人教版数学高二A版选修4-1预习导航第三讲二平面与圆柱面的截线
- 格式:doc
- 大小:2.37 MB
- 文档页数:2
主动成长夯基达标1.梯形ABCD中,AB∥CD,若梯形不在平面α内,则它在α内的射影是()A.平行四边形B.梯形C.一条线段D.一条线段或梯形思路解析:当梯形所在的平面平行于投射线时,梯形在α上的射影是一条线段;当梯形所在的平面与投射线不平行时,梯形在α上的射影是一个梯形.答案:D2.如果一个三角形的平行投影仍是一个三角形,则下列结论正确的是()A.内心的平行投影还是内心B.重心的平行投影还是重心C.垂心的平行投影还是垂心D.外心的平行投影还是外心思路解析:如果三角形的平行投影仍是三角形,但三角形的形状通常将发生变化,此时三角形的各顶点、各边的位置也会发生变化,而重心、垂心、外心这些由顶点和边确定的点通常随着发生变化,而内心则始终是原先角平分线的交点,所以仍是新三角形的内心.答案:A3.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)思路解析:将所给方程转化为标准形式,根据焦点的位置即可获得实数k的取值范围.将所给方程x2+ky2=2转化为标准形式,即22x+122=ky,因为焦点在y轴上,所以有22>k,于是0 <k <1.答案:D走近高考4.如图3-2-5,设P为△ABC所在平面外一点,点O为P在平面ABC上的射影,若PA =PB =PC,则O为△ABC的心.图3-2-5思路解析:连结AO、BO、CO,则AO、BO、CO分别为PA、PB、PC在平面ABC内的射影.又∵PA =PB =PC,由射影长定理,则OA =OB =OC,∴O为△ABC的外心.答案:外5.在平面解析几何中,我们学过用方程表示直线、圆等图形,将椭圆上的点满足的条件用坐标表示出来,也可以得到椭圆的方程,试建立适当的坐标系,求长轴为2a,短轴为2b(a>b),焦距为2c 的椭圆的方程.思路解析:以长轴所在直线为x 轴建立坐标系,也可以以长轴所在直线为y 轴建立坐标系.解:以长轴所在直线为x 轴建立坐标系,其方程为a x 2+12=by ;以长轴所在直线为y 轴建立坐标系,其方程为b x 2+12=ay .。
高中数学-打印版
一平行射影
二平面与圆柱面的截线
一览众山小
学习目标
1.了解平行射影的概念及椭圆的定义,知道不平行于底面的平面截圆柱的形状是椭圆.
2.通过圆柱形水杯中水面的倾斜,感受平面截圆柱的形状,并从理论上证明.
3.通过Dandelin双球探求椭圆的性质,理解这种证明问题的方法.
学法指导
学习本节内容之前,可先复习立体几何中点在直线上,图形在平面上的射影,了解平面截圆柱、圆锥的截面形状,复习选修1-1的圆锥曲线的知识.
对于平面截圆柱面的形状,可以借助于实物,增强形象性的理解,对于圆柱形物体的斜截口是椭圆的证明,可先理解平面上的情况,再推广到空间,这样在学习中能够降低难度.
诱学指导
材料:将一个放在桌上的玻璃杯倒入半杯水,观察水平面所成的图形,再将玻璃杯倾斜一定角度,观察此时的水面图形.
问题:如何从理论上说明水平面的形状?
导入:如图3-1(2)-1,将两个球嵌入圆柱,过球心作斜截面的垂线,证明两个垂足点到截口上任意一点的距离之和为定值即可.
图3-1(2)-1
精心校对完整版。
预习导航.定理椭圆圆柱形物体的斜截口是与圆柱′的轴斜交,则截口是椭圆判断截口形状是椭圆.()定义:平面上到两个定点的距离之和等于定长的点的轨迹叫做椭圆.()组成元素:如图所示,,是椭圆的焦点,是的中垂线.我们把叫做椭圆的长轴,叫做椭圆的短轴,叫做椭圆的焦距.如果长轴为,短轴为,那么焦距=. ()双球探究椭圆性质:如图所示,设球,与圆柱的交线(圆)所在的平面分别为α,γ,椭圆所在的斜截面β与它们的交线分别为,,α,γ与β所成的二面角为θ,母线与平面β的交角为φ.由于α,β,γ都是确定的,因此交线,也是确定的.①当点在椭圆的任意位置时,过作的垂线,垂足为,过作平面α的垂线,垂足为,连接,得∠=△φ,则==定值..从而有φ=②椭圆上任意一点到焦点的距离与到直线的距离之比为定值φ.我们把直线叫做椭圆的一条准线.③椭圆上任意一点到焦点的距离与到直线的距离之比也为定值φ,所以是椭圆的另一条准线.记=φ④离心率.,我们把叫做椭圆的名师点拨的几何意义是,椭圆上一点到焦点的距离与它到准线的距离的比.当越接近于时,越接近于,从而越小,因此椭圆越扁;反之,越接近于,从而越接近于,椭圆越接近于圆.当=时,=,=,两个焦点重合,图形就是圆了.可见离心率是刻画椭圆圆扁程度的量.思考双球探求椭圆性质的过程是怎样的?提示:通过一条直线与相离的两个等圆的内公切线的情形,类比为两个半径相等的球在一个平面的两侧均与球相切的情形,从而得到定理及有关结论,因而对于平面内直线与两个相离的等圆的内公切的情形要注意研究,这有助于理解椭圆和下一节的知识.圆柱内嵌入两个球,使它们分别位于斜截面的上方和下方,并且与圆柱和斜截面均相切,这是证明定理的关键.这种方法是数学家创立的,故将嵌入的两球称为双球.要注意对于双球的研究.。
一平行射影二平面与圆柱面的截线三平面与圆锥面的截线.了解平行射影的含义,体会平行射影..会证明平面与圆柱面的截线是椭圆(特殊情况是圆).(重点).会用双球证明定理、定理.(难点)[基础·初探]教材整理射影阅读教材~,完成下列问题..正射影给定一个平面α,从一点作平面α的垂线,垂足为点′,称点′为点在平面α上的正射影.一个图形上各点在平面α上的正射影所组成的图形,称为这个图形在平面α上的正射影..平行射影设直线与平面α相交(如图--),称直线的方向为投影方向.过点作平行于的直线(称为投影线)必交α于一点′,称点′为沿的方向在平面α上的平行射影.一个图形上各点在平面α上的平行射影所组成的图形,叫做这个图形的平行射影.图--下列说法正确的是( ).平行射影是正射影.正射影是平行射影.同一个图形的平行射影和正射影相同.圆的平行射影不可能是圆【解析】正射影是平行射影的特例,不正确;对于同一图形,当投影线垂直于投影面时,其平行射影就是正射影,否则不相同,故不正确;当投影线垂直于投影面且圆面平行于投影面时,圆的平行射影是圆,不正确;只有正确.【答案】教材整理两个定理阅读教材~,完成下列问题..椭圆的定义平面上到两个定点的距离之和等于定长的点的轨迹叫做椭圆..两个定理定理:圆柱形物体的斜截口是椭圆.定理:在空间中,取直线为轴,直线′与相交于点,夹角为α,′围绕旋转得到以为顶点,′为母线的圆锥面.任取平面π,若它与轴的交角为β(当π与平行时,记β=),则()β>α,平面π与圆锥的交线为椭圆;()β=α,平面π与圆锥的交线为抛物线;()β<α,平面π与圆锥的交线为双曲线.下列说法不正确的是( )。
一平行射影二平面与圆柱面的截线三平面与圆锥面的截线1.了解平行射影的含义,体会平行射影.2.会证明平面与圆柱面的截线是椭圆(特殊情况是圆).(重点)3.会用Dandelin双球证明定理1、定理2.(难点)[基础·初探]教材整理1射影阅读教材P43~P44,完成下列问题.1.正射影给定一个平面α,从一点A作平面α的垂线,垂足为点A′,称点A′为点A在平面α上的正射影.一个图形上各点在平面α上的正射影所组成的图形,称为这个图形在平面α上的正射影.2.平行射影设直线l与平面α相交(如图3-1-1),称直线l的方向为投影方向.过点A作平行于l的直线(称为投影线)必交α于一点A′,称点A′为A沿l的方向在平面α上的平行射影.一个图形上各点在平面α上的平行射影所组成的图形,叫做这个图形的平行射影.图3-1-1下列说法正确的是()A.平行射影是正射影B.正射影是平行射影C.同一个图形的平行射影和正射影相同D.圆的平行射影不可能是圆【解析】正射影是平行射影的特例,A不正确;对于同一图形,当投影线垂直于投影面时,其平行射影就是正射影,否则不相同,故C不正确;当投影线垂直于投影面且圆面平行于投影面时,圆的平行射影是圆,D不正确;只有B 正确.【答案】 B教材整理2两个定理阅读教材P44~P51,完成下列问题.1.椭圆的定义平面上到两个定点的距离之和等于定长的点的轨迹叫做椭圆.2.两个定理定理1:圆柱形物体的斜截口是椭圆.定理2:在空间中,取直线l为轴,直线l′与l相交于O点,夹角为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面.任取平面π,若它与轴l的交。
预习导航
1.定理1
圆柱形物体的斜截口是椭圆
与圆柱OO′的轴斜交,则截口是椭圆
判断截口形状是椭圆
2.
(1)定义:平面上到两个定点的距离之和等于定长的点的轨迹叫做椭圆.
(2)组成元素:如图所示,F1,F2是椭圆的焦点,B1B2是F1F2的中垂线.
我们把A1A2叫做椭圆的长轴,B1B2叫做椭圆的短轴,F1F2叫做椭圆的焦距.如果长轴
为2a,短轴为2b,那么焦距2c
(3)Dandelin双球探究椭圆性质:如图所示,设球O1,O2与圆柱的交线(圆)所在的平面分别为α,γ,椭圆所在的斜截面β与它们的交线分别为l1,l2,α,γ与β所成的二面角为θ,母线与平面β的交角为φ.由于α,β,γ都是确定的,因此交线l1,l2也是确定的.
①当点P 在椭圆的任意位置时,过P 作l 1的垂线,垂足为Q ,过P 作平面α的垂线,
垂足为K 1,连接K 1Q ,得Rt △PK 1Q ,则∠QPK 1=φ.从而有PF 1PQ =PK 1PQ
=cos_φ=定值. ②椭圆上任意一点到焦点F 1的距离与到直线l 1的距离之比为定值cos_φ.我们把直线l 1叫做椭圆的一条准线.
③椭圆上任意一点到焦点F 2的距离与到直线l 2的距离之比也为定值cos φ,所以l 2是椭圆的另一条准线.
④记e =cos φ,我们把e 叫做椭圆的离心率.
名师点拨 e 的几何意义是,椭圆上一点到焦点的距离与它到准线的距离的比.当e 越接近于1时,c 越接近于a ,从而b 越小,因此椭圆越扁;反之,e 越接近于0,从而b 越接近于a ,椭圆越接近于圆.当e =0时,c =0,a =b ,两个焦点重合,图形就是圆了.可见离心率是刻画椭圆圆扁程度的量.
思考 Dandelin 双球探求椭圆性质的过程是怎样的?
提示:通过一条直线与相离的两个等圆的内公切线的情形,类比为两个半径相等的球在一个平面的两侧均与球相切的情形,从而得到定理1及有关结论,因而对于平面内直线与两个相离的等圆的内公切的情形要注意研究,这有助于理解椭圆和下一节的知识.
圆柱内嵌入两个球,使它们分别位于斜截面的上方和下方,并且与圆柱和斜截面均相切,这是证明定理的关键.这种方法是数学家Dandelin 创立的,故将嵌入的两球称为Dandelin 双球.要注意对于Dandelin 双球的研究.。