a平行的直线有且只有1条.【解答】解:在同一平面内,与已知直线a平行的直线有无数条;而经过直线外一点P,与已知直线a平行的直线有且只有1条.【点评】本题主要考查平行公理,注意成立的条件.三.解答题(共3小题)13.在同一个平面内,两条直线有哪几种位置关系?【解答】解:在同一个平面内的两条直线一定是平行或相交两种位置关系.【点评】本题考查了同一平面两条直线的位置关系,解决本题的关键是在同一平面内不重合的两条直线,有两种位置关系:相交或平行.14.请举出生活中平行线的例子.【解答】解:①马路上斑马线;②笔直的火车铁轨;③练习簿上的横线;④长方形黑板的上下边沿.【点评】本题主要考查了平行线,熟练掌握平行线的定义是解题的关键.15.如图,点G在CD上,已知∠BAG+∠AGD=180°,EA平分∠BAG,FG平分∠AGC,请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等).因为EA平分∠BAG,所以∠1=∠BAG(角平分线的定义).因为FG平分∠AGC,所以∠2=∠AGC,得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).【解答】解:因为∠BAG+∠AGD=180°(已知),∠AGC+∠AGD=180°(邻补角的定义),所以∠BAG=∠AGC(同角的补角相等),因为EA平分∠BAG,所以∠1=∠BAG(角平分线的定义),因为FG平分∠AGC,所以∠2=∠AGC,得∠1=∠2(等量代换),所以AE∥GF(内错角相等,两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等,两直线平行.【点评】此题考查了平行线的判定,熟记“内错角相等,两直线平行”是解题的关键。
平行线的判定和性质(综合篇)一、重点和难点:重点:平行线的判定性质。
难点:①平行线的性质与平行线的判定的区分②把握推理论证的格式。
二、例题:这部份内容所涉及的题目主若是从已知图形中识别出对顶角、同位角、内错角或同旁内角。
解答这种题目的前提是熟练地把握这些角的概念,关键是把握住这些角的大体图形特点,有时还需添加必要的辅助线,用以突出大体图形的特点。
上述类型题目大致可分为两大类。
一类题目是判定两个角相等或互补及与之有关的一些角的运算问题。
其方式是“由线定角”,即运用平行线的性质来推出两个角相等或互补。
另一类题目主若是“由角定线”,也确实是依照某些角的相等或互补关系来判定两直线平行,解此类题目必需要把握好平行线的判定方式。
例1.如图,已知直线a,b,c被直线d所截,假设∠1=∠2,∠2+∠3=180°,求证:∠1=∠7分析:运用综合法,证明此题的思路是由已知角的关系推证出两直线平行,然后再由两直线平行解决其它角的关系。
∠1与∠7是直线a和c被d所截得的同位角。
须证a//c。
法(一)证明:∵d是直线(已知)∴∠1+∠4=180°(平角概念)∵∠2+∠3=180°,∠1=∠2(已知)∴∠3=∠4(等角的补角相等)∴a//c(同位角相等,两直线平行)∴∠1=∠7(两直线平行,同位角相等)法(二)证明:∵∠2+∠3=180°,∠1=∠2(已知)∴∠1+∠3=180°(等量代换)∵∠5=∠1,∠6=∠3(对顶角相等)∴∠5+∠6=180°(等量代换)∴a//c (同旁内角互补,两直线平行)∴∠1=∠7(两直线平行,同位角相等)。
例2.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE。
分析:只要求得∠EBC=∠CBD,由∠1+∠2=180°推出∠1=∠BDC,从而推出AE//FC,从而推出∠C=∠EBC而∠C=∠A于是可得∠A=∠EBC。
1BA1.如图,已知AB ∥CD ,∠EBF =2∠ABE ,∠EDF =2∠CDE ,则∠E 与∠F 之间满足的数量关系是( ) A .∠E =∠FB .∠E +∠F =180°C .3∠E +∠F =360°D .2∠E -∠F =90°2.如图,AB ∥DE ,∠ABC 的角平分线BP 和∠CDE 的角平分线DK 的反向延长线交于点P ,且∠P -2∠C =57°,则∠C 等于( ). A. 24° B. 34° C. 26° D. 22°[答案]D3.如图,已知AB ∥CD ,点E 为AB 上一点,∠CDF =∠FDG ,FE 平分∠BEG ,则∠F 与∠G 之间满足的数量关系是( )A.∠F+∠G=90°B.2∠G+∠F=180°C.∠F-∠G=90°D.2∠F-∠G=180°[答案]:D4.如图,BC AB ⊥,︒=∠+∠⊥∠9021,DE AE E BC BAD AE ,于点交平分,M 、N 分别是BA 、CD 延长线上的点,EDN EAM ∠∠和的平分线交于点F.F ∠的度数为【答案】135度5.如图,AC ⊥BD 于C ,E 是AB 上一点,CE ⊥CF ,DF ∥AB ,EH 平分∠BEC ,DH 平分∠BDG ,则:2∠H 与∠ACF 之间的数量关CAB北北第1EDPCAB第10题图FE ABDC(第15题图)系为______________[答案]2∠H +∠ACF =180°6.已知四边形ABCD ,其中AD//B C, BC AB ⊥,将DC 沿DE 折叠,C 落于C ’ , DC ’交CB 于C ,且ABGD 为长方形〔如图1);再将纸片展开,将AD 沿DF 折叠,使A 点落在DC 上一点A ’,〔如图2),在两次折叠过程中,两条折痕DE 、 DF 所成的角为 度.【答案】45度7.如图,已知四边形ABCD 中,D ACD ABC BC AD ∠=∠=∠,∥,AE 平分CAD ∠,下列说法:①;∥CD AB ②CD AE ⊥;③BCF AEF S S ∆∆=;④ABE BAD AFB ∠-∠=∠,其中真确的结论有()A.1个B.2个C.3个D.4个 【答案】B8.点A ,C 为射线l 上一两点,且AB ∥CD ,若点E ,F 在线段AC 上,且∠ABE =3∠ABF ,DE 平分∠FDC ,∠ABE=60°,则2∠BED -∠BFD 的度数为 .9.如图,点E 在CA 延长线上,DE ,AB 交于F ,且∠BDE =∠AFE ,∠B =∠C ,∠EF A 比∠FDC 的余角小10°.P 为线段DC 上一动点,Q 为PC 上一点,且满足∠FQP =∠QFP ,PM 为∠EFP 的平分线,则下列结论:①AB ∥CD ;②FQ 平分∠AFP ;③∠D -∠E =140°;④∠QFN 的角度为定值,其中正确结论的个数有( )A .1个B .2个C .3个D .4个【答案】D10.如图,AB //EF ,∠ABP =31∠ABC ,∠EFP =31∠EFC ,已知∠FCD =60°,则∠P 的度数为( ).A. 60°B. 80°C. 90°D. 100°[答案]B11.已知直线ED BC //(1)如图1,若点A 在直线DE 上,且︒=∠44B ,︒=∠57EAC ,求BAC ∠的度数; (2)如图2,若点A 是直线DE 的上方一点,点G 在BC 的延长线上,求证:BAC ACG ∠=∠+ABC ∠;(3)如图3,FH 平分AFE ∠, CH 平分ACG ∠,且FHC ∠比A ∠的2倍少60°,直接写出A ∠的度数.解:(1)∵BC ∥ED∴∠DAB=∠B=44°∵∠DAB+∠BAC+∠EAC=180°∴∠BAC=180°—∠DAB —∠EAC=180°—44°—57°=79° (2)过点C 作CF ∥AB ∵CF ∥AB∴∠ACF=∠BAC 、∠FCG=∠ABC ∴∠ACG=∠ACF+∠FCG=∠BAC+∠ABC (3)40°FBMQ PDC AE第10题图BC DAPF E12.如图,AB ∥CD ,E 是AB ,CD 之间的一点.(1)判定∠BAE ,∠CDE 与∠AED 之间的数量关系,并证明你的结论;(2)如图2,若∠BAE,∠CDE 的两条平分线交于点F ,直接写出∠AFD 与∠AED 之间的数量关系;(3)将图2中的射线DC 沿DE 翻折交AF 于点G 得图3,若∠AGD 的余角等于2∠E 的补角,求∠BAE 的大小.(1)如图,过点E 作EG ∥AB,则∠A =∠1, ∵AB ∥CD ,∴EG ∥CD,∴∠D =∠2,∴∠BAE +∠CDE=∠1+∠2=∠AED. ………4分 (2)∠AFD =21∠AED ………7分 (3)设∠B AF=∠E AF=α,∠GDE =∠CDE =β 由(1)知,∠AGB=∠BAG+∠CDG=α+2β, ∠AED=∠BAE+∠CDE=2α+β, 又∵∠AGD 的余角等于2∠E 的补角, ∴90°-(α+2β)=180°-2(α2+β)解得α=30° ∴∠BAE=60°………10分13.已知AB//CD ,点P 在直线AB,CD 之间,连接AP,CP (1)探究发现:(填空)填空:如图1,过P 作PD//AB.∴∠A+∠1= 0( ) ∵AB//CD (已知)∴PQ//CD ( )∴∠C+∠2=180结论:∠A+∠C+∠APC= 0(2)解决问题:第25题图2第25题图 1第25题图3①如图2,延长PC至点E,AF,CF分别平分∠PAB,∠DCE,试判断∠P与∠F存在怎样的数量关系并说明理由;②如图3,若∠APC=1000,分别作BN//AP,DN//PC,AM,DM分别平分∠PAB,∠CDN,则∠M的度数为(直接写出结果)解(1)180°两直线平行同旁内角互补平行于同一条直线的两条直线相互平行360°(2)①∠P+2∠F=180°设∠BAF=x°∠ECF=y°过P作PM∥AB 过F作FN∥AB∵AB∥CD ∴PM∥CD,FN∥CD∴∠AFN=∠BAF=x°∠CFN=∠DCF=y°∴∠AFC=∠AFN-∠CFN=x°-y°∴∠PCD=180°-2y∴∠BAP+∠APC+∠PCD=360°∴∠APC=360°-2x-180°+2y=180°-2x+2y∴∠APC+2∠AFC=180°-2x +2y+2x-2y=180°②140°14.如图,四边形ABCD中,AD∥BC,∠ADC=α,P为直线CD上一动点,点M在线段BC上,连MP,∠MPD=β(1) 如图,若MP⊥CD,α=120°,则∠BMP=___________(2) 如图,当P点在DC延长线上时,∠BMP=___________(3) 如图,当P点在CD延长线上时,请画出图形,写出∠BMP、β、α之间的数量关系,并证明你的结论[解答:]︒=+∠∴︒+=∠+∠=∠∠=∠∴∴︒=∠=∠∴︒=∠+∠∠=∠∴︒=+∠+︒180-MPE -180 CPE MPD MPE MPE BMP BC PE BC AD -180DPE PDA 180ADC PDA PDA DPE AD PE P 180-BMP 3 2 (1)150 .22βααβαβαβα ∥∥∥作直线过点)()(15.如图,在平面直角坐标系中,点A 、B 、C 、E 、P 均在坐标轴上,A (0,3)、B (-4,0)、P (0,-3),点C 是线段OP (不包含O 、P )上一动点,AB ∥CE ,延长CE 到D ,使CD =BA(1) 如图,点M 在线段AB 上,连MD ,∠MAO 与∠MDC 的平分线交于N .若∠BAO =α,∠BMD =130°,则∠AND 的度数为___________(2) 如图,连BD 交y 轴于F .若OC =2OF ,求点C 的坐标 (3) 如图,连BD 交y 轴于F ,在点C 运动的过程中,OFOCAO -的值是否变化?若不变,求出其值;若变化,请说明理由2OFOC-AO 2OF OF -CF -OF AF OC -AO AFCF DE21OF 2)3()23,0(,23 226 2DOF S BOF S 2121OFOE *OF 21DOF S OB,*OF 21BOF S 26)32DE *BO 21BOD S DOFS BOF S BOD S a 4,3D CD AB CD AB a 0C X DE D OD 2 2521(1) ,23=∴=+=∴=∴=--=∴-=+∴-=+∴-====+=+==+=∴+∴=⊥︒+)()可知不变,由(△△△△(△△△△)(,∥),(轴,设点作,过点)连(C a aa a aOC a a α16.已知如图,直线AB 和直线DE 被直线CF 所截,直线CF 交直线AD 与M 点.设4622134x ,=-++--=∠=∠︒︒m y m y DAF x CDA 且,. (1)求证:CD AB //;(2)直线BE 交直线AD 于N 点,若EBF ECF ∠=∠,求证:︒=∠+∠180BNM CMA ; (3)将直线CF 向左平移,使得C 在线段DE 的延长线上,仍然有EBF ECF ∠=∠,先画出图形,并直接写出CMA ECM MAB ∠∠∠、、之间的关系.证明:由题解得 x=134+2m y=46-2m ∴x+y=180° 即∠CDA+∠DAF=180° ∴AB//CD(1) ∵AB//CD ∴∠ECF+∠CFB=180°又∵∠ECF=∠EBF ∴∠EBF+∠CFB=180° ∴FM//EB ∴∠CMA+∠BNM=180° (2)∠MAB=∠ECM+∠CMA17.如图,在平面直角坐标系中,线段AB 的两个端点A 、B 分别在y 轴正半轴、x 轴负半轴上,直线CD 分别交x 轴正半轴、y轴负半轴于点C 、D ,且AB ∥CD . (1)如图1,若点A (0,a )和点B (b ,00a ;ⅰ)直接写出a 、b 的值,a = 、b = ;ⅱ)把线段AB 平移,使B 点的对应点E 到x 轴距离为1,A 点的对应点F 到y 轴的距离为2,且EF 与两坐标轴没有交点,则F 点的坐标为 ;(2)若G 是CD 延长线上一点DP 平分∠ADG ,BH 平分∠ABO ,BH 的反向延长线交DP于P (如图2),求∠HPD 的度数; (3)若∠BAO =30o ,点Q 在x 轴(不含点B 、C )上运动,AM 平分∠BAQ ,QN 平分∠AQC ,(如图3)直接写出∠BAM 与∠NQC 满足的数量关系.(1)ab =-1;…………………………2分F (21)或F (-21); …………………………4分 (2)如图,过P 点作PR ∥AB ,过O 作OT ∥CD∵AB ∥CD ∴AB ∥CR ∥OT ∥CD ∴∠ABO =∠3 ∠ABO =∠4 ∠RPD =∠2 ∠RPH =∠1 ∴∠HPD=∠RPD -∠RPH=∠2-∠1 ∠ABO+∠ODC=∠3+∠4=90o又∵DP 平分∠ADG ,BH 平分∠ABO∴∠1=12∠ABO ∠2=12∠ADG=90o -12∠ODC ∴∠2-∠1=90o -12(∠ABO+∠ODC )=90o -12×90o =45o即∠HPD=45o …………………………8分(3)当点Q 在线段BC 上时,∠NQC-∠BAM =30°当点Q 在线段BC 延长线上时,∠BAM +∠NQC =60°当点Q 在线段CB 延长线上时,∠BAM +∠NQC =30° …………………………12分 18.如图所示,在平面直角坐标系中,点()m m C ,在一三象限角平分线上,点()0,n B 在X 轴上,且422+-+-=n n m ,点A 在Y 轴的正半轴上,四边形AOBC 的面积为6. (1)求点A 的坐标.(2)P 为AB 延长线上一点,PQ ∥OC,交CB 延长线于Q,探究Q ABQ OAP ∠∠∠,,的数量关系并说明理由;(3)作AD 平行CB 交CO 延长线于D,BE 平分CBx ∠,BE 反向延长线交CO 延长线于F,若设βα=∠=∠F ADO ,,试求βα2+的值。