立体几何动点问题详解
- 格式:docx
- 大小:415.37 KB
- 文档页数:6
立体几何中的动态问题立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。
下面举例说明解决这类问题的常用方法。
一、以静制动例1、在三棱柱ABC —A 1B 1C 1中,AA 1=AB=AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,点P 在A 1B 1上,则直线PQ 与直线AM 所成的角等于( D ) A 300 B 450 C 600 D 900分析:虽然点P 的具体位置不定,但PQ 在平面A 1C 上的射影是一条定直线A 1H ,在正方形ACC 1A 1中AM ⊥A 1H ,故由三垂线定理得BQ ⊥AM 。
例2 如图3,在棱长为a 的正方体1111ABCD A B C D -中,EF 是棱AB 上的一条线段,且EF =b <a ,若Q 是11A D 上的定点,P 在11C D 上滑动,则四面体PQEF 的体积( ). (A)是变量且有最大值 (B )是变量且有最小值 (C )是变量无最大最小值 (D )是常量分析:此题的解决需要我们仔细分析图形的特点.这个图形有很多不确定因素,线段EF 的位置不定,点P 在滑动,但在这一系列的变化中是否可以发现其中的稳定因素?求四面体的体积要具备哪些条件?仔细观察图形,应该以哪个面为底面?观察PEF ∆,我们发现它的形状位置是要变化的,但是底边EF 是定值,且P 到EF 的距离也是定值,故它的面积是定值.再发现点Q 到面PEF 的距离也是定值.因此,四面体PQEF 的体积是定值.我们没有一点计算,对图形的分析帮助我们解决了问题.1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( ) A.55B.552 C. 2 D. 1解析:如图,由于点P 、Q 分别在线段BD 、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当OQ 最小时,PQ 最小。
立体几何中的动点轨迹问题是一个常见的问题类型,它涉及到空间几何中的点、线、面等元素的运动和变化。
解决这类问题的关键在于理解运动和变化的过程,并能够通过数学模型进行描述。
解题策略主要包括以下几个方面:
1. **建立空间坐标系**:为了更好地描述空间几何元素的位置和运动,需要建立一个适当的空间坐标系。
坐标系的建立应依据问题的具体情境和需求,通常选择一个固定点作为原点,并确定三个互相垂直的轴。
2. **确定动点的坐标**:在确定了坐标系之后,需要确定动点的坐标。
这可以通过设定动点的坐标变量来实现,例如设动点的坐标为$(x, y, z)$。
3. **分析运动过程**:在确定了动点的坐标后,需要分析动点的运动过程。
这包括了解动点的运动方向、速度、加速度等参数,以及这些参数与坐标变量的关系。
4. **建立数学模型**:通过分析运动过程,可以建立描述动点运动的数学模型。
这通常涉及到物理、几何、代数等多个方面的知识,需要根据具体问题进行选择和应用。
5. **求解数学模型**:建立了数学模型后,需要求解该模型以得到动点的轨迹方程。
这可能涉及到微积分、线性代数、解析几何等多个数学领域的知识,需要根据问题的复杂程度和要求进行选择和应用。
6. **验证答案**:最后,需要对得到的答案进行验证,以确保其正确性和有效性。
这可以通过将答案代入原问题中进行检验,或者通过与其他已知的答案进行比较来进行验证。
综上所述,解决立体几何中的动点轨迹问题需要综合运用空间几何、物理、数学等多个领域的知识,并能够根据具体问题进行选择和应用。
同时,还需要有一定的逻辑思维和分析能力,以更好地理解和解决这类问题。
可编辑修改精选全文完整版立体几何—空间中的动点问题专题综述空间中的动点问题是指在一定的约束条件下,点的位置发生变化,在变化过程中找出规律,将动点问题转化为“定点”问题、将空间问题转化为平面问题、将立体几何的问题转化为解析几何的问题等,目的是把问题回归到最本质的定义、定理或现有的结论中去.立体几何中考查动点问题,往往题目难度较大,渗透化归与转化思想,对学生的逻辑推理能力要求较高.一般考查动点轨迹、动点的存在性、定值、范围、最值等问题,除了利用化动为定、空间问题平面化等方法,在几何体中由动点的变化过程推理出结果以外,也可以通过建系,坐标法构建函数,求得结果.专题探究探究1:坐标法解决动点问题建立空间直角坐标系,使几何元素的关系数量化,借助空间向量求解,省去中间繁琐的推理过程.解题步骤与空间向量解决立体几何问题一致,建立适当的空间直角坐标系由动点的位置关系,如在棱上或面内,转化为向量的关系,用参数表示动点的坐标通过空间向量的坐标运算表示出待求的量若求最值或取值范围,转化为函数问题,但要注意自变量的取值范围.一般坐标法用于解决动点的存在性问题、求最值、求范围问题.说明:对于求最值、范围问题,也可以直接通过几何体中的某个变量,构建函数,求最值或范围.(2022湖北省宜昌市模拟) (多选)在正方体1111ABCD A B C D -中,点为线段1AD 上一动点,则( ) A. 对任意的点,都有1B D CQ ⊥ B. 三棱锥1B B CQ -的体积为定值 C. 当为1AD 中点时,异面直线1B Q 与所成的角最小D. 当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大【审题视点】以正方体为载体考查定点的定值、最值问题,正方体便于建立空间直角坐标系,可选择用坐标法解决.【思维引导】选项,可以用几何知识证明;选项,设出点坐标,用坐标表示出异面直线成角的余弦值或线面角的正弦值,求最值,得出点位置.【规范解析】解:对于:连接,1.CD因为在正方体1111ABCD A B C D -中, 1B D ⊥平面1ACD ,CQ ⊂平面1ACD , 1B D CQ ⊥,故正确; 对于:平面11//ADD A 平面11BCC B ,平面11ADD A 与平面11BCC B 的距离为正方体棱长,1123111326B B CQ Q BCB V V a a a --==⨯⋅=,为定值,故正确;对于:以为坐标原点,直线分别轴,建立空间直角坐标系如下图:设正方体1111ABCD A B C D -的棱长为2, ()[](),0,20,2Q x x x -∈,则1(2,2,2)B , ()2,2,0B , (0,2,0)C , 因此()12,2,B Q x x =---, ()2,0,0BC =-, 设异面直线1B Q 与所成的角为θ,则当时,,当时,当时,故当与1D 重合时,异面直线1B Q 与所成的角最小,故不正确;对于: ()12,2,B Q x x =---, 又是平面11BCC B 的一个法向量,设直线1B Q 与平面11BCC B 所成的角为α,则,所以当1x =时,sin α取得最大值63,而0,2πα⎡⎤∈⎢⎥⎣⎦, 因此α取得最大值,即当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大, 故正确. 故选.ABD用一个参数表示动点的坐标,并求出参数范围,即为函数定义域转化为函数求最值,求出当函数取最值时的x 的值【探究总结】典例1是一道典型的研究动点问题的多选题,难度中等,但能够反映出坐标法研究最值范围问题的思路.建系设坐标,写出参数范围 根据向量运算构造函数求最值.(2021安徽省蚌埠市联考) 已知圆柱1OO 底面半径为1,高为π,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面绕着轴1OO 逆时针旋转(0)θθπ<<后,边11B C 与曲线Γ相交于点.P(1)求曲线Γ长度; (2)当2πθ=时,求点1C 到平面的距离;(3)证明:不存在(0)θθπ<<,使得二面角D AB P --的大小为.4π探究2:化动为定点的位置在变化的过程中,有些量或位置关系是不变的,比如点到平面的距离不变,从而使几何体的体积不变;动点与另外一定点的连线与某条直线始终垂直,与某个平面始终平行.在证明体积为定值、证明位置关系时,要动中寻定,将动态的问题静态化:将动点转化为定点,寻找动直线所在的确定平面,从而解决问题.答题思路:1.动点到平面的距离为定值:证明平面,动点到平面的距离即为定点到平面的距离;2.为动点,为定点,证明:证明所在平面与垂直;3.为动点,为定点,证明平面:证明所在平面与平面平行.(2021湖南省四校联考) 在正三棱柱中,,,分别为的中点,P 是线段DF 上的一点.有下列三个结论:①平面;②;③三棱锥的体积时定值,其中所有正确结论的编号是 A. ①②B. ①③C. ②③D. ①②③【审题视点】求证关于动直线的线面平行或线线垂直,三棱锥的体积为定值问题,要化动为定.【思维引导】证明动直线所在平面与已知平面平行;证明定直线与动直线所在平面垂直;寻找过点与平面平行的直线,即得出点到平面的距离.【规范解析】解:如图,对于①,在正三棱柱中,,分别为的中点,平面平面,由平面,得平面,故①正确;对于②,在正三棱柱中,平面平面,平面平面平面,,平面平面,故②正确;对于③,平面平面,平面到平面的距离为定值,而有为定值,故是定值,线面平行,转化为面面平行异面直线垂直,转化为线面垂直体积的定值问题,转化点到平面的距离是定值,即通过线面平行或面面平行,得出动点到平面距离为定值故③正确.故选D .【探究总结】立体几何证明中经常出现,求证关于动直线的线面平行与线线垂直问题,其思路是转化为证明动直线所在的定平面与其他平面或直线的位置关系.关键是分析动点,动线或动面间的联系,在移动变化的同时寻求规律.(2021云南省曲靖市联考) 如图所示的几何体中,111ABC A B C -为直三棱柱,四边形为平行四边形,2CD AD =,60ADC ∠=︒,1.AA AC =(1)证明:,1C ,1B 四点共面,且11A C DC ⊥;(2)若1AD =,点是上一点,求四棱锥的体积,并判断点到平面11ADC B 的距离是否为定值?请说明理由.探究3: 巧用极端位置由于点位置连续变化,使研究的图形发生连续的变化,利用点的位置变化“极端”位置,避开抽象及复杂的运算,得到结论.常见题型:1.定值问题:几何体中存在动点,但所求结果是确定的,即随着动点位置的改变不会影响所求的量,故可以考虑动点在极端位置的情况,优化解题过程.2.范围问题:几何体中存在动点,结果会随着动点位置改变而改变,当动点从一侧极端位置移动到令一个极端位置的过程中,所求量在增大、或减小、或先增后减、或先减后增,通过求出极端位置处的值,及最值,从而得出范围;3.探究问题:探究满足条件的点是否存在,也可以转化为求出范围,从而得出结论.(2021湖南省株洲市模拟) 在正四面体中, 为棱的中点, 为直线上的动点,则平面与平面夹角的正弦值的取值范围是 .【审题视点】本例可用极端位置法分析,也可以建系,用坐标法解决.【思维引导】借助极端位置分析,不难看出经过和底边中线的平面与平面垂直,点在移动的过程中,存在一个位置使平面与经过和底边中线的平面平行,即平面平面,此时两平面所成角为,角最大;当点移动到无穷远时,平面平面,此时两平面所成角最小.【规范解析】解:由下左图 设为的中心,为的中点, 则在正四面体中平面, 为中点,为的中点,,故平面连接,并延长交于点, 连接,并延长交于点, 则过点的平面交直线于点. 则平面平面 即平面与平面的夹角的正弦值为1,点从取最值的位置处移动至直线的无穷远处的过程中, 平面与平面的夹角逐渐减小,即当点在无穷远处时,看作, 如下右图 故平面与平面的夹角即为平面与平面的夹角,求出其正弦值为. 综上可知:面与面的夹角的正弦值的取值范围为.【探究总结】借助极端位置解决典例3中的问题,首先利用几何知识,明确点在移动的过程中 ,所求量的变化情况,若在极端位置处取“最值”,问题就简化为求出极端位置处的值.(2021浙江省杭州市高三模拟)高为1的正三棱锥的底面边长为,二面角与二面角A PB C --之和记为,则在从小到大的变化过程中,的变化情况是( )A .一直增大B .一直减小C .先增大后减小D .先减小后增大专题升华结合几何知识,两平面成角的变化过程,即动点从一个极端位置变化到另一极端位置时,夹角大小的增减情况在极端位置处取“最值”,直接求出点该处时的夹角的正弦值,即为范围区间的一个端点几何体中研究动点问题往往难度较大,开放性强,技巧性高.总体思路是:用几何知识,经过逻辑推理,证明位置关系或求出表示出所求量;或者建立空间直角坐标系,将几何问题代数化,用空间向量研究动点问题,省去了繁杂的推理环节,但计算量较大.解决动点问题的策略不局限与上述方法,常用的的方法还有:运用条件直接推算,借助条件将几何体还原到长方体中去;构造函数,数形结合;还将空间问题转化为平面几何解决,如化折为直、利用解析几何的知识解决. 但只要我们熟练掌握这些基本方法,并灵活加以应用,不仅能化繁为简,化难为易,而且还可以得到简捷巧妙的解法.【答案详解】 变式训练1【解答】解:(1)在侧面展开图中为的长,其中AB AD π==,∴曲线Γ的长为2;π(2)当2πθ=时,建立如图所示的空间直角坐标系,则有()0,1,0A -、()0,1,0B 、1,0,2P π⎛⎫- ⎪⎝⎭、()11,0,C π-, 、(1,1,)2AP π=-、1(1,0,)OC π=-设平面的法向量为(,,)n x y z =,则2002n AB y n AP x y z π⎧⋅==⎪⎨⋅=-++=⎪⎩, 取2z =得(,0,2)n π=,所以点1C 到平面的距离为12||||4OC n d n ππ⋅==+; (3)假设存在满足要求的(0)θθπ<<, 在(2)的坐标系中,()sin ,cos ,P θθθ-,,设平面的法向量为111(,,)m x y z =,则111120sin (cos 1)0y x y z θθθ=⎧⎨-+++=⎩,取11x =得sin (1,0,)m θθ=,又平面的法向量为(1,0,0)k =,由二面角D AB P --的大小为4π, 则|cos ⟨,m k ⟩2212|sin .21sin θθθθ==⇒=+ sin (0)2πθθθ<<<,0θπ∴<<时,均有sin θθ<,与上式矛盾.所以不存在(0)θθπ<<使得二面角D AB P --的大小为.4π 变式训练2【解答】(1)证明:因为111ABC A B C -为直三棱柱, 所以,且,又四边形为平行四边形,//BC AD ,且BC AD =,,且,四边形为平行四边形,,1B 四点共面;,又1AA ⊥平面,AC ⊂平面,,四边形11A ACC 为正方形,连接1AC 交1A C 于,,在ADC ∆中,2CD AD =,,由余弦定理得,,所以,AD AC ⊥,又1AA ⊥平面ABCD ,AD ⊂平面ABCD ,1AA AD ⊥,,1AA ⊂平面11A ACC ,,AD ⊥平面11A ACC ,1AC ⊂平面11A ACC ,所以,又,平面,1A C ⊥平面, 1DC ⊂平面,(2)解:由(1)知:1A C ⊥平面,在Rt DAC 中,由已知得3AC =,,四棱锥的体积,//BC AD ,点到平面的距离为定值,即为点到平面的距离变式训练3【解析】解:设二面角为,二面角A PB C --为,当时,正三棱锥趋向于变为正三棱柱,;当时,正三棱锥趋向变为平面,.当正三棱锥为正四面体时,且,,故.当从小变大时,要经过从变为小于的角,然后变为的过程, 故只有选项符合.故选:.静夜思[ 唐] 李白原文译文对照床前明月光,疑是地上霜。
立体几何中的动点问题一、立体几何中的动点问题嘿,小伙伴们,咱今天来唠唠立体几何里的动点问题哈。
这动点问题就像一个调皮的小怪兽,在立体几何这个大城堡里到处乱窜呢。
你想啊,立体几何本身就已经够让人头疼的了,再加上个动点,那简直是“难上加难”。
比如说一个正方体或者长方体里面,有个点在棱上或者面上动来动去的,你要去研究它的轨迹啦,它和其他点、线、面之间的关系啦,真的是很考验我们的小脑袋瓜。
我给你们举个例子哈,就像有个三棱柱,在它的一条侧棱上有个动点,这个动点和底面三角形的某个顶点连线,然后问你这条连线和底面的夹角怎么随着这个动点的移动而变化。
这时候你就得动用你学过的那些立体几何的知识了,像什么直线和平面的夹角公式啦,向量的方法啦。
而且呢,这个动点问题还常常和空间想象力挂钩。
有时候你光靠在纸上画图还不行,得在脑子里构建出那个立体的模型,想象着那个点是怎么动的。
这就像是你自己在脑子里玩一个3D游戏一样,不过这个游戏可没那么容易通关哦。
还有一种情况也很常见,就是在一个圆锥或者圆柱里面有动点。
圆锥和圆柱本身就是曲线图形,再加上动点,就像是在弯弯绕绕的迷宫里找出口一样。
比如说在圆锥的侧面上有个动点,要你求这个动点到圆锥底面圆心的距离的取值范围,你就得考虑圆锥的母线长啦,底面半径啦,还有这个动点的运动范围啦。
其实解决立体几何中的动点问题呢,也有一些小窍门。
一个就是多画图,不同位置的图都画一画,这样你就能比较直观地看到动点的变化了。
再一个就是要善于把立体问题转化成平面问题,利用平面几何的知识来解决。
就像把圆锥展开成扇形,把圆柱展开成长方形,这样可能就会让问题变得简单一些呢。
不过呢,不管有多少小窍门,都得靠我们自己多做练习题,多去思考,这样才能真正掌握这个有点“小狡猾”的动点问题。
加油哦,小伙伴们!。
立体几何(12)—高端视野:动点问题高考数学研究动点问题1/3立体几何——(12)高端视野:动点问题在高考试题中,经常考查立体几何中的动点问题,在立体几何中常见的动点问题大致可分为以下几类:一是求动点轨迹问题;二是求动点与某点(或面)的距离问题;三是求直线与直线(或平面)垂直问题;四是求直线与直线(或平面)平行问题;五是平面与平面垂直问题。
举例说明这几个问题的解法。
一、求动点轨迹问题这类问题往往是先利用题中条件把立几问题转化为平面几何问题,再判断动点轨迹。
【例1】如图,定点A和B都在平面?内,定点??P,??PB,C是?内异于A和B的动点,且ACPC?。
那么,动点C在平面?内的轨迹是()A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点【解析】由三垂线定理的逆定理得∵AC⊥PC且PC在?内的射影为BC,∴AC⊥BC.∴∠ACB=900.∴C点的轨迹为以AB为直径圆,但除去A、B两点.二、动点与某点(面)的距离问题【例2】正方体1111DCBAABCD?中,棱长为a,E是1AA的中点,在对角面DDBB11上找一动点M,使AM+ME最小.【解析】,,,11BBBBDBBACBDAC.11DDBBAC面??设AC∩BD=O,则AO=CO.∴平面DDBB11是线段AC的垂直平分面,∴C是A关于平面DDBB11的对称点。
连CE交面DDBB11于M,则M就是要求的点,这时AM+ME最小。
又AM=CM,∴AM+ME的最小值就是CE的长,而2412222aaAEACCE=a23,此时AM+ME的最小值为a23.简评:本题先证明平面DDBB11是线段AC的垂直平分面,然后利用C是A关于平面DDBB11的对称点,所以AM=CM,AM+ME的最小值,即为CM+ME的最小值,即CE的长,所以M点为CE和平面DDBB11的交点。
三、直线与平面(或直线)垂直问题【例3】如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=3,BC=1,PA=2,E为PD的中点.(Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.【解析】(Ⅰ)建立如图所示的空间直角坐标系,则A、B、C、D、P、E的坐标为A(0,例1题图ABCPOE例2题图ABCDA1C1D1 B1M高考数学研究动点问题2/30,0)、B(3,0,0)、C(3,1,0)、D(0,1,0)、P(0,0,2)、E(0,21,1),从而).2,0,3(),0,1,3(PBAC设PBAC与的夹角为θ,则,1473723||||cosPBACPBAC?∴AC与PB所成角的余弦值为1473.(Ⅱ)由于N点在侧面PAB内,故可设N点坐标为(x,O,z),则)1,21,(zxNE,由NE⊥面PAC可得,.0213,01.0)0,1,3()1,21,( ,0)2,0,0()1,21,( .0,0xzzxzxACNEAPNE化简得即∴163zx即N点的坐标为)1,0,63(,从而N点到AB、AP的距离分别为1,63.简评:本题主要考查线面关系和四棱锥等基础知识,同时考查空间想象能力和推理运算能力.由于N点在侧面PAB内,故可设N点坐标为(x,O,z),然后利用NE⊥面PAC,有.0,0ACNEAPNE求得动点N的坐标为)1,0,63(.四、直线与平面(或直线)平行问题【例4】如图,已知在底面是菱形的四棱锥P-ABCD中,∠ABC=600,PA=AC=a,PB=PD=2a点E在PD上,且PE:ED=2:1.在棱PC上有一动点F,当动点F移动到何处时,使BF∥平面AEC?证明你的结论。
微专题立体几何中的动态问题立体几何中的“动态问题”是指空间图形中的某些点、线、面的位置是不确定的、可变的一类开放型问题,因其某些点、线、面位置的不确定,往往成为学生进行一些常规思考、转化的障碍.但又因其是可变的、开放的,更有助于学生空间想象能力及综合思维能力的培养,以下利用运动变化的观点对几种动态问题的类型加以分析,探求解决此类问题的若干途径.类型一空间位置关系的判定【例1】如图,在长方体ABCD-A1B1C1D1中,若E,F,G,H分别是棱A1B1,BB1,CC1,C1D1上的动点,且EH∥FG,则必有()A.BD1⊥EH B.AD∥FGC.平面BB1D1D⊥平面EFGH D.平面A1BCD1∥平面EFGHB解析:当E与A1重合,H与D1重合时,BD1与EH的夹角即BD1与A1D1的夹角,显然BD1与A1D1的夹角不是π,故A错误.2当FG不与B1C1重合时,因为EH∥FG,EH⊂平面A1B1C1D1,FG⊄平面A1B1C1D1,所以FG∥平面A1B1C1D1.因为FG⊂平面BCC1B1,平面A1B1C1D1∩平面BCC1B1=B1C1,所以FG∥B1C1∥AD.当FG与B1C1重合时,显然FG∥AD,故B正确.当平面EFGH与平面BCC1B1重合时,显然平面BB1D1D与平面BCC1B1不垂直,故C错误.当FG与BC重合时,平面A1BCD1与平面EFGH相交,故D错误.【例2】如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列结论一定成立的是()A.三棱锥A-A1PD的体积大小与点P的位置有关B.A1P与平面ACD1相交C.平面PDB1⊥平面A1BC1D.AP⊥D1CC解析:对于选项A,VA-A1PD=VP-AA1D.在正方体中,BC1∥平面AA1D,所以当点P运动时其到平面AA1D的距离不变,即三棱锥P-AA1D的高不变.又△AA1D的面积不变,因此三棱锥P-AA1D的体积不变,即三棱锥A-A1PD的体积与点P的位置无关,故A不成立.对于选项B ,由于BC 1∥AD 1,AD 1⊂平面ACD 1,BC 1⊄平面ACD 1,所以BC 1∥平面ACD 1,同理可证BA 1∥平面ACD 1.又BA 1∩BC 1=B ,BA 1,BC 1⊂平面BA 1C 1,所以平面BA 1C 1∥平面ACD 1.因为A 1P ⊂平面BA 1C 1,所以A 1P ∥平面ACD 1,故B 不成立.对于选项C ,因为A 1C 1⊥BD ,A 1C 1⊥BB 1,BD ∩BB 1=B ,所以A 1C 1⊥平面BB 1D ,则A 1C 1⊥B 1D ,同理A 1B ⊥B 1D .又A 1C 1∩A 1B =A 1,所以B 1D ⊥平面A 1BC 1.又B 1D ⊂平面PDB 1,所以平面PDB 1⊥平面A 1BC 1,故C 成立.对于选项D ,当B 与P 重合时,AP 与D 1C 的夹角为π4,故D 不成立.解决空间位置关系的动点问题(1)应用“位置关系定理”转化. (2)建立“坐标系”计算. 类型二 轨迹问题【例3】(2024·韶关模拟)设正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面正方形ABCD 内的一动点.若△APC 1的面积S =12,则动点P 的轨迹是( )A .圆的一部分B .双曲线的一部分C .抛物线的一部分D .椭圆的一部分D 解析:设d 是△APC 1边AC 1上的高,则S △APC 1=12|AC 1|·d =√32d =12,所以d =√33,即点P 到直线AC 1的距离为定值√33,所以点P 在以直线AC 1为轴,√33为底面半径的圆柱侧面上,直线AC 1与平面ABCD 既不平行也不垂直,所以点P 的轨迹是平面ABCD 上的一个椭圆,其中只有一部分在正方形ABCD 内.【例4】如图,正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别为AA 1,AB 的中点,点M 是正方形ABB 1A 1内的动点.若C 1M ∥平面CD 1EF ,则点M 的轨迹长度为________.√2 解析:如图,取A 1B 1的中点H ,B 1B 的中点G ,连接GH ,C 1H ,C 1G ,EG ,HF ,可得四边形EGC 1D 1是平行四边形,所以C 1G ∥D 1E .又C 1G ⊄平面CD 1EF ,D 1E ⊂平面CD 1EF ,所以C 1G ∥平面CD 1EF .同理可得C 1H ∥CF ,C 1H ∥平面CD 1EF .因为C1H∩C1G=C1,C1H,C1G⊂平面C1GH,所以平面C1GH∥平面CD1EF.由点M是正方形ABB1A1内的动点可知,若C1M∥平面CD1EF,则点M在线段GH上,所以点M的轨迹长度为√12+12=√2.解决与几何体有关的动点轨迹问题的方法(1)几何法:根据平面的性质进行判定.(2)定义法:转化为平面轨迹问题,用圆锥曲线的定义判定,或用代替法进行计算.(3)特殊值法:根据空间图形线段长度关系取特殊值或位置进行排除.类型三最值问题【例5】已知在如图所示的正三棱锥P-ABC中,侧棱P A,PB,PC的长为√2,底面三角形ABC的边长为2,D为AC的中点,E为AB的中点,M是PD上的动点,N是平面PCE上的动点,则AM+MN的最小值为()A.√6+√24B.√3+12C.√64D.√32B解析:将正三棱锥P-ABC放入棱长为√2的正方体AGIJ-PCHB中,如图1所示,先固定点M,那么MN的最小值即点M到平面PCE的距离.连接GH,设GH的中点为F,连接PF,DG.由题意,得平面PGF⊥平面PCE,且交线为PF,故MN⊥PF,所以点M在PD上运动时,点N在PF上运动.把平面AGP和平面PGF沿PG展开,示意图如图2所示,作AN′⊥PF交PG于点M′,则AN′即所求,(AM+MN)min=AN′=AP·sin (45˚+30˚)=√3+12.【例6】如图,在正三棱柱ABC-A1B1C1中,底面边长为a,侧棱长为b,且a≥b,点D是BC1的中点,则直线AD与侧面ABB1A1所成角的正切值的最小值是()A.√13013B.√63C.√33D.√3913D解析:如图,取A1B1的中点E,连接BE,C1E,则C1E⊥A1B1.由正三棱柱的性质可知,平面A1B1C1⊥平面ABB1A1,所以C1E⊥平面ABB1A1,取BE的中点F,连接AF,DF.因为D为BC1的中点,所以DF∥C1E,所以DF⊥平面ABB1A1,所以∠DAF即为直线AD与侧面ABB1A1所成的角.在Rt△AFD中,DF=12C1E=√34a,AF=√(34a)2+(12b)2=√9a2+4b24,所以tan ∠DAF=DFAF√3a√√13+4b23a2≥√13+43=√3913,当且仅当a=b时,等号成立,所以直线AD与侧面ABB1A1所成角的正切值的最小值为√3913.在动态变化过程中产生的体积最大、距离最大(小)、角的范围等问题,常用的思路是:(1)直观判断:在变化过程中判断点、线、面在何位置时,所求的量有相应最大、最小值,即可求解.(2)函数思想:通过建立坐标系或引入变量,把这类动态问题转化为目标函数,从而利用代数方法求目标函数的最值.。
B
C
立体几何中的动点问题详解
【引例】
(2006北京卷4)平面a 的斜线AB 交a 于点B ,过定点A 的动直线l 与AB 垂直,且交a 于点C ,则动点C 的轨迹是( ).
(A )一条直线 (B )一个圆 (C )一个椭圆
(D )双曲线的一支
解法:首先考虑直线AC 的轨迹是过定点A 且与直线AB 垂直的平面,
(两个平面相交有且只有一条交线)该平面与平面α的交线即为动点C 的轨迹。
所以动点C 的轨迹是一条直线。
【例1】已知矩形ABCD ,1AB =,BC =ABD 沿矩形的对角线BD 所在
的直线进行翻折.
(1)求证:在翻折过程中,直线AA 1始终与BD 垂直;
证法1:
作AE ⊥BD 于点E ,分别连接AA 1、A 1E ∵AE ⊥BD 且∆ABD 翻折得∆A 1BD ∴A 1E ⊥BD
∵AE ∩A 1E=E, AE ⊂平面AA 1E, A 1E ⊂平面AA 1E ∴BD ⊥平面AA 1E ∵AA 1⊂平面AA 1E ∴AA 1⊥BD
证法2:
连接AA 1,取AA 1的中点E ,分别连接BE 、DE ∵∆ABD 翻折得∆A 1BD ∴BA=BA 1,DA=DA 1 ∵点E 是AA 1的中点 ∴AA 1⊥BE, AA 1⊥DE
∵BE∩DE=E, BE ⊂平面BDE, DE ⊂平面BDE ∴AA 1⊥平面BDE ∵BD ⊂平面BDE ∴AA 1⊥BD
(2)在翻折过程中,以下说法正确的是____________.
① 存在某个位置,使得直线1A C 与直线BD 垂直. ② 存在某个位置,使得直线1A B 与直线CD 垂直. ③ 存在某个位置,使得直线1A D 与直线BC 垂直. 解法1:(运动轨迹)
点A 1的轨迹在直线BD 的垂面A 1AF 上,而点C 在直线BD 的垂面HGC 上 垂面A 1AF//垂面HGC
所以点A 1不在平面HGC 上
由于过点C 且垂直于BD 的直线都在平面HGC 上 所以①不成立
由于A 1的轨迹可以落在过点B 的直线CD
的垂面上,所以②成立
又由于A 1的轨迹无法落在过点D 的直线BC 的垂面上,所以③不成立
解法2;(借助三垂线定理平面化垂直关系)
借助三垂线定理解决(借助正投影把空间垂直转化到平面上解决)
点A1在平面ABCD上的正投影为点H,而H的轨迹为线段AA’
A C与直线垂直BD是不可能的,因此①不成立由于BH与BD不可能垂直,所以直线
1
由于点H落在BC上时刚好BH与CD垂直,所以②成立
A D与直线垂直BC是不可能的,因此③不成立由于HD与BC不可能垂直,所以直线
1
解法:3(假设----检验)
A C与直线BD垂直,由于A1E⊥BD
假设直线
1
易证得BD⊥平面A1CE
所以BD⊥CE(矛盾)
因此①不成立
A C与直线BD垂直,由于AA1⊥BD
假设直线
1
易证得BD⊥平面AA1C
所以BD⊥AC(矛盾)
因此①不成立
假设直线A1D与直线BC垂直,由于BC⊥CD
易证得BC⊥平面A1CD,所以BD⊥A1C
又因为AA1⊥BD,易证得BD⊥平面AA1C,所以BD⊥AC(矛盾),因此①不成立
解法4:(特殊位置------起始或极端位置)
因为CD//AB,所以A1B与CD的夹角问题可以转化成角A1BA的问题
折叠前是0度,折叠到上图所示的A与A1关于BD对称的位置时角A1BA的大小是120度由于整个过程时连续变化的,所以必然会经过90度的位置,即②成立
因为AD//BC,所以A1D与BC的夹角问题可以转化成角A1DA的问题
折叠前是0度,折叠到上图所示的A与A1关于BD对称的位置时角A1DA的大小是60度由于整个过程时连续变化且递增的,所以不可能到达90度的位置,即③不成立
上图所示位置A与A1关于BD对称,此时A1C//BD
折叠前A1C与BD成角为60度,从60度到0度的过程时连续递减的,所以没有90度的时候,因此①不成立
解法5:(构造特殊几何体作参照让运动过程更直观)
把矩形ABCD如图放置在一个正方体的对角面处点A会经过点A’和点A’’,显然这两个位置都满足A1B⊥CD,所以②成立。
1
A
点A 1的轨迹在直线BD 的垂面AA’A’’上,而点C 在直线BD 的垂面D’GC 上 面AA’A’’//面HGC
所以点A 1不在平面D’GC 上
由于过点C 且垂直于BD 的直线都在平面D’GC 上 所以①不成立
同理借助过点D 作BC 的垂面可以发现③不成立
解法6:(借助平移转为平面图形解决)
因为CD//AB,所以A 1B 与CD 的夹角问题可以转化到等腰∆A 1BA 中解决,AB=A 1B=1,变量是变AA 1的长度范围是[0, ,用余弦定理可以获得角A 1BA 的范围[0, 1200]所以②成立
同理也可以解决③
【课堂练习】如图,长方体ABCD —A 1B 1C 1D 1中,AB =BC ,AA 1,上底面A 1B 1C 1D 1的中心为O 1,点E 在线段CC 1上,点O 1在平面BDE 上的射影为G ,则在点E 从C 运动到C 1的过程中,下列说法正确的是________.
① 点G 到CC 1的距离不变 ② 线段OG 的长度逐渐增大 ③ 线段A 1G 的长度是常数
④ 四棱锥11G BB D D -的体积先增大,再减小
解: 因为BD ⊥平面ACC 1A 1,所以平面ACC 1A 1⊥平面BDE 连接OE ,可以得出点O 1在平面BDE 上的射影G 在OE 上。
抽出对角面单独研究
可以发现点G 的轨迹是以O 1O 为直径如图所示的半圆。
由此可见,点G 到CC 1的距离在改变,线段OG 的长度逐渐增大, 线段A 1G 的长度在改变,
由于四棱锥11G BB D D -的底面11BB D D 的面积不变,高是点D 到OO1的距离先增大再减小,所以四棱锥11G BB D D -的体积先增大,再减小
如果是考查B 1G 呢? G 到CC1的距离呢?。