车刀刀具参数(三面.角度)
- 格式:ppt
- 大小:745.00 KB
- 文档页数:16
车刀几何角度测量一、实验目的:熟悉车刀三面两刃一尖,熟悉并测绘车刀的主平面、基面、侧平面、切削平面以及主偏角κr、副偏角κr'、刃倾角λs、前角γo、后角αo、副后角αo '。
二、实验原理:车刀由前刀面、后刀面、副后刀面以及主切削刃(前刀面和后刀面的交线)、副切削刃(前刀面和副后刀面的交线)和刀尖(主切削刃和副切削刃之间的过渡段)组成的组成。
在主剖面内可以测量前角γo、后角αo,并可以计算出楔角β;在基面内可以测量主偏角κr、副偏角κr',并可计算出刀尖角ε;在副正交平面内可以测量副后角αo '。
利用量角仪的旋转架、三个表盘和测量针配合模拟相应的检测平面和主刀刃,上方两个表盘高度可以通过拧松紧定旋钮和高度调节旋钮调节高度,根据各角度的定义找到相应的坐标平面,利用垂直坐标平面与表盘平面的对应关系,旋转相应的表盘,使测量平面(或测量边)贴合,固定旋转架螺丝、固定旋转架后,在表盘上读取相应的角度或角度差。
三、实验仪器与设备1.车刀量角仪2. 车刀(数把)、十字花螺丝刀3.铅笔、A4白纸三、实验步骤(使用半圆量角仪测量刀具各角度的测量步骤)1、测量前的准备:找一十字花螺丝刀、车刀(数把)等实验用品备齐。
2、将各表盘指针调到零位或校零。
3、测量车刀的主(副)偏角1)确定进给方向:由于外圆车刀进给方向与刀具轴线垂直,其与主(副)刀刃在基面的投影有一夹角,即为主(副)偏角。
2)测量方法:将车刀侧边靠齐在旋转架移动框,将旋转架旋转使主切削刃与测针面靠齐,则旋转的角度即主偏角κr、同理测出副偏角κr'。
3、测量车刀刃倾角(λs)1)确定主切削平面:主切削平面是过主刀刃与加工表面相切的平面,2)测量方法:在主切削平面内,将测针底面与主切削刃贴合,则测针旋转的角度即刀刃倾角(λs)。
4、测量车刀主剖面内的前角γo和后角αo1)确定主剖面:主剖面是过主刀刃一点,垂直于主刀刃在基面的投影的平面。
2)在主剖面内使测针底面与前刀面贴合,则测针旋转的角度即车刀前角γo。
车刀的角度第二章车刀的角度, 车刀的组成, 车刀角度中的三个辅助平面, 车刀的角度作用及其选择一、车刀的组成车刀由刀体和刀柄两部分组成,刀体担负切削任务,因此又叫切削部分。
刀柄的任务是把车刀装夹在刀架上。
如下图2-1:图2-11) 前刀面切屑排出时经过的表面。
2) 后刀面后刀面又分主后刀面和副后刀面。
主后刀面是和工件上过渡表面相对的车刀刀面;副后刀面是和工件上已加工表面相对的车刀刀面。
3) 主切削刃前刀面和主后刀面相交的部位,它负担着主要切削任务。
4) 副切削刃前刀面和副后刀面相交的部位,它负担着车刀次要的切削任务。
5) 刀尖主切削刃和副切削刃相交的部位。
为提高刀尖的强度,常把刀尖部分磨成圆弧型或着直线型,圆弧或直线部分的刀刃叫过渡刃。
6) 修光刀副切削刃前段近刀尖处的一段平直刀刃叫修光刀。
装夹车刀时只有把修光刃与进给方向平行,且修光刃的长度大于进给量时才能起到修光工件表面的作用。
二、车刀角度标注中的三个辅助平面测量车刀角度的辅助平面,为较准确测量车刀的几何角度,假设了三个辅助平面,即切削平面,基面和截面。
如图示2-2:图2-21) 切削平面P过车刀主切削刃上一个选定点,并与工件过渡s表面相切的平面叫切削平面。
2) 基面P过车刀主切削刃上一个选定点,并与该点切削速度r方向垂直的平面叫基面。
3) 截面截面有主截面P和副截面P?之分。
过车刀主切削刃oo上一个选定点,垂直于过该点的切削平面与基面的平面叫主截面。
切削平面,基面和截面互相垂直,构成一个空间直角坐标系。
三、车刀角度及其选择如图2-3,车刀各角度都标出:图2-31、前角的选择1) 前角的作用a. 前角主要影响车刀的锋利程度,切削力的大小与切削变形的大小。
增大前角,则车刀锋利,切削力减小,切削变形小。
b. 影响车刀强度,受力情况和散热条件。
前角增大,车刀楔角减小,使刀头强度减小,散热体积减小,从而散热条件变差,易使切削温度升高。
c. 影响加工表面质量。
车刀角度详解,别再分不清!切削金属时,刀具切入工件,刀具角度是用来确定刀具切削部分几何形状的重要参数。
一、车刀切削部分的组成三面二刃一刀尖车刀切削部分由前刀面、主后刀面、副后刀面、主切削刃、副切削刃和刀尖组成。
1)前刀面刀具上切屑流过的表面。
2)主后刀面刀具上与工件上的加工表面相对着并且相互作用的表面,称为主后刀面。
3)副后刀面刀具上与工件上的已加工表面相对着并且相互作用的表面,称为副后刀面。
4)主切削刃刀具的前刀面与主后刀面的交线称为主切削刃。
5)副切削刃刀具的前刀面与副后刀面的交线称为副切削刃。
6)刀尖主切削刃与副切削刃的交点称为刀尖。
刀尖实际是一小段曲线或直线,称修圆刀尖和倒角刀尖。
二、测量车刀切削角度的辅助平面为了确定和测量车刀的几何角度,需要选取三个辅助平面作为基准,这三个辅助平面是切削平面、基面和正交平面。
1)切削平面——切于主切削刃某一选定点并垂直于刀杆底平面的平面。
2)基面——过主切削刃的某一选定点并平行于刀杆底面的平面。
3)正交平面——垂直于切削平面又垂直于基面的平面。
可见这三个坐标平面相互垂直,构成一个空间直角坐标系。
三、车刀的主要几何角度及选择1)前角(γ0 ) 选择的原则前角的大小主要解决刀头的坚固性与锋利性的矛盾。
因此首先要根据加工材料的硬度来选择前角。
加工材料的硬度高,前角取小值,反之取大值。
其次要根据加工性质来考虑前角的大小,粗加工时前角要取小值,精加工时前角应取大值。
前角一般在-5°~25°之间选取。
通常,制作车刀时并没有预先制出前角(γ0),而是靠在车刀上刃磨出排屑槽来获得前角的。
排屑槽也叫断屑槽,它的作用大了去了折断切屑,不产生缠绕;控制切屑的流出方向,保持已加工表面的精度;降低切削抗力,延长刀具寿命。
2)后角(α0 )选择的原则首先考虑加工性质。
精加工时,后角取大值,粗加工时,后角取小值。
其次考虑加工材料的硬度,加工材料硬度高,主后角取小值,以增强刀头的坚固性;反之,后角应取小值。
刀具的标注角度1.前角:当前面与切削平面夹角小于90度时,前角为正值,大于90度时为负值.2.后角; 当后面与基面夹角小于90度时,后角为正值,大于90度时,后角为负值。
车切基本知识一、车刀材料在切削过程中,刀具的切削部分要承受很大的压力、摩擦、冲击和很高的温度。
因此,刀具材料必须具备高硬度、高耐磨性、足够的强度和韧性,还需具有高的耐热性(红硬性),即在高温下仍能保持足够硬度的性能。
常用车刀材料主要有高速钢和硬质合金。
1.高速钢高速钢又称锋钢、是以钨、铬、钒、钼为主要合金元素的高合金工具钢。
高速钢淬火后的硬度为HRC63~67,其红硬温度550℃~600℃,允许的切削速度为25~30m/min。
高速钢有较高的抗弯强度和冲击韧性,可以进行铸造、锻造、焊接、热处理和切削加工,有良好的磨削性能,刃磨质量较高,故多用来制造形状复杂的刀具,如钻头、铰刀、铣刀等,亦常用作低速精加工车刀和成形车刀。
常用的高速钢牌号为W18Cr4V和W6Mo5Cr4V2两种。
2.硬质合金硬质合金是用高耐磨性和高耐热性的WC(碳化钨)、TiC(碳化钛)和Co(钴)的粉末经高压成形后再进行高温烧结而制成的,其中Co起粘结作用,硬质合金的硬度为HRA89~94(约相当于HRC74~82),有很高的红硬温度。
在800~1000℃的高温下仍能保持切削所需的硬度,硬质合金刀具切削一般钢件的切削速度可达100~300m/min,可用这种刀具进行高速切削,其缺点是韧性较差,较脆,不耐冲击,硬质合金一般制成各种形状的刀片,焊接或夹固在刀体上使用。
常用的硬质合金有钨钴和钨钛钴两大类:(1)钨钴类(YG)由碳化钨和钴组成,适用于加工铸铁、青铜等脆性材料。
常用牌号有YG3、YG6、YG8等,后面的数字表示含钴量的百分比,含钴量愈高,其承受冲击的性能就愈好。
因此,YG8常用于粗加工,YG6和YG3常用于半精加工和精加工。
(2)钨钛钴类(YT)由碳化钨、碳化钛和钴组成,加入碳化钛可以增加合金的耐磨性,可以提高合金与塑性材料的粘结温度,减少刀具磨损,也可以提高硬度;但韧性差,更脆、承受冲击的性能也较差,一般用来加工塑性材料,如各种钢材。
六、数控刀具标准点击上面相关内容观看一、车刀的各种角度常识车刀的主要角度前角γo在主剖面P0内测量的前刀面与基面之间的夹角。
前角表示前刀面的倾斜程度,有正、负和零值之分,其符号规定如图所示。
后角αo 在主剖面P0内测量的主后刀面与切削平面之间的夹角。
后角表示主后刀面的倾斜程度,一般为正值。
主偏角κr在基面内测量的主切削刃在基面上的投影与进给运动方向的夹角。
主偏角一般为正值。
副偏角κr'在基面内测量的副切削刃在基面上的投影与进给运动反方向的夹角。
副偏角一般为正值。
刃倾角λs在切削平面内测量的主切削刃与基面之间的夹角。
当主切削刃呈水平时,λs=0;刀尖为主切削刃最低点时,λs<0;刀尖为主切削刃上最高点是,λs>0,如图示。
点击回到页首二、新型陶瓷刀具简介新型陶瓷刀具的出现,是人类首次通过运用陶瓷材料改革机械切削加工的一场技术革命的成果。
早在20世纪初,德国与英国已经开始寻求采用陶瓷刀具取代传统的碳素工具钢刀具。
陶瓷材料因其高硬度与耐高温特性成为新一代的刀具材料,但陶瓷也由于其人所共知的脆性受到局限,于是如何克服陶瓷刀具材料的脆性,提高它的韧性,成为近百年来陶瓷刀具研究的主要课题。
陶瓷的应用范围亦日益扩大。
工程技术界努力研制与推广陶瓷刀具的主要原因,(一)是可以大大提高生产效率;(二)是由于构成高速钢与硬质合金的主要成分钨资源在全球范围内的枯竭所决定。
20世纪80年代初估计,全世界已探明的钨资源仅够使用50年时间。
钨是世界上最稀缺的资源,但其在切削刀具材料中的消耗却很大,从而导致钨矿价格不断攀升,几十年中上涨好多倍,这在一定程度上也促进了陶瓷刀具研制与推广,陶瓷刀具材料的研制开发取得了令人瞩目的成果。
到目前为止,用作陶瓷刀具的材料已形成氧化铝陶瓷,氧化铝—金属系陶瓷、氧化铝—碳化物陶瓷、氧化铝—碳化物金属陶瓷、氧化铝—氮化物金属陶瓷及最新研究成功的氮化硼陶瓷刀具。
就世界范围讲,德国陶瓷刀具已不仅用于普通机床,且已将其作为一种高效、稳定可靠的刀具用于数控机床加工及自动化生产线。
螺纹车刀角度参数
以下是螺纹车刀的主要角度参数:
1. 刀尖角:此角度等于牙型角。
车削普通螺纹时,牙型角为60度。
英制螺纹时,牙型角为55度。
2. 前角:一般为0度至15度。
精车或精度要求高的螺纹,径向前角取得小些,约为0度至5度。
3. 后角:一般为5度至15度。
因受螺纹升角的影响,进刀方向一面的后角应磨得稍大些。
但大直径、小螺距的三角形螺纹,这种影响可忽略不计。
此外,在车削较大螺距以及硬度较高的螺纹时,应在车刀的两个切削刃上磨出宽度为4mm的倒棱,以防止崩刃并减少切削力。
以上信息仅供参考,如需了解更多信息,建议查阅专业书籍或咨询专业人士。
1.75°内孔车刀几何角度:主偏角Kr二75。
,副偏角Kr'二15。
,前角丫0二10。
后角a 0二8,副后角a 0'二8,刃倾角入S二5°
答案:
2. 75°外圆车刀几何角度:主偏角K T二75°,副偏角KJ二15°,前角丫o二10.,后角a o二8,副后角a o二8,刃倾角入S二—5°
答案:
3.60°内孔车刀几何角度:主偏角Kr二60,副偏角Kr'二15°,前角丫0二10。
后角
a 0二8,副后角a 0'二8,刃倾角入s = — 5
答案:
4. 90°外圆车刀几何角度:主偏角Kr二90°,副偏角Kr - 15°,前角丫0二10。
后角a 0二8,副后角a 0'二8,刃倾角入s二5°
答案:
5. 45°内孔车刀几何角度: 主偏角Kr二45°,副偏角Kr1 - 15。
,
前角丫o二10°,后角日o二10°,副后角曰o二10°,刃倾角入S二-5°答案:
F O-P D
6. 45°端面车刀几何角度:主偏角Kr二45°,副偏角Kr'二45°,前角丫0二5后角
a 0二8,副后角a 0'二8,刃倾角入S二5°
答案:
5. 45°内孔车刀几何角度: 主偏角Kr二45°,副偏角Kr1 - 15。
,。
车刀的重要几何角度及选择1)前角(γ0 )选择的原则前角的大小重要解决刀头的坚固性与锋利性的冲突。
因此首先要依据加工材料的硬度来选择前角。
加工材料的硬度高,前角取小值,反之取大值。
其次要依据加工性质来考虑前角的大小,粗加工时前角要取小值,精加工时前角应取大值。
前角一般在—5°~25°选取。
通常,制作车刀时并没有预先制出前角(γ0),而是靠在车刀上刃磨出排屑槽来获得前角的。
排屑槽也叫断屑槽,它的作用是折断切屑,不产生缠绕;掌控切屑的流出方向,保持已加工表面的精度;降低切削抗力,延长刀具寿命。
2)后角(α0 )选择的原则首先考虑加工性质。
精加工时,后角取大值,粗加工时,后角取小值。
其次考虑加工材料的硬度,加工材料硬度高,主后角取小值,以加强刀头的坚固性;反之,后角应取小值。
后角不能为零度或负值,一般在6°~12°选取。
3)主偏角(Kr )的选用原则首先考虑车床、夹具和刀具构成的车削工艺系统的刚性,如系统刚性好,主偏角应取小值,这样有利于提高车刀使用寿命、改善散热条件及表面粗造度。
其次要考虑加工工件的几何形状,当加工台阶时,主偏角应取90°,加工中心切入的工件,主偏角一般取60 °。
主偏角一般在30°~90°,*常用的是45°、75 °、90 °。
4)副偏角(Kr)的选择原则首先考虑车刀、工件和夹具有充足的刚性,才能减小副偏角;反之,应取大值;其次,考虑加工性质,精加工时,副偏角可取10°~15°,粗加工时,副偏角可取5°左右。
5)刃倾角(λS)的选择原则重要看加工性质,粗加工时,工件对车刀冲击大,取λS≤ 0°,精加工时,工件对车刀冲击力小,取λS≥ 0°;通常取λS=0°。
刃倾角一般在—10°~5°选取。
主偏角名词解释
切削金属时,刀具切入工件,刀具角度是用来确定刀具切削部分几何形状的重要参数。
一、车刀切削部分的组成
三面二刃一刀尖
车刀切削部分由前刀面、主后刀面、副后刀面、主切削刃、副切削刃和刀尖组成。
基面中测量的主切削刃与假定进给运动方向之间的夹角(tool cutting edgeangle)。
主偏角主要影响切削层截面的形状和参数,影响切削分力的变化,并和副偏角一起影响已加工表面的粗糙度;副偏角还有减小副后刀面与已加工表面间摩擦的作用。
主偏角和副偏角对刀具耐用度影响很大。
减小主偏角和副偏角可使刀尖角er增大,刀尖强度提高,散热条件改善,因而刀具耐用度高。
还可降低加工表面残留面积的高度,故可减小加工表面的粗糙度。
主偏角和副偏角还会影响各切削分力的大小和比例。
如车削外圆时,增大主偏角,可使背向力减小,进给力增大,因而有利于减小工艺系统的弹性变形和震动。