2020年安徽省合肥四十六中南校区中考数学模拟试卷(3月份)
- 格式:pdf
- 大小:540.15 KB
- 文档页数:23
2020年安徽省中考数学模拟试卷(三)一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)6-的绝对值的相反数是()A.6-B.6C.16D.16-2.(4分)计算3a a÷,结果是()A.a B.2a C.3a D.4a3.(4分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( )A.B.C.D.4.(4分)设a为正整数,且371a a<<+,则a的值为()A.5B.6C.7D.85.(4分)已知:如图,////AB CD EF,50ABC∠=︒,150CEF∠=︒,则BCE∠的值为( )A.50︒B.30︒C.20︒D.60︒6.(4分)计算222211111a a a aa a a-+-÷-+-+的正确结果为()A.11a+B.1C.2D.1a-7.(4分)我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.“如果设矩形田地的长为x步,那么同学们列出的下列方程中正确的是()A.(12)864x x+=B.(12)864x x-=C.212864x x+=D.2128640x x+-=8.(4分)如图,ABCD 中,AC BC ⊥,3BC =,4AC =,则B ,D 两点间的距离是()A .213B .62C .10D .559.(4分)二次函数2y ax bx c =++的图象如图所示,反比例函数ay x=与正比例函数y bx =在同一坐标系中的大致图象可能是( )A .B .C .D .10.(4分)如图1,已知平行四边形ABCD 中,点E 是AB 边上的一动点(与点A 不重合),设AE x =,DE 的延长线交CB 的延长线于点F ,设BF y =,且y 与x 之间的函数关系图象如图2所示,则下面的结论中不正确的是( )A .2AD =B .当1x =时,6y =C .若AD DE =,则1BF EF ==D .若2BF BC =,则43AE =二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为 元.12.(5分)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是 .13.(5分)如图,已知四边形ABCD 内接于O ,AD 是直径,120ABC ∠=︒,3CD =,则弦AC = .14.(5分)如图,抛物线2286y x x =-+-与x 轴交于点A ,B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B ,D ,若直线y x m =+与1C ,2C 共有3个不同的交点,则m 的取值范围是 .三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:201()|22|2cos45(3)2π-----︒+-16.(8分)定义一种新运算:观察下列式: 131437=⨯+=3(1)34111-=⨯-= 5454424=⨯+=4(3)44313-=⨯-=(1)请你想一想:a b = ; (2)若a b ≠,那么a b ba (填入“=”或“≠” )(3)若(2)3ab -=,请计算()(2)a b a b -+的值.四、(本大题共2小题,每小题8分,满分16分)17.(8分)2019年2月24日,华为发布旗下最新款折叠屏手机MateX ,如图是这款手机的示意图,当两块折叠屏的夹角为30︒时(即30)ABC ∠=︒,测得AC 之间的距离为40mm ,此时45CAB ∠=︒.求这款手机完全折叠后的宽度AB 长是多少?(结果保留整数,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈18.(8分)已知:在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(5,4)A ,(0,3)B ,(2,1)C .(1)画出ABC ∆关于原点成中心对称的△111A B C ,并写出点1C 的坐标; (2)画出将111A B C 绕点1C 按顺时针旋转90︒所得的△221A B C .五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在圆O中,弦8AB=,点C在圆O上(C与A,B不重合),连接CA、⊥,垂足分别是点D、E.CB,过点O分别作OD AC⊥,OE BC(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.20.(10分)为了增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生?(2)补全频数分布直方图,求出扇形统计图中“体操”所对应的圆心角度数;(3)估计该校1200名学生中有多少人喜爱跑步项目.六、(本题满分12分)21.(12分)如图,一次函数的图象与y 轴交于(0,8)C ,且与反比例函数(0)k y x x=>的图象在第一象限内交于(3,)A a ,(1,)B b 两点. (1)求AOC ∆的面积;(2)若2224a ab b -+=,求反比例函数和一次函数的解析式.七、(本题满分12分)22.(12分)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/千克.根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系. 销售量y (千克) ⋯32.5 35 35.5 38⋯售价x (元/千克)⋯27.5 25 24.5 22⋯(1)某天这种芒果的售价为28元/千克,求当天该芒果的销售量.(2)设某天销售这种芒果获利m 元,写出m 与售价x 之间的函数关系式,如果水果店该天获利400元,那么这天芒果的售价为多少元? 八、(本题满分14分)23.(14分)如图1,在锐角ABC ∆中,D 、E 分别是AB 、BC 的中点,点F 在AC 上,且满足AFE A ∠=∠,//DM EF 交AC 于点M . (1)证明:DM DA =;(2)如图2,点G 在BE 上,且BDG C ∠=∠,求证:DEG ECF ∆∆∽; (3)在图2中,取CE 上一点H ,使得CFH B ∠=∠,若3BG =,求EH 的长.2020年安徽省中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)6-的绝对值的相反数是()A.6-B.6C.16D.16-【解答】解:6-的绝对值为6,6的相反数为6-,6∴-的绝对值的相反数是6-.故选:A.2.(4分)计算3a a÷,结果是()A.a B.2a C.3a D.4a【解答】解:32a a a÷=.故选:B.3.(4分)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是( )A.B.C.D.【解答】解:A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.4.(4分)设a为正整数,且371a a<+,则a的值为()A.5B.6C.7D.8【解答】解:363749∴6377<<,a 为正整数,且371a a <<+,6a ∴=.故选:B .5.(4分)已知:如图,////AB CD EF ,50ABC ∠=︒,150CEF ∠=︒,则BCE ∠的值为()A .50︒B .30︒C .20︒D .60︒【解答】解:////AB CD EF ,50ABC BCD ∴∠=∠=︒,180CEF ECD ∠+∠=︒; 18030ECD CEF ∴∠=︒-∠=︒, 20BCE BCD ECD ∴∠=∠-∠=︒.故选:C .6.(4分)计算222211111a a a a a a a-+-÷-+-+的正确结果为( )A .11a + B .1 C .2D .1a-【解答】解:原式2(1)(1)111111(1)(1)(1)a a a a a a a a a-+=⨯-+=-+=+--.故选:B .7.(4分)我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长一十二步(宽比长少12步),问阔及长各几步.“如果设矩形田地的长为x 步,那么同学们列出的下列方程中正确的是( ) A .(12)864x x +=B .(12)864x x -=C .212864x x +=D .2128640x x +-=【解答】解:设矩形田地的长为x 步,那么宽就应该是(12)x -步. 根据矩形面积=长⨯宽,得:(12)864x x -=. 故选:B .8.(4分)如图,ABCD 中,AC BC ⊥,3BC =,4AC =,则B ,D 两点间的距离是()A .213B .62C .10D .55【解答】解:过D 作DE BC ⊥,ABCD 中,AC BC ⊥, //AD CE ∴, DE BC ⊥, //AC DE ∴,∴四边形ACED 是平行四边形,3CE AD BC ∴===,连接BD ,在Rt BDE ∆中,222264213BD BE DE =+=+=, 故选:A .9.(4分)二次函数2y ax bx c =++的图象如图所示,反比例函数ay x=与正比例函数y bx =在同一坐标系中的大致图象可能是( )A .B .C .D .【解答】解:二次函数2y ax bx c =++的图象开口方向向下, 0a ∴<,对称轴在y 轴的右边, a ∴、b 异号,即0b >.∴反比例函数ay x=的图象位于第二、四象限, 正比例函数y bx =的图象位于第一、三象限. 观察选项,C 选项符合题意. 故选:C .10.(4分)如图1,已知平行四边形ABCD 中,点E 是AB 边上的一动点(与点A 不重合),设AE x =,DE 的延长线交CB 的延长线于点F ,设BF y =,且y 与x 之间的函数关系图象如图2所示,则下面的结论中不正确的是( )A .2AD =B .当1x =时,6y =C .若AD DE =,则1BF EF == D .若2BF BC =,则43AE =【解答】解:ABCD 为平行四边形//AD BC ∴,//AB DCF ADF ∴∠=∠,FBE A ∠=∠ BFE ADE ∴∆∆∽∴BF BEAD AE=设AB a =,AD b = 则BE AB AE a x =-=-∴y a xb x -=aby b x∴=- 图象过点(2,2),(4,0) 4a ∴=,2b =故A 正确; 4a =,2b =82y x∴=- ∴当1x =时,6y =,故B 正确;若AD DE =,则A AED ∠=∠A FBE ∠=∠,AED FEB ∠=∠ FBE FEB ∴∠=∠ BF EF ∴=∴若AD DE =,则总有BF EF =,它们并不总等于1,故C 不正确;若2BF BC =, BF BEAD AE=∴24BC AEBC AE-=解得43AE =故D 正确. 故选:C .二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)港珠澳大桥是世界最长的跨海大桥,其中主体工程“海中桥隧”长达35.578公里,整个大桥造价超过720亿元人民币.720亿用科学记数法可表示为 107.210⨯ 元. 【解答】解:720亿10720000000007.210==⨯. 故答案为:107.210⨯.12.(5分)二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录.太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”.这一时间认知体系被誉为“中国的第五大发明”.如图,指针落在惊蛰、春分、清明区域的概率是18.【解答】解:如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,∴指针落在惊蛰、春分、清明的概率是:31248=. 故答案为:1813.(5分)如图,已知四边形ABCD 内接于O ,AD 是直径,120ABC ∠=︒,3CD =,则弦AC = 33 .【解答】解:四边形ABCD 内接于O , 18060D B ∴∠=︒-∠=︒,AD 是直径,90ACD ∴∠=︒, tan 33AC CD D ∴==故答案为:3314.(5分)如图,抛物线2286y x x =-+-与x 轴交于点A ,B ,把抛物线在x 轴及其上方的部分记作1C ,将1C 向右平移得2C ,2C 与x 轴交于点B ,D ,若直线y x m =+与1C ,2C 共有3个不同的交点,则m 的取值范围是1538m -<<-.【解答】解:令22860y x x =-+-=, 即2430x x -+=, 解得1x =或3, 则点(1,0)A ,(3,0)B ,由于将1C 向右平移2个长度单位得2C , 则2C 解析式为22(4)2(35)y x x =--+, 当1y x m =+与2C 相切时, 令212(4)2y x m y x =+==--+, 即21215300x x m -++=, △18150m =--=, 解得1158m =-, 当2y x m =+过点B 时, 即203m =+,23m =-,当1538m -<<-时直线y x m =+与1C 、2C 共有3个不同的交点, 故答案是:1538m -<<-.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:201()22|2cos45(3)2π----︒+-【解答】解:原式422213=-+=.16.(8分)定义一种新运算:观察下列式: 131437=⨯+=3(1)34111-=⨯-= 5454424=⨯+=4(3)44313-=⨯-=(1)请你想一想:a b = 4a b + ; (2)若a b ≠,那么a b ba (填入“=”或“≠” )(3)若(2)3ab -=,请计算()(2)a b a b -+的值. 【解答】解:(1)根据定义可知:4a b a b =+;(2)4a b a b =+,4b a b a =+,a b ≠,ab ba ∴≠;(3)(2)3a b -=,423a b ∴-=, 2 1.5a b ∴-=,()(2)a b a b ∴-+4()(2)a b a b =-++ 63a b =-3(2)a b =- 4.5=.故答案为:4a b +;≠.四、(本大题共2小题,每小题8分,满分16分)17.(8分)2019年2月24日,华为发布旗下最新款折叠屏手机MateX ,如图是这款手机的示意图,当两块折叠屏的夹角为30︒时(即30)ABC ∠=︒,测得AC 之间的距离为40mm ,此时45CAB ∠=︒.求这款手机完全折叠后的宽度AB 长是多少?(结果保留整数,参考数据:2 1.414≈,3 1.732≈,6 2.449)≈【解答】解:过点C 作CD AB ⊥于点D , 40AC mm =,45A ∠=︒,40202()2CD AD mm ∴===,30B ∠=︒,2402()BC CD mm ∴==,∴由勾股定理可知:206()BD mm =,AB AD BD ∴=+202206=+77()mm ≈,18.(8分)已知:在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(5,4)A ,(0,3)B ,(2,1)C .(1)画出ABC ∆关于原点成中心对称的△111A B C ,并写出点1C 的坐标; (2)画出将111A B C 绕点1C 按顺时针旋转90︒所得的△221A B C .【解答】解:(1)如图所示,△111A B C 即为所求,其中点1C 的坐标为(2,1)--.(2)如图所示,△221A B C 即为所求.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,在圆O 中,弦8AB =,点C 在圆O 上(C 与A ,B 不重合),连接CA 、CB ,过点O 分别作OD AC ⊥,OE BC ⊥,垂足分别是点D 、E .(1)求线段DE 的长;(2)点O 到AB 的距离为3,求圆O 的半径.【解答】解:(1)OD 经过圆心O ,OD AC ⊥, AD DC ∴=,同理:CE EB =,DE ∴是ABC ∆的中位线,12DE AB ∴=, 8AB =,4DE ∴=.(2)过点O 作OH AB ⊥,垂足为点H ,3OH =,连接OA ,OH 经过圆心O ,12AH BH AB ∴==, 8AB =,4AH ∴=,在Rt AHO ∆中,222AH OH AO +=, 5AO ∴=,即圆O 的半径为5.20.(10分)为了增强学生体质,某校对学生设置了体操、球类、跑步、游泳等课外体育活动,为了了解学生对这些项目的喜爱情况,在全校范围内随机抽取了若干名学生,对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生?(2)补全频数分布直方图,求出扇形统计图中“体操”所对应的圆心角度数; (3)估计该校1200名学生中有多少人喜爱跑步项目. 【解答】解:(1)45%80÷=,即在这次问卷调查中,一共抽查了80名学生; (2)喜爱游泳的学生有:8025%20⨯=(人), 补全的频数分布直方图如右图所示,扇形统计图中“体操”所对应的圆心角度数是:103604580︒⨯=︒;(3)10120015080⨯=(人), 答:该校1200名学生中有150人喜爱跑步项目.六、(本题满分12分)21.(12分)如图,一次函数的图象与y 轴交于(0,8)C ,且与反比例函数(0)k y x x=>的图象在第一象限内交于(3,)A a ,(1,)B b 两点. (1)求AOC ∆的面积;(2)若2224a ab b -+=,求反比例函数和一次函数的解析式.【解答】解:(1)作AD y ⊥轴于D ,(3,)A a , 3AD ∴=,一次函数的图象与y 轴交于(0,8)C , 8OC ∴=,11831222AOC S OC AD ∆∴==⨯⨯=;(2)(3,)A a ,(1,)B b 两点在反比例函数(0)ky x x=>的图象上,3a b ∴=,4, 22216a ab b ∴-+=,2223(3)16a a a a ∴-+=, 整理得,24a =, 0a >, 2a ∴=,(3,2)A ∴, 326k ∴=⨯=,设直线的解析式为y mx n =+,∴832n m n =⎧⎨+=⎩,解得:28m n =-⎧⎨=⎩,∴一次函数的解析式为28y x =-+, ∴反比例函数和一次函数的解析式分别为6y x=和28y x =-+. 七、(本题满分12分)22.(12分)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/千克.根据销售情况,发现该芒果在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系.(1)某天这种芒果的售价为28元/千克,求当天该芒果的销售量.(2)设某天销售这种芒果获利m 元,写出m 与售价x 之间的函数关系式,如果水果店该天第21页(共23页)获利400元,那么这天芒果的售价为多少元?【解答】解:(1)设该一次函数解析式为(0)y kx b k =+≠,则 25352238k b k b +=⎧⎨+=⎩, 解得160k b =-⎧⎨=⎩, 60(1540)y x x ∴=-+,∴当28x =时,32y =,答:芒果售价为28元/千克时,当天该芒果的销售量为32千克;(2)由题易知2(10)(60)(10)70600m y x x x x x =-=-+-=-+-, 当400m =时,则270600400x x -+-=,解得,120x =,250x =,1540x ,20x ∴=,答:这天芒果的售价为20元.八、(本题满分14分)23.(14分)如图1,在锐角ABC ∆中,D 、E 分别是AB 、BC 的中点,点F 在AC 上,且满足AFE A ∠=∠,//DM EF 交AC 于点M .(1)证明:DM DA =;(2)如图2,点G 在BE 上,且BDG C ∠=∠,求证:DEG ECF ∆∆∽;(3)在图2中,取CE 上一点H ,使得CFH B ∠=∠,若3BG =,求EH 的长.【解答】(1)证明:如图1所示,//DM EF,∴∠=∠,AMD AFE∠=∠,AFE AAMD A∴∠=∠,∴=.DM DA(其他解法酌情给分)(2)证明:如图2所示,D、E分别是AB、BC的中点,∴,//DE AC∴∠=∠,DEG CBDE A∠=∠,∠=∠,AFE A∴∠=∠,BDE AFEBDG GDE C FEC∴∠+∠=∠+∠,∠=∠,BDG CGDE FEC∴∠=∠,∽.∴∆∆DEG ECF(3)如图3所示,第22页(共23页)BDG C DEB∠=∠=∠,B B∠=∠,BDG BED∴∆∆∽,∴BD BGBE BD=,2BD BG BE∴=,AFE A∠=∠,CFH B∠=∠,180180C A B AFE CFH EFH∴∠=︒-∠-∠=︒-∠-∠=∠,又FEH CEF∠=∠,EFH ECF∴∆∆∽,∴EH EFEF EC=,2EF EH EC∴=,//DE AC,//DM EF,∴四边形DEFM是平行四边形,EF DM DA BD∴===,BG BE EH EC∴=,BE EC=,3EH BG∴==.第23页(共23页)。
2020年安徽省合肥四十六中南校区中考数学模拟试卷参考答案与试题解析1.C.2.A.3.A.4.D.5.C.6.C.7.A.8.D.9.C.10.B.11. 4.2×108 12.0.13.2π﹣4.14.或.15.(8分)计算:(﹣1)2018+|1﹣|﹣2sin45°.【解答】解:(﹣1)2018+|1﹣|﹣2sin45°=1+2﹣1﹣2×=16.【解答】解:设绳子长x尺,长木长y尺,依题意,得:,解得:.答:长木长6.5尺.17.【解答】解:如图,延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC 是矩形.在Rt△CJD中,==,设CJ=4k,DJ=3k,则有9k2+16k2=4,∴k=,∴BM=CJ=,BC=MJ=1,DJ=,EM=MJ+DJ+DE=,在Rt△AEM中,tan∠AEM=,∴1.6=,解得AB≈13.1.故旗杆AB的高度约为13.1米.18.【解答】解:(1)根据已知规律,第6个分式分母为6和7,分子分别为1和5故应填:(2)根据题意,第n个分式分母为n和n+1,分子分别为1和n﹣1故应填:证明:=∴等式成立19.【解答】解:(1)∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF=(180°﹣80°)=50°,∵CE⊥AB,∴CE⊥CD,∴∠DCE=90°,∴∠ECF=90°﹣50°=40°;(2)如图,延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=EM=FE,∴∠ECF=∠CEF.20.【解答】(1)证明:∵AC=BC,∴=,∵AB平分∠CBD,∴∠ABC=∠ABD,∴=,∴=,∴AB=CD;(2)解:连接OA、OB、OC,OC交AB于H,如图,∵=,∴∠ADC=∠BDC=∠ADB=30°,OC⊥AB,AH=BH,∴∠BOC=60°,∴OH=OB=,BH=OH=,∴AB=2BH=,∵四边形ACBD的面积=S△ABC+S△ABD,∴当D点到AB的距离最大时,S△ABD的面积最大,四边形ACBD的面积最大,此时D 点为优弧AB的中点,即CD为⊙O的直径时,四边形ACBD的面积最大,∴四边形ACBD的面积最大值为•×2=.21.【解答】解:(1)该校九年级共捐书:;(2)a=175÷500=0.35、b=500×0.3=150、c=110÷500=0.22、d=65÷500=0.13,故答案为:0.35、150、0.22、0.13;(3)估计“科普图书”和“小说”一共1500×(0.3+0.22)=780(本);(4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:1231(2,1)(3,1)2(1,2)(3,2)3(1,3)(2,3)则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种,所以所求的概率:.22.【解答】解:(1)∵A(﹣1,0)在抛物线上,∴,∴解得a=﹣2.(2)∴抛物线表达式为y=﹣x2+2x+3.∴抛物线y=﹣x2+2x+3的顶点P的坐标为(1,4).∵点P关于原点的对称点为P',∴P'的坐标为(﹣1,﹣4).(3)直线PP'的表达式为y=4x,图象向下平移3个单位后,A'的坐标为(﹣1,﹣3),B'的坐标为(3,﹣3),若图象G与直线PP'无交点,则B'要左移到M及左边,令y=﹣3代入PP',则,M的坐标为,∴,∴.23.【解答】解:(1)如图1,由旋转可得,EC=DC=3,∠ECD=90°=∠ACB,∴∠BCD=∠ACE,又∵AC=BC,∴△BCD≌△ACE(SAS),∴AE=BD=4,∠CAE=∠B=45°=∠CAB,∴∠EAD=90°,∴DE==3,∴AD===,∴AB=AD+BD=+4.(2)如图2,过C作CG⊥AB于G,则AG=AB,∵∠ACB=90°,AC=BC,∴CG=AB,即,∵点F为AD的中点,∴F A=AD,∴FG=AG﹣AF=AB﹣AD=(AB﹣AD)=BD,由(1)可得,BD=AE,∴FG=AE,即,∴,又∵∠CGF=∠BAE=90°,∴△CGF∽△BAE,∴∠FCG=∠ABE,∵∠FCG+∠CFG=90°,∴∠ABE+∠CFG=90°,∴CF⊥BE.。
2024年安徽省合肥四十六中中考数学三模试卷一、选择题(本部分共10小题,每小题4分,共40分,每小题有四个选项其中只有一个是正确的)1.(4分)9的平方根是( )A.3B.﹣3C.±3D.2.(4分)截止到2022年底,中国十大储蓄省排名出炉,河南省以“9.2万亿”规模位列榜单,数据“9.2万亿”用科学记数法表示为( )A.9.2×1011B.0.92×1012C.92×1011D.9.2×10123.(4分)下列运算,其中正确的是( )A.x3+x5=x8B.(﹣x2)•(﹣x3)=x6C.(﹣2x3)2=4x6D.x6÷x6=x4.(4分)下列图形中既是中心对称图形又是轴对称图形的是( )A.B.C.D.5.(4分)如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A.B.C.D.6.(4分)在一个桌子上放着若干张背面向上的扑克牌,这些扑克牌背面图案相同,正面为3张方块、2张红桃和a张梅花.若从这些打乱的扑克牌中任意摸出1张扑克牌,这张扑克牌是梅花的概率为,则a的值为( )A.4B.5C.6D.77.(4分)如图,A,B两点分别在直线l1,l2上,且l1∥l2,BA=BC,BC⊥l2,若∠1=124°,则∠CAB 的度数等于( )A.30°B.32°C.34°D.36°8.(4分)早在1800多年前,魏晋时期的数学家刘徽首创“割圆术”,用圆内接正多边形的面积去无限逼近圆面积,如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为( )A.3B.πC.D.69.(4分)如图,A、B是第二象限内双曲线y=上的点,A、B两点的横坐标分别是a,3a,线段AB的延长线交x轴于点C,S△AOC=12.则k的值为( )A.﹣6B.﹣5C.﹣4D.﹣310.(4分)如图1,在菱形ABCD中AB=6,∠BAD=120°,点E是BC边上的一动点,点P是对角线BD 上一动点,设PD的长度为x,PE与PC的长度和为y,当点P从B向点D运动时,y与x的函数关系图2所示,其中H(a,b)是图象上的最低点,则点H的坐标为( )A.(,)B.(,)C.(,)D.(,)二、填空题(共4小题,每小题5分,共20分)11.(5分)分解因式6xy2﹣3x2y= .12.(5分)函数中自变量x的取值范围是 .13.(5分)已知线段AB,按如下步骤作图:①取线段AB中点C;②过点C作直线l,使l⊥AB;③以点C为圆心,AB长为半径作弧,交l于点D;④作∠DAC的平分线AE,交l于点E,则tan∠DAE的值为 .14.(5分)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.(1)抛物线与x轴围成的区域内(不包括抛物线和x轴上的点)整点有 个;(2)若抛物线y=ax2﹣4ax+4a﹣3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是 .三、解答题(本大题共2小题,每小题8分,共16分)15.(8分)计算:.16.(8分)山西祁县酥梨,洁白透黄、皮薄肉细、香甜酥脆、果汁多、营养丰富、品质上乘,被誉为“果中一绝,梨之上品”.一果园有甲、乙两支专业酥梨采摘队,已知甲队比乙队每天多采摘600公斤酥梨,甲队采摘28800公斤酥梨所用的天数与乙队采摘19200公斤酥梨所用的天数相同.问甲、乙两队每天分别可采摘多少公斤酥梨?四、解答题(本大题共2小题,每小题8分,共16分)17.(8分)观察下列式子:第1个等式:132=10×(10×1+6)×1+9;第2个等式:232=10×(10×2+6)×2+9;第3个等式:332=10×(10×3+6)×3+9;……(1)请写出第4个等式: ;(2)设一个两位数表示为10a+3,根据上述规律,请写出(10a+3)2的一般性规律,并予以证明.18.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点的坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;五、解答题(本大题共2小题,每小题10分,共20分)19.(10分)如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若,AE=2,求阴影部分面积.20.(10分)图1、图2别是一名滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿ED与斜坡AB垂直,大腿EF与斜坡AB平行,G为头部,假设G、E、D三点共线且头部到斜坡的距离GD为1.04m,上身与大腿夹角∠GFE=53°,膝盖与滑雪板后端的距离EM长为0.8m,∠EMD=30°.(1)求此滑雪运动员的小腿ED的长度;(2)求此运动员的身高.(参考数据:sin53°≈,cos53°≈,tan53°≈)六、(本题满分12分)21.(12分)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息解答下列问题:竞赛成绩统计表:组别分数人数A组75<x≤804B组80<x≤85C组85<x≤9010D组90<x≤95E组95<x≤10014(1)本次共调查了 名学生;(2)C组所在扇形的圆心角为 度;(3)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?七、(本题满分26分)22.(12分)如图1,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,且AF=CE,连接EF交DC于点P,连接AC交EF于Q,连接DE、DF.(1)求证:EQ=FQ;(2)连接BQ,如图2,①若AQ•DP=5,求BQ的长;②若FP=FD,则= .23.(14分)已知,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,点P是抛物线上一点.(1)求抛物线的解析式;(2)当点P位于第四象限时,连接AC,BC,PC,若∠PCB=∠ACO,求直线PC的解析式;(3)如图2,当点P位于第二象限时,过P点作直线AP,BP分别交y轴于E,F两点,请问的值是否为定值?若是,请求出此定值;若不是,请说明理由.2024年安徽省合肥四十六中中考数学三模试卷参考答案一、选择题(本部分共10小题,每小题4分,共40分,每小题有四个选项其中只有一个是正确的)1.(4分)9的平方根是( )A.3B.﹣3C.±3D.选:C.2.(4分)截止到2022年底,中国十大储蓄省排名出炉,河南省以“9.2万亿”规模位列榜单,数据“9.2万亿”用科学记数法表示为( )A.9.2×1011B.0.92×1012C.92×1011D.9.2×1012选:D.3.(4分)下列运算,其中正确的是( )A.x3+x5=x8B.(﹣x2)•(﹣x3)=x6C.(﹣2x3)2=4x6D.x6÷x6=x选:C.4.(4分)下列图形中既是中心对称图形又是轴对称图形的是( )A.B.C.D.选:B.5.(4分)如图是由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A.B.C.D.选:B.6.(4分)在一个桌子上放着若干张背面向上的扑克牌,这些扑克牌背面图案相同,正面为3张方块、2张红桃和a张梅花.若从这些打乱的扑克牌中任意摸出1张扑克牌,这张扑克牌是梅花的概率为,则a的值为( )A.4B.5C.6D.7选:B.7.(4分)如图,A,B两点分别在直线l1,l2上,且l1∥l2,BA=BC,BC⊥l2,若∠1=124°,则∠CAB 的度数等于( )A.30°B.32°C.34°D.36°选:C.8.(4分)早在1800多年前,魏晋时期的数学家刘徽首创“割圆术”,用圆内接正多边形的面积去无限逼近圆面积,如图所示的圆的内接正十二边形,若该圆的半径为1,则这个圆的内接正十二边形的面积为( )A.3B.πC.D.6选:A.9.(4分)如图,A、B是第二象限内双曲线y=上的点,A、B两点的横坐标分别是a,3a,线段AB的延长线交x轴于点C,S△AOC=12.则k的值为( )A.﹣6B.﹣5C.﹣4D.﹣3选:A.10.(4分)如图1,在菱形ABCD中AB=6,∠BAD=120°,点E是BC边上的一动点,点P是对角线BD 上一动点,设PD的长度为x,PE与PC的长度和为y,当点P从B向点D运动时,y与x的函数关系图2所示,其中H(a,b)是图象上的最低点,则点H的坐标为( )A.(,)B.(,)C.(,)D.(,)选:A.二、填空题(共4小题,每小题5分,共20分)11.(5分)分解因式6xy2﹣3x2y= 3xy(2y﹣x) .12.(5分)函数中自变量x的取值范围是 x≥0且x≠3 .13.(5分)已知线段AB,按如下步骤作图:①取线段AB中点C;②过点C作直线l,使l⊥AB;③以点C为圆心,AB长为半径作弧,交l于点D;④作∠DAC的平分线AE,交l于点E,则tan∠DAE的值为.14.(5分)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.(1)抛物线与x轴围成的区域内(不包括抛物线和x轴上的点)整点有 4 个;(2)若抛物线y=ax2﹣4ax+4a﹣3与x轴围成的区域内(不包括抛物线和x轴上的点)恰好有8个“整点”,则a的取值范围是( ≤a< ).三、解答题(本大题共2小题,每小题8分,共16分)15.(8分)计算:.【解答】解:=1﹣2×+﹣1﹣4=1﹣+﹣1﹣4=﹣4.16.(8分)山西祁县酥梨,洁白透黄、皮薄肉细、香甜酥脆、果汁多、营养丰富、品质上乘,被誉为“果中一绝,梨之上品”.一果园有甲、乙两支专业酥梨采摘队,已知甲队比乙队每天多采摘600公斤酥梨,甲队采摘28800公斤酥梨所用的天数与乙队采摘19200公斤酥梨所用的天数相同.问甲、乙两队每天分别可采摘多少公斤酥梨?【解答】解:设甲队每天可采摘x公斤酥梨,则乙队每天可采摘(x﹣600)公斤酥梨.根据题意得.解得x=1800.经检验,x=1800是原分式方程的解.∴x﹣600=1200.答:甲队每天可采摘1800公斤酥梨,乙队每天可采摘1200公斤酥梨.四、解答题(本大题共2小题,每小题8分,共16分)17.(8分)观察下列式子:第1个等式:132=10×(10×1+6)×1+9;第2个等式:232=10×(10×2+6)×2+9;第3个等式:332=10×(10×3+6)×3+9;……(1)请写出第4个等式: 432=10×(10×4+6)×4+9 ;(2)设一个两位数表示为10a+3,根据上述规律,请写出(10a+3)2的一般性规律,并予以证明.【解答】解:(1)432=10×(10×4+6)×4+9,故答案为:432=10×(10×4+6)×4+9;(2)一般性规律:(10a+3)2=10a×(10a+6)+9.证明:∵等式左边=(10a+3)2=100a2+60a+9,等式右边=10a×(10a+6)+9=100a2+60a+9,∴等式左边=等式右边,即(10a+3)2=10a×(10a+6)+9.18.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点的坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;【解答】解:(1)如图所示,△A1B1C1即为所求,由图知,C1点的坐标为(3,2);(2)如图所示,△A2B2C2即为所求,C2点坐标为(﹣6,4).五、解答题(本大题共2小题,每小题10分,共20分)19.(10分)如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于点E.(1)求证:∠BCO=∠D;(2)若,AE=2,求阴影部分面积.【解答】(1)证明:∵OC=OB,∴∠BCO=∠B,∵∠B=∠D,∴∠BCO=∠D;(2)解:∵AB是⊙O的直径,CD⊥AB于点E,∴,∵,∴,在Rt△OCE中,OC2=CE2+OE2,∴,解得:r=4(负数舍去),∴OC=OA=4,∴OE=4﹣2=2,∴tan,∴∠AOC=60°,∴S阴影=S扇形AOC﹣S△COE=﹣=π﹣2.20.(10分)图1、图2别是一名滑雪运动员在滑雪过程中某一时刻的实物图与示意图,已知运动员的小腿ED与斜坡AB垂直,大腿EF与斜坡AB平行,G为头部,假设G、E、D三点共线且头部到斜坡的距离GD为1.04m,上身与大腿夹角∠GFE=53°,膝盖与滑雪板后端的距离EM长为0.8m,∠EMD=30°.(1)求此滑雪运动员的小腿ED的长度;(2)求此运动员的身高.(参考数据:sin53°≈,cos53°≈,tan53°≈)【解答】解:(1)在Rt△EDM中,∠EMD=30°,EM=0.8m,则DE=EM=×0.8=0.4(m),答:此滑雪运动员的小腿ED的长度为0.4m;(2)∵GD=1.04m,DE=0.4m,∴GE=GD﹣DE=1.04﹣0.4=0.64(m),在Rt△GEF中,∠GFE=53°,∵sin∠GFE=,tan∠GFE=,∴GF=≈=0.8(m),EF=≈=0.48(m),∴GF+EF+DE=0.8+0.48+0.4=1.68(m),答:此运动员的身高约为1.68m.六、(本题满分12分)21.(12分)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息解答下列问题:竞赛成绩统计表:组别分数人数A组75<x≤804B组80<x≤85C组85<x≤9010D组90<x≤95E组95<x≤10014(1)本次共调查了 50 名学生;(2)C组所在扇形的圆心角为 72 度;(3)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?【解答】解:(1)本次共调查的学生=14÷28%=50(人);故答案为:50;(2)C组的圆心角为360°×=72°;故答案为:72;(3)B组的人数为50×12%=6(人);D组的人数为50﹣4﹣6﹣14﹣10=16(人),则估计优秀的人数为1600×=960(人).优秀的人数为960人.七、(本题满分26分)22.(12分)如图1,四边形ABCD是正方形,点E在边BC的延长线上,点F在边AB上,且AF=CE,连接EF交DC于点P,连接AC交EF于Q,连接DE、DF.(1)求证:EQ=FQ;(2)连接BQ,如图2,①若AQ•DP=5,求BQ的长;②若FP=FD,则= .【解答】(1)证明:如图1,过点E作EG∥AB交AC的延长线于点G,∴∠QAF=∠G,∠AFQ=∠GEQ,∵四边形ABCD是正方形,∴∠ACB=∠GCE=45°,∵EG∥AB,∵∠CEG=∠B=90°,∴∠G=45°=∠GCE,∴GE=CE,∵AF=CE,∴AF=GE,又∠QAF=∠G,∠AFQ=∠GEQ,∴△AFQ≌△GEQ(ASA),∴FQ=EQ;(2)解:如图2,连接DQ,由(1)知:点Q是EF的中点,∴DQ=QF=QE,∵AB∥CD,∴∠AFQ=∠DPE,∵∠FAQ=45°,∠FED=45°,∴∠FAQ=∠PED,∴△AFQ∽△EPD,∴FQ:PD=AQ:DE,∴FQ•DE=DP•AQ,∵AQ•DP=5,∴FQ•DE=5,设DQ=QE=x,根据勾股定理,得DE=x,∴x•x=5,∴x=或x=﹣(舍去),∴EQ=,∵∠FBC=90°,Q是EF的中点,∴BQ=QE=;(3)如图3,过F作FH∥AD,则四边形AFHD是矩形,∴FH=AD,FH∥AD,FH⊥PD,∵FD=FP,∴DH=PH=AF,由(1)知,AF=CE=EG,∴DH=PH=AF=EG=CE,设DH=PH=AF=EG=CE=a,AB=BC=x,∴BF=x﹣a,CP=x﹣2a,∵PC∥BF,∴△PCE∽△FBE,∴,∴=,∴x=(1+)a(负值舍去),∴CP=(﹣1)a,∵PC∥EG,∴△PQC∽△EQG,∴,∴=﹣1,∴PQ=()QE,∴PE=QE﹣PQ=(2﹣)QE,∴==.23.(14分)已知,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,点P是抛物线上一点.(1)求抛物线的解析式;(2)当点P位于第四象限时,连接AC,BC,PC,若∠PCB=∠ACO,求直线PC的解析式;(3)如图2,当点P位于第二象限时,过P点作直线AP,BP分别交y轴于E,F两点,请问的值是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入y=ax2+bx+c,∴,∴,∴y=﹣x2+2x+3;(2)过点B作MB⊥CB交于点M,过点M作MN⊥x轴交于点N,∵A(﹣1,0)、C(0,3),B(3,0),∴OA=1,OC=3,BC=3,∴tan∠ACO=,∵∠PCB=∠ACO,∴tan∠BCM==,∴BM=,∵OB=OC,∴∠CBO=45°,∴∠NBM=45°,∴MN=NB=1,∴M(2,﹣1),设直线CM的解析式为y=kx+b,∴,∴,∴直线PC的解析式为y=﹣2x+3;(3)的值是为定值.,理由如下:设P(t,﹣t2+2t+3),设直线AP的解析式为y=k1x+b1,∴,∴,∴y=(3﹣t)x+(3﹣t),∴E(0,3﹣t),∴CE=﹣t,设直线BP的解析式为y=k2x+b2,∴,∴,∴y=(﹣t﹣1)x+3t+3,∴F(0,3t+3),∴CF=﹣3t,∴=,∴的值是为定值.。
安徽省合肥市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()A.4 B.8 C. 2 D.-22.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-3.2018的相反数是()A.12018B.2018 C.-2018 D.12018-4.估计41的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间5.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A.1.8×105B.1.8×104C.0.18×106D.18×1046.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米7.下列算式中,结果等于x6的是()A.x2•x2•x2B.x2+x2+x2C.x2•x3D.x4+x28.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.159.对于反比例函数2yx=,下列说法不正确的是()A.点(﹣2,﹣1)在它的图象上B.它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小10.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是( )A .小明不是胜就是输,所以小明胜的概率为12B .小明胜的概率是13,所以输的概率是23 C .两人出相同手势的概率为12D .小明胜的概率和小亮胜的概率一样11.许昌市2017年国内生产总值完成1915.5亿元,同比增长9.3%,增速居全省第一位,用科学记数法表示1915.5亿应为( ) A .1915.15×108 B .19.155×1010 C .1.9155×1011D .1.9155×101212.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.若60B ∠=︒,AC=3,则CD 的长为A .6B .23C .3D .3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.A .如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条. B .用计算器计算:7•tan63°27′≈_____(精确到0.01).14.对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y =max{x+3,﹣x+1},则该函数的最小值是_____.15.如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为_____.16.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是_____. 17.如果分式42x x -+的值为0,那么x 的值为___________. 18.如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A =52°,则∠1+∠2的度数为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线y=ax 2﹣2ax+c (a≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N ,在x 轴上找一点K ,使CK+KN 最小,并求出点K 的坐标;(3)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ .当△CQE 的面积最大时,求点Q 的坐标;(4)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.20.(6分)计算:033.14 3.1412cos45π⎫-+÷-⎪⎪⎝⎭o )()12009211-++-.21.(6分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.22.(8分)已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点. (1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.23.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A 、B 、C ,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.24.(10分)如图,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =,求O e 的半径.25.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求y 关于x 的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程. 26.(12分)求抛物线y=x 2+x ﹣2与x 轴的交点坐标. 27.(12分)已知函数y=3x(x >0)的图象与一次函数y=ax ﹣2(a≠0)的图象交于点A (3,n ). (1)求实数a 的值;(2)设一次函数y=ax ﹣2(a≠0)的图象与y 轴交于点B ,若点C 在y 轴上,且S △ABC =2S △AOB ,求点C 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】解:由题意得:226x +=,∴24x =,∴x=±1.故选C . 2.B 【解析】 【分析】首先设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为1.2x 元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程, 【详解】设学校购买文学类图书平均每本书的价格是x 元,可得:12000120001001.2x x=+ 故选B . 【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程. 3.C 【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得. 【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018, 故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键. 4.C 【解析】<<,∴67<<.6和7之间.5.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】180000=1.8×105,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.7.A【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;B、x2+x2+x2=3x2,故选项B不符合题意;C、x2•x3=x5,故选项C不符合题意;D、x4+x2,无法计算,故选项D不符合题意.故选A.8.B试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.9.C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y 随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化10.D【解析】【分析】利用概率公式,一一判断即可解决问题.【详解】A、错误.小明还有可能是平;B、错误、小明胜的概率是13,所以输的概率是也是13;C、错误.两人出相同手势的概率为13;D 、正确.小明胜的概率和小亮胜的概率一样,概率都是13; 故选D . 【点睛】本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比. 11.C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】用科学记数法表示1915.5亿应为1.9155×1011, 故选C . 【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 12.D 【解析】 【详解】解:因为AB 是⊙O 的直径,所以∠ACB=90°,又⊙O 的直径AB 垂直于弦CD ,60B ∠=︒,所以在Rt △AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3, 故选D. 【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.20 5.1 【解析】 【分析】A 、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B 、利用计算器计算可得. 【详解】A 、根据题意,此正多边形的边数为360°÷45°=8, 则这个正多边形对角线的条数一共有8(83)2⨯-=20,故答案为20;B•tan63°27′≈2.646×2.001≈5.1,故答案为5.1.【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.14.2【解析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,15.【解析】【分析】过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,【详解】解:连接OB,OA′,AA′,∵AA′关于直线MN对称,∴»¼''AN A N∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=即PA+PB 的最小值【点睛】本题考查轴对称求最小值问题及解直角三角形,根据轴对称的性质准确作图是本题的解题关键. 16.1a ≥-且2a ≠ 【解析】分式方程去分母得:2(2x-a )=x-2, 去括号移项合并得:3x=2a-2, 解得:223a x -=, ∵分式方程的解为非负数, ∴2203a -≥且 22203a --≠, 解得:a≥1 且a≠4 . 17.4 【解析】 【详解】 ∵402x x -=+, ∴x-4=0,x+2≠0, 解得:x=4, 故答案为4. 18.64° 【解析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD 和CE 是△ABC 的两条角平分线,∴∠1=12∠ABC ,∠2=12∠ACB ,∴∠1+∠2=12(∠ABC+∠ACB )=64°.故答案为64°. 点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣2142x x ++;(1)点K 的坐标为(817,0);(2)点P 的坐标为:(1)或(1,1)或(,2)或(1,2). 【解析】试题分析:(1)把A 、C 两点坐标代入抛物线解析式可求得a 、c 的值,可求得抛物线解析;(1)可求得点C 关于x 轴的对称点C′的坐标,连接C′N 交x 轴于点K ,再求得直线C′K 的解析式,可求得K 点坐标;(2)过点E 作EG ⊥x 轴于点G ,设Q (m ,0),可表示出AB 、BQ ,再证明△BQE ≌△BAC ,可表示出EG,可得出△CQE关于m的解析式,再根据二次函数的性质可求得Q点的坐标;(4)分DO=DF、FO=FD和OD=OF三种情况,分别根据等腰三角形的性质求得F点的坐标,进一步求得P点坐标即可.试题解析:(1)∵抛物线经过点C(0,4),A(4,0),∴416840ca a=⎧⎨-+=⎩,解得124ac⎧=-⎪⎨⎪=⎩,∴抛物线解析式为y=﹣12x1+x+4;(1)由(1)可求得抛物线顶点为N(1,92),如图1,作点C关于x轴的对称点C′(0,﹣4),连接C′N交x轴于点K,则K点即为所求,设直线C′N的解析式为y=kx+b,把C′、N点坐标代入可得924k bb⎧+=⎪⎨⎪=-⎩,解得1724kb⎧=⎪⎨⎪=-⎩,∴直线C′N的解析式为y=172x-4 ,令y=0,解得x=817,∴点K的坐标为(817,0);(2)设点Q(m,0),过点E作EG⊥x轴于点G,如图1,由﹣12x1+x+4=0,得x1=﹣1,x1=4,∴点B 的坐标为(﹣1,0),AB=6,BQ=m+1,又∵QE ∥AC ,∴△BQE ≌△BAC , ∴EG BQ CO BA = ,即246EG m += ,解得EG=243m + ; ∴S △CQE =S △CBQ ﹣S △EBQ =12(CO-EG )·BQ=12(m+1)(4-243m +) =2128-333m m ++ =-13(m-1)1+2 . 又∵﹣1≤m≤4,∴当m=1时,S △CQE 有最大值2,此时Q (1,0);(4)存在.在△ODF 中,(ⅰ)若DO=DF ,∵A (4,0),D (1,0),∴AD=OD=DF=1.又在Rt △AOC 中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此时,点F 的坐标为(1,1).由﹣12x 1+x+4=1,得x 1=1+5 ,x 1=1﹣5. 此时,点P 的坐标为:P 1(1+5,1)或P 1(1﹣5,1);(ⅱ)若FO=FD ,过点F 作FM ⊥x 轴于点M .由等腰三角形的性质得:OM=12OD=1, ∴AM=2. ∴在等腰直角△AMF 中,MF=AM=2.∴F (1,2).由﹣12x 1+x+4=2,得x 13x 1=13. 此时,点P 的坐标为:P 2(32)或P 4(13,2);(ⅲ)若OD=OF ,∵OA=OC=4,且∠AOC=90°.∴.∴点O 到AC 的距离为.而OF=OD=1<矛盾.∴在AC 上不存在点使得OF=OD=1.此时,不存在这样的直线l ,使得△ODF 是等腰三角形.综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为:(1)或(11)或(,2)或(1,2).点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.20.π【解析】【分析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负整数指数幂的性质、二次根式的性质及乘方的定义分别计算后,再合并即可【详解】原式()3.14 3.141π=--+÷ ()212-⨯+-13.14 3.14121π=-+--11π=-π=.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.21. (1)25;(2)35. 【解析】【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【详解】(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:25.故答案为25;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:123 205.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12(x﹣6)(x+2)=﹣12x2+2x+6;(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6, 设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)△PDE 为等腰直角三角形,则PE=PD ,点P (m ,-12m 2+2m+6), 函数的对称轴为:x=2,则点E 的横坐标为:4-m ,则PE=|2m-4|,即-12m 2+2m+6+m-6=|2m-4|, 解得:m=4或-2或1717-2和17)故点P的坐标为:(4,6)或(5-17,317-5).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.23.13.【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章,再利用概率公式求解即可求得答案.试题解析:解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为39=13.点睛:本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.24.4【解析】【分析】已知△ABC是等腰三角形,根据等腰三角形的性质,作AH BC⊥于点H,则直线AH为BC的中垂线,直线AH过O点,在Rt△OBH中,用半径表示出OH的长,即可用勾股定理求得半径的长.【详解】作AH BC⊥于点H,则直线AH为BC的中垂线,直线AH过O点,2OH OA AH r=-=-,3BH=222OH BH OB+=,即()(2222r r -+=,4r =.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.25.(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.26.(1,0)、(﹣2,0)【解析】试题分析:抛物线与x 轴交点的纵坐标等于零,由此解答即可.试题解析:解:令0y =,即220x x +-=.解得:11x =,22x =-.∴该抛物线与x 轴的交点坐标为(-2,0),(1,0).27.(1)a=1;(2)C (0,﹣4)或(0,0).【解析】【分析】(1)把 A (3,n )代入y=3x(x >0)求得 n 的值,即可得A 点坐标, 再把A 点坐标代入一次函数 y=ax ﹣2 可得 a 的值;(2)先求出一次函数 y=ax ﹣2(a≠0)的图象与 y 轴交点 B 的坐标,再分两种情况(①当C 点在y 轴的正半轴上或原点时;②当C 点在y 轴的负半轴上时)求点C 的坐标即可.【详解】(1)∵函数y=3x(x>0)的图象过(3,n),∴3n=3,n=1,∴A(3,1)∵一次函数y=ax﹣2(a≠0)的图象过点A(3,1),∴1=3a﹣1,解得a=1;(2)∵一次函数y=ax﹣2(a≠0)的图象与y 轴交于点B,∴B(0,﹣2),①当C点在y轴的正半轴上或原点时,设C(0,m),∵S△ABC=2S△AOB,∴12×(m+2)×3=2×12×3,解得:m=0,②当C点在y 轴的负半轴上时,设(0,h),∵S△ABC=2S△AOB,∴12×(﹣2﹣h)×3=2×12×3,解得:h=﹣4,∴C(0,﹣4)或(0,0).【点睛】本题主要考查了一次函数与反比例函数交点问题,解决第(2)问时要注意分类讨论,不要漏解.。
2020年安徽省合肥市中考数学全真模拟试卷(三)一、选择题1.对二次函数21213y x x =+-进行配方,其结果及顶点坐标是( ) A. 21(3)4,(3,4)3y x =+-- B. 21(1)1,(1,1)3y x =+-- C. 21(3)4,(3,4)3y x =+--- D. 21(1)1,(1,1)3y x =+--- 2.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =5,那么点C 的位置可以在( ) A. 点C 1处B. 点C 2处C. 点C 3处D. 点C 4处 3.函数y=﹣2x 2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A . y=﹣2(x ﹣1)2+2B. y=﹣2(x ﹣1)2﹣2C. y=﹣2(x+1)2+2D. y=﹣2(x+1)2﹣2 4.若双曲线y =3k x -在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( ) A. k ≠3 B. k <3 C. k ≥3D. k >3 5.已知抛物线y =ax 2+bx +c (a <0)过A (﹣3,0)、O (1,0)、B (﹣5,y 1)、C (5,y 2)四点,则y 1与y 2的大小关系是( )A. y 1>y 2B. y 1=y 2C. y 1<y 2D. 不能确定 6.如图,在ABC 中,D 、E 分别在边AB 、AC 上,//DE BC ,//EF CD 交AB 于F ,那么下列比例式中正确的是( )A. AF DE DF BC =B. DF AF DB DF =C. EF DE CD BC =D. AF AD BD AB= 7.若二次函数y =ax 2+bx +c 的图象在平面直角坐标系中的位置如图所示,则一次函数y =ax +b 与反比例函数y =c x在同一平面直角坐标系的图象可能是( )A. B.C. D.8.已知二次函数()20y ax bx c a =++≠的图象如图所示,下列结论:①0abc >,②20a b +<,③420a b c -+<,④20a b c ++>,其中正确结论的个数为( )A. 4个B. 3个C. 2个D. 1个9.如图,在等腰直角三角形ABC 中,∠C =90°,AC =6,D 是BC 上一点,若tan ∠DAB =15,则AD 的长为( )A. 22B. 13C. 213D. 810.如图,在四边形ABCD 中,//,AD BC A ∠为直角,动点P 从点A 开始沿A B C D →→→的路径匀速前进D ,在这个过程中,APD ∆的面积S 随时间t 的变化过程可以用图像近似的表示为( )A. B. C. D.二、填空题11.如果2a =5b (b ≠0),那么a b =_____. 12.如图,已知双曲线k y x=(k <0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C ,若点A 的坐标为(﹣6,4),则△AOC 的面积为_____.13.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △DOE :S △AOC 的值为_____.14.在矩形ABCD 中,AB =5,BC =12.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE 的长为_____.三、解答题15.计算:201921(1)()0322sin6---︒+-16.已知:△ABC 三个顶点的坐标分别为A (﹣2,﹣2),B (﹣5,﹣4),C (﹣1,﹣5).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1; (2)以点O 为位似中心,将△ABC 放大为原来的2倍,得到△A 2B 2C 2,请在网格中画出△A 2B 2C 2. (3)①点B 1的坐标为 ;②求△A 2B 2C 2的面积.17.如图,在平面直角坐标系中,一次函数y=kx+b 的图象与x 轴交于点A (﹣1,0),与反比例函数y= m x在第一象限内的图象交于点B (12,n ).连接OB ,若S △AOB =1.(1)求反比例函数与一次函数的关系式;(2)直接写出不等式组 0x m kx b x>⎧⎪⎨>+⎪⎩的解集. 18.如图,在△ABC 中,点P 、D 分别在边BC 、AC 上,PA ⊥AB ,垂足为点A ,DP ⊥BC ,垂足为点P ,AP BP PD CD=.(1)求证:∠APD=∠C;(2)如果AB=3,DC=2,求AP的长.19.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A,B两地被大山阻隔,由A地到B地需要绕行C地,若打通穿山隧道,建成A,B两地的直达高铁,可以缩短从A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A地到B地的路程将约缩短多少公里?(参考数据:3≈1.7,2≈1.4)20.如图,△ABC中,AB=AC=13,BD⊥AC于点D,sin A=12 13(1)求BD的长;(2)求tan C的值.21.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y 轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC 、AE 、CE ,判断△ACE 的形状,并说明理由;(3)如图2,点D 是抛物线上一动点,它的横坐标为m ,且﹣3<m <﹣1,过点D 作DK ⊥x 轴于点K ,DK 分别交线段AE 、AC 于点G 、H .在点D 的运动过程中,①DG 、GH 、HK 这三条线段能否相等?若相等,请求出点D 的坐标;若不相等,请说明理由; ②在①的条件下,判断CG 与AE 的数量关系,并直接写出结论.22. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y (元)与销售单价x (元)之间的函数关系式,并求出自变量的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)23.如图,在△ABC 中,AB =AC =10cm ,BD ⊥AC 于点D ,BD =8cm .点M 从点A 出发,沿AC 的方向匀速运动,速度为2cm /s ;同时直线PQ 由点B 出发,沿BA 的方向匀速运动,速度为1cm /s ,运动过程中始终保持PQ ∥AC ,直线PQ 交AB 于点P 、交BC 于点Q 、交BD 于点F .连接PM ,设运动时间为t 秒(0<t <5).(1)当t 为何值时,四边形PQCM 是平行四边形?(2)设四边形PQCM 面积为ycm 2,求y 与t 之间的函数关系式; (3)是否存在某一时刻t ,使S 四边形PQCM =S △ABC ?若存在,求出t 的值;若不存在,说明理由;(4)连接PC ,是否存在某一时刻t ,使点M 在线段PC 的垂直平分线上?若存在,求出此时t 的值;若不存在,说明理由.。
安徽省合肥市2019-2020学年中考数学考前模拟卷(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,直线y=3x+6与x ,y 轴分别交于点A ,B ,以OB 为底边在y 轴右侧作等腰△OBC ,将点C 向左平移5个单位,使其对应点C′恰好落在直线AB 上,则点C 的坐标为( )A .(3,3)B .(4,3)C .(﹣1,3)D .(3,4)2.如图,平面直角坐标系中,矩形ABCD 的边AB :BC =3:2,点A (3,0),B (0,6)分别在x 轴,y 轴上,反比例函数y =kx的图象经过点D ,则k 值为( )A .﹣14B .14C .7D .﹣73.如图,AB 是半圆圆O 的直径,ABC ∆的两边,AC BC 分别交半圆于,D E ,则E 为BC 的中点,已知50BAC ∠=o ,则C ∠=( )A .55oB .60oC .65oD .70o4.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2ky x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A.1 B.2 C.3 D.45.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为()A.1.239×10﹣3g/cm3B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3D.12.39×10﹣4g/cm36.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=1 7.下列条件中不能判定三角形全等的是( )A.两角和其中一角的对边对应相等B.三条边对应相等C.两边和它们的夹角对应相等D.三个角对应相等8.-10-4的结果是()A.-7 B.7 C.-14 D.139.一个圆锥的底面半径为52,母线长为6,则此圆锥的侧面展开图的圆心角是()A.180°B.150°C.120°D.90°10.根据北京市统计局发布的统计数据显示,北京市近五年国民生产总值数据如图1所示,2017年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示,根据以上信息,下列判断错误的是()A.2013年至2017年北京市国民生产总值逐年增加B.2017年第二产业生产总值为5 320亿元C.2017年比2016年的国民生产总值增加了10%D.若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到33 880亿元11.如图,将△ABC 绕点C (0,-1)旋转180°得到△A′B′C ,设点A 的坐标为(a ,b ),则点A′的坐标为( )A .(-a ,-b )B .(-a ,-b-1)C .(-a ,-b+1)D .(-a ,-b-2)12.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为( )A .6.7×106B .6.7×10﹣6C .6.7×105D .0.67×107 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.若分式22xx 的值为正,则实数x 的取值范围是__________________. 14.已知:如图,矩形ABCD 中,AB =5,BC =3,E 为AD 上一点,把矩形ABCD 沿BE 折叠,若点A 恰好落在CD 上点F 处,则AE 的长为_____.15.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____. 16.如图,点A(3,n)在双曲线y=3x上,过点A 作 AC ⊥x 轴,垂足为C .线段OA 的垂直平分线交OC 于点B ,则△ABC 周长的值是 .17.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是_____. 18.如图,直线a ∥b ,∠P=75°,∠2=30°,则∠1=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N.(1)求点A、B的坐标;(2)若BN=MN,且S△MBC=274,求a的值;(3)若∠BMC=2∠ABM,求MNNB的值.20.(6分)计算:sin30°•tan60°+cos30cot45cos60︒-︒︒..21.(6分)为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?研究表明,当空气中每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要几分钟后,学生才能进入教室?研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?22.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.23.(8分)综合与探究:如图1,抛物线y=﹣3x2+233x+3与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣3).(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x 轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t (t>0)秒.探究下列问题:①请直接写出A′的坐标(用含字母t的式子表示);②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E 为顶点的四边形为矩形?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.(10分)某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记m分(60≤m≤100),组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.征文比赛成绩频数分布表分数段频数频率60≤m<70 38 0.3870≤m<80 a 0.3280≤m<90 b c90≤m≤10010 0.1合计 1请根据以上信息,解决下列问题:(1)征文比赛成绩频数分布表中c的值是;(2)补全征文比赛成绩频数分布直方图;(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.25.(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.求AB的长(结果保留根号);已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.(参考数据:3≈1.7,2≈1.4)26.(12分)如图1 所示是一辆直臂高空升降车正在进行外墙装饰作业.图2 是其工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面BD 的高度AH 为 2 m.当起重臂AC 长度为8 m,张角∠HAC 为118°时,求操作平台 C 离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)27.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴点C在线段OB的垂直平分线上,∴设C(a,3),则C '(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.2.B【解析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴,故选B.点D的坐标为:(7,2),∴k143.C【解析】【分析】连接AE,只要证明△ABC是等腰三角形,AC=AB即可解决问题.【详解】解:如图,连接AE,∵AB是直径,∴∠AEB=90°,即AE⊥BC,∵EB=EC,∴AB=AC,∴∠C=∠B , ∵∠BAC=50°, ∴∠C=12(180°-50°)=65°, 故选:C . 【点睛】本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题. 4.C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题. 5.A 【解析】试题分析:0.001219=1.219×10﹣1.故选A . 考点:科学记数法—表示较小的数. 6.A 【解析】 【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答. 【详解】∵当a =﹣2,b =1时,(﹣2)2>12,但是﹣2<1, ∴a =﹣2,b =1是假命题的反例. 故选A . 【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.7.D【解析】【详解】解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;故选D.8.C【解析】解:-10-4=-1.故选C.9.B【解析】【分析】【详解】解:5622180nππ⨯=,解得n=150°.故选B.考点:弧长的计算.10.C【解析】【分析】由条形图与扇形图中的数据及增长率的定义逐一判断即可得.【详解】A、由条形图知2013年至2017年北京市国民生产总值逐年增加,此选项正确;B、2017年第二产业生产总值为28000×19%=5 320亿元,此选项正确;C、2017年比2016年的国民生产总值增加了2800025669100%9.08%25669-⨯=,此选项错误;D、若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到2800×(1+10%)2=33 880亿元,此选项正确;故选C.【点睛】本题主要考查条形统计图与扇形统计图,解题的关键是根据条形统计图与扇形统计图得出具体数据. 11.D【解析】【分析】设点A 的坐标是(x ,y ),根据旋转变换的对应点关于旋转中心对称,再根据中点公式列式求解即可. 【详解】根据题意,点A 、A′关于点C 对称, 设点A 的坐标是(x ,y ), 则2a x +=0, 2b y+=-1,解得x=-a ,y=-b-2,∴点A 的坐标是(-a ,-b-2). 故选D . 【点睛】本题考查了利用旋转进行坐标与图形的变化,根据旋转的性质得出点A 、A′关于点C 成中心对称是解题的关键 12.A 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:6 700 000=6.7×106, 故选:A 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.x >0 【解析】【分析】分式值为正,则分子与分母同号,据此进行讨论即可得. 【详解】∵分式2xx 2+的值为正, ∴x 与x 2+2的符号同号, ∵x 2+2>0, ∴x>0, 故答案为x>0.【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.14.5 3【解析】【分析】根据矩形的性质得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根据折叠得到BF=AB=5,EF=EA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.【详解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折叠的性质可知,BF=AB=5,EF=EA,在Rt△BCF中,CF=22BF BC=4,∴DF=DC﹣CF=1,设AE=x,则EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=53,故答案为:53.【点睛】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.15.4 9【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的由4种情况,∴两次摸出的球都是红球的概率是49,故答案为4 9 .【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案. 16.2.【解析】【分析】先求出点A的坐标,根据点的坐标的定义得到OC=3,AC=2,再根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC.【详解】由点A(3,n)在双曲线y=3x上得,n=2.∴A(3,2).∵线段OA的垂直平分线交OC于点B,∴OB=AB.则在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周长的值是2.17.1 2【解析】分析:根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.详解:用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以颜色搭配正确的概率是12.故答案为:12.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.18.45°【解析】过P作PM∥直线a,根据平行线的性质,由直线a∥b,可得直线a∥b∥PM,然后根据平行线的性质,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.故答案为45°.点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)A(﹣4,0),B(3,0);(2)14;(3)56.【解析】【分析】(1)设y=0,可求x的值,即求A,B的坐标;(2)作MD⊥x轴,由CO∥MD可得OD=3,把x=-3代入解析式可得M点坐标,可得ON的长度,根据S△BMC=274,可求a的值;(3)过M点作ME∥AB,设NO=m,MNNB=k,可以用m,k表示CO,EO,MD,ME,可求M点坐标,代入可得k,m,a的关系式,由CO=2km+m=-12a,可得方程组,解得k,即可求结果.【详解】(1)设y=0,则0=ax2+ax﹣12a (a<0),∴x1=﹣4,x2=3,∴A(﹣4,0),B(3,0)(2)如图1,作MD⊥x轴,∵MD⊥x轴,OC⊥x轴,∴MD∥OC,∴MBMN=OBOD且NB=MN,∴OB=OD=3,∴D(﹣3,0),∴当x=﹣3时,y=﹣6a,∴M(﹣3,﹣6a),∴MD=﹣6a,∵ON∥MD∴12 ON OBMD BD==,∴ON=﹣3a,根据题意得:C(0,﹣12a),∵S△MBC=274,∴12(﹣12a+3a)×6=274,a=﹣14,(3)如图2:过M点作ME∥AB,∵ME∥AB,∴∠EMB=∠ABM且∠CMB=2∠ABM,∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,∴△CME≌△MNE,∴CE=EN,设NO=m,MNNB=k(k>0),∵ME∥AB,∴ENON=MN MENB OB==k,∴ME=3k,EN=km=CE,∴EO=km+m,CO=CE+EN+ON=2km+m=﹣12a,即1221 ma k-=+,∴M(﹣3k,km+m),∴km+m=a(9k2﹣3k﹣12),(k+1)×ma=(k+1)(9k﹣12),∴1221k-+=9k-12,∴k=56, ∴5=6MN NB . 【点睛】本题考查的知识点是函数解析式的求法,二次函数的图象和性质,是二次函数与解析几何知识的综合应用,难度较大. 20.22- 【解析】试题分析:把相关的特殊三角形函数值代入进行计算即可.试题解析:原式=112=2=212222-+-.21.(1)()3084{?48(8)x x y x x≤≤=>;(2)至少需要30分钟后生才能进入教室.(3)这次消毒是有效的.【解析】 【分析】(1)药物燃烧时,设出y 与x 之间的解析式y=k 1x ,把点(8,6)代入即可,从图上读出x 的取值范围;药物燃烧后,设出y 与x 之间的解析式y=2k x,把点(8,6)代入即可; (2)把y=1.6代入反比例函数解析式,求出相应的x ;(3)把y=3代入正比例函数解析式和反比例函数解析式,求出相应的x ,两数之差与10进行比较,大于或等于10就有效. 【详解】解:(1)设药物燃烧时y 关于x 的函数关系式为y=k 1x (k 1>0)代入(8,6)为6=8k 1 ∴k 1=34设药物燃烧后y 关于x 的函数关系式为y=2k x (k 2>0)代入(8,6)为6=2k 8, ∴k 2=48∴药物燃烧时y 关于x 的函数关系式为3y x 4=(0≤x≤8)药物燃烧后y 关于x 的函数关系式为48y x=(x >8)∴()30x84y48(8)xxx⎧≤≤⎪⎪⎨=⎪>⎪⎩(2)结合实际,令48yx=中y≤1.6得x≥30即从消毒开始,至少需要30分钟后生才能进入教室.(3)把y=3代入3y x4=,得:x=4把y=3代入48yx=,得:x=16∵16﹣4=12所以这次消毒是有效的.【点睛】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.22.(1)13;(2)59.【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120360︒︒=13;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为1,所有可能性如下表所示:由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为9.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23.(1)A(﹣1,0),B(3,0),y=(2)①A′(32t﹣1,2t);②A′BEF为菱形,见解析;(3)存在,P点坐标为(5373).【解析】【分析】(120得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;(2)①作A′H⊥x轴于H,如图2,利用OA=1,OD得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH 即可得到A′的坐标;②把A′(32t−1,2t)代入y=−3x2+3x−3(32t−1)2+3(32t−1)2t,解方程得到t=2,此时A′点的坐标为(2,E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;(3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到32t−1=3,解方程求出t得到A′(3),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.【详解】(1)当y=02=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),设直线l的解析式为y=kx+b,把A(﹣1,0),D(0{k bb-+==,解得{kb==∴直线l的解析式为y=;(2)①作A′H⊥x轴于H,如图,∵OA=1,OD=3,∴∠OAD=60°,∵EF∥AD,∴∠AEF=60°,∵点A 关于直线l的对称点为A′,∴EA=EA′=t,∠A′EF=∠AEF=60°,在Rt△A′EH中,EH=12EA′=12t,A′H=3EH=3t,∴OH=OE+EH=t﹣1+12t=32t﹣1,∴A′(32t﹣1,3t);②把A′(32t﹣1,32t)代入y=﹣33x2+233x+3得﹣33(32t﹣1)2+233(32t﹣1)+3=32t,解得t1=0(舍去),t2=2,∴当点A′落在抛物线上时,直线l的运动时间t的值为2;此时四边形A′BEF为菱形,理由如下:当t=2时,A′点的坐标为(2,3),E(1,0),∵∠OEF=60°∴OF=3OE=3,EF=2OE=2,∴F(0,3),∴A′F∥x轴,∵A′F=BE=2,A′F∥BE,∴四边形A′BEF为平行四边形,而EF=BE=2,∴四边形A′BEF为菱形;(3)存在,如图:当A′B⊥BE时,四边形A′BEP为矩形,则32t﹣1=3,解得t=83,则A′(3,433),∵OE=t﹣1=53,∴此时P点坐标为(53,433);当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,∵∠AEA′=120°,∴∠A′EB=60°,∴∠EBA′=30°∴33332t,∴32t﹣1+32t=3,解得t=43,此时A′(123),E(13,0),点A′向左平移23个单位,向下平移23个单位得到点E,则点B(3,0)向左平移23个单位,向下平移23个单位得到点P,则P(7323,综上所述,满足条件的P点坐标为(53,33)或(73,﹣233).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.24.(1)0.2;(2)答案见解析;(3)300【解析】【分析】第一问,根据频率的和为1,求出c的值;第二问,先用分数段是90到100的频数和频率求出总的样本数量,然后再乘以频率分别求出a和b的值,再画出频数分布直方图;第三问用全市征文的总篇数乘以80分以上的频率得到全市80分以上的征文的篇数.【详解】解:(1)1﹣0.38﹣0.32﹣0.1=0.2,故答案为0.2;(2)10÷0.1=100,100×0.32=32,100×0.2=20,补全征文比赛成绩频数分布直方图:(3)全市获得一等奖征文的篇数为:1000×(0.2+0.1)=300(篇).【点睛】掌握有关频率和频数的相关概念和计算,是解答本题的关键.25.(1)163;(2)此校车在AB路段超速,理由见解析.【解析】【分析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可.(2)在第一问的基础上,结合时间关系,计算速度,判断,即可.【详解】解:(1)由题意得,在Rt△ADC中,tan30°==,解得AD=24.在Rt△BDC 中,tan60°==,解得BD=8所以AB=AD﹣BD=24﹣8=16(米).(2)汽车从A 到B 用时1.5秒,所以速度为16÷1.5≈18.1(米/秒),因为18.1(米/秒)=65.2千米/时>45千米/时,所以此校车在AB 路段超速.【点睛】 考查三角函数计算公式,考查速度计算方法,关键利用正切值计算方法,计算结果,难度中等. 26.5.8【解析】【分析】过点C 作CE BD ⊥于点E ,过点A 作AF CE ⊥于点F ,易得四边形AHEF 为矩形,则2,90EF AH HAF ==∠=︒,再计算出28CAF ∠=︒,在Rt ACF V 中,利用正弦可计算出CF 的长度,然后计算CF+EF 即可.【详解】解:如图,过点C 作CE BD ⊥于点E ,过点A 作AF CE ⊥于点F ,90FEH AFE ∴∠=∠=︒.又AH BD ⊥Q ,90AHE ∴∠=︒.∴四边形AHEF 为矩形.2,90EF AH HAF ∴==∠=︒1189028CAF CAH HAF ∴∠=∠-∠=︒-︒=︒在Rt ACF V 中,sin CF CAF AC∠=, 8sin 2880.47 3.76CF ∴=⨯︒=⨯=.3.762 5.8(m)CE CF EF ∴=+=+≈.答:操作平台C 离地面的高度约为5.8m .【点睛】本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算.27.(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB ,由垂径定理可得BE=DE ,OE ⊥BD ,»»»12BF DF BD == ,再由圆周角定理可得BOE A ∠=∠ ,从而得到∠ OBE +∠ DBC =90°,即90OBC ∠=︒ ,命题得证. (2)由勾股定理求出OC ,再由△OBC 的面积求出BE ,即可得出弦BD 的长.试题解析:(1)证明:如下图所示,连接OB.∵ E 是弦BD 的中点,∴ BE =DE ,OE ⊥ BD ,»»»12BFDF BD ==, ∴∠ BOE =∠ A ,∠ OBE +∠ BOE =90°.∵∠ DBC =∠ A ,∴∠ BOE =∠ DBC , ∴∠ OBE +∠ DBC =90°,∴∠ OBC =90°,即BC ⊥OB ,∴ BC 是⊙ O 的切线.(2)解:∵ OB =6,BC =8,BC ⊥OB ,∴2210OC OB BC += ,∵1122OBC S OC BE OB BC =⋅=⋅V ,∴68 4.810OB BC BE OC -⨯=== , ∴29.6BD BE ==.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.。
安徽省合肥市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为»AB 上一点(不与O、A两点重合),则cosC的值为()A.34B.35C.43D.452.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.43B.63C.23D.83.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为()A.70°B.80°C.90°D.100°4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣15.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30 B.25和29 C.28和30 D.28和296.如图,AB是⊙O的切线,半径OA=2,OB交⊙O于C,∠B=30°,则劣弧»AC的长是()A.12πB.13πC.23πD.43π7.1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为()A.0.135×106B.1.35×105C.13.5×104D.135×1038.4的算术平方根为()A.2±B.2C.2±D.29.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼10.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折11.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b12.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A.18×108B.1.8×108C.1.8×109D.0.18×1010二、填空题:(本大题共6个小题,每小题4分,共24分.)131x-有意义,则x的取值范围是_____14.计算32)3-_____15.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.16.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为_____ cm.17.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为_____元.18.-3的倒数是___________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.20.(6分)如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);(2)求证:DE=BF.21.(6分)如图,在△ABC中,点D,E分别在边AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于点F.(1)求证:AB AE ACAD;(2)请探究线段DE,CE的数量关系,并说明理由;(3)若CD⊥AB,AD=2,BD=3,求线段EF的长.22.(8分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=13,求AC的长.23.(8分)如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.(1)若∠G=48°,求∠ACB的度数;(1)若AB=AE,求证:∠BAD=∠COF;(3)在(1)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S1.若tan∠CAF=12,求12SS的值.24.(10分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图.成绩分组组中值频数25≤x<30 27.5 430≤x<35 32.5 m35≤x<40 37.5 2440≤x<45 a 3645≤x<50 47.5 n50≤x<55 52.5 4(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?25.(10分)有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.随机抽取一张卡片,求抽到数字“﹣1”的概率;随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.26.(12分)如图,在平面直角坐标系xOy中,直线()30y kx k=+≠与x轴交于点A,与双曲线()0my mx=≠的一个交点为B(-1,4).求直线与双曲线的表达式;过点B作BC⊥x轴于点C,若点P 在双曲线myx=上,且△PAC的面积为4,求点P的坐标.27.(12分)“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【详解】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴4 cos cos5OBC ABOAB=∠==.故选D.2.A 【解析】【分析】【详解】解:连接OA,OC,过点O作OD⊥AC于点D,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴CD=323,∴3.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.3.B【解析】【分析】首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.【详解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,∴∠BMF=120°,∠FNB=80°,∵将△BMN沿MN翻折得△FMN,∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,∴∠F=∠B=180°-60°-40°=80°,故选B.【点睛】主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.4.B【解析】【详解】∵函数y=-2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B.【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.5.D【解析】【分析】根据中位数和众数的定义进行求解即可得答案.【详解】对这组数据重新排列顺序得,25,26,27,28,29,29,30,处于最中间是数是28,∴这组数据的中位数是28,在这组数据中,29出现的次数最多,∴这组数据的众数是29,故选D.【点睛】本题考查了中位数和众数的概念,熟练掌握众数和中位数的概念是解题的关键.一组数据中出现次数最多的数据叫做众数,一组数据按从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.6.C【解析】【分析】由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:602180π⨯=23π,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算. 7.B【解析】【分析】根据科学记数法的表示形式(a×10n 的形式,其中1≤|a|<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数).【详解】解:135000用科学记数法表示为:1.35×1. 故选B .【点睛】科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.B【解析】=2,而2,,故选B .点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.9.B【解析】试题解析:水涨船高是必然事件,A 不正确;守株待兔是随机事件,B 正确;水中捞月是不可能事件,C 不正确缘木求鱼是不可能事件,D 不正确;故选B .考点:随机事件.10.B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥1.即最多打1折.故选B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.11.A【解析】【分析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键. 12.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:1800000000=1.8×109,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≤1且x≠﹣1.【解析】根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.14。
2020年中考数学全真模拟试卷(安徽)(四)(考试时间:120分钟;总分:150分)班级:___________姓名:___________座号:___________分数:___________一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(2020·安徽合肥市五十中学新校初三)-50的相反数是:( )A.-50B.50C.−150D.150【答案】B【分析】根据相反数的定义直接求得结果.【解析】-50的相反数是50,故选B.【点睛】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2.(2020·安徽合肥市十校联考)下列运算正确的是()A.6x3﹣5x2=x B.(﹣2a)2=﹣2a2C.(a﹣b)2=a2﹣b2D.﹣2(a﹣1)=﹣2a+2【答案】D【分析】A、原式不能合并,错误;B、原式利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断;C、原式利用完全平方公式化简得到结果,即可做出判断;D、原式去括号得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B、原式=4a2,错误;C、原式=a2+b2﹣2ab,错误;D、原式=﹣2a+2,正确,故选:D.【点睛】此题考查了完全平方公式,合并同类项,去括号与添括号,幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.(2019·安徽合肥市庐江县一模)2019年前2个月,我省货物贸易出口总值379.1亿元,比去年同期增长14.3%,其中379.1亿用科学记数法表示为()A.3.791×106B.3.791×108C.3.791×1010D.379.1×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:379.1亿=3.791×1010,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(2020·安徽初三)如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【答案】D【分析】根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.【解析】解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.故选:D.【点睛】本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.5.(2020·安徽初三)不等式组2(3)254xx+≥⎧⎨->⎩的解集是()A.﹣2≤x<1B.﹣2<x≤1C.﹣1<x≤2D.﹣1≤x<2【分析】根据不等式的性质求出每个不等式的解集,根据确定不等式组解集的方法求解即可.【解析】解:2(3)254xx+≥⎧⎨->⎩①②,由①得:x≥﹣2,由②得:x<1,所以不等式组的解集为:﹣2≤x<1.故选:A.【点睛】本题主要考查求不等式组的解集,熟练掌握求不等式解集的方法是解此题的关键.6.(2020·阜阳市民族中学初三期末)某商场举办现场抽奖活动,抽奖盒中有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.观众从中任意抽取一个,选择并打开后得到礼物的可能性是()A.14B.15C.16D.13【答案】D【分析】先列出所有可能的结果,再计算得到礼物的结果有几种,然后利用概率公式即可得.【解析】由题意,将“金蛋”和“银蛋”记为:1212无无无无有有金蛋、金蛋、金蛋、银蛋、银蛋、银蛋,观众从中任意抽取一个的结果有6种,它们每一种出现的可能性相等选择并打开后得到礼物的结果有2种,即有有金蛋、银蛋因此所求概率为:2163P==故选:D.【点睛】本题考查了等可能性下的概率计算,列出事件所有可能的结果是解题关键.7.(2020·安徽初三)如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=48°,则∠2的度数是()A.64°B.65°C.66°D.67°【答案】C【分析】根据平行线的性质和角平分线的定义求解.【解析】∵AB∥CD,∴∠BEF=180°﹣∠1=180°﹣48°=132°,∵EG平分∠BEF,∴∠BEG=132°÷2=66°,∴∠2=∠BEG=66°.故选C.【点睛】此题主要考查平行线的性质:两直线平行,同旁内角互补;两直线平行,内错角相等,以及角平分线的定义.8.(2020·安徽初三)某工厂计划用两个月把产量提高21%,如果每月比上月提高的百分数相同,求这个百分数.若设每月提高的百分数为x,原产量为a,可列方程为a(1+x)2=a(1+21%),那么解此方程后依题意作答,正确的是()A.这个百分数为2.1%或10%B.12.1x=,20.1x=C.12.1x=-,20.1x=D.这个百分数为10%【答案】D【分析】本题可根据方程解出x的值,看是否跟选项相同,若不相同,可根据题意列出方程,解出百分数的值.【解析】依题意有:a(1+0.21)=a(1+x)2即(1+x)2=1.21,∴1+x=±1.1,∴x=0.1=10%(负值舍去),故选:D.【点睛】本题考查的是一元二次方程的运用,要注意根据题意排除选项再进行解题.9.(2020·合肥市第四十六中学初三月考)已知反比例函数y=abx的图象如图所示,则二次函数y =a x 2-2x 和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】C【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【解析】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=ab的图象在第一、三象限,x∴ab>0,即a、b同号,<0,对称轴在y轴左边,故D错误;当a<0时,抛物线y=ax2-2x的对称轴x=1a当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.10.(2020·安徽合肥市五十中学新校初三)如图,在ΔABC中,∠CAB=90°,AB=AC=4,P为AC中点,点D在直线BC上运动,以AD为边向AD的右侧作正方形ADEF,连接PF,则在点D的运动过程中,线段PF的最小值为:( )A.2B.√2C.1D.2√2【答案】B【分析】设Q是AB的中点,连接DQ,先证得△AQD≌△APF,得出QD=PF,根据点到直线的距离可知当QD⊥BC时,QD最小,然后根据等腰直角三角形的性质求得QD⊥BC时的QD的值,即可求得线段PF的最小值.【解析】设Q是AB的中点,连接DQ,∵∠BAC=∠DAF=90°,∴∠BAC-∠DAC=∠DAF-∠DAC,即∠BAD=∠CAF,∵AB=AC=4,P为AC中点,∴AQ=AP,在△AQD和△APF中,AQ=AP∠QAD=∠PAF,AD=AF∴△AQD≌△APF(SAS),∴QD=PF,∵点D在直线BC上运动,∴当QD⊥BC时,QD最小,∵△ABC是等腰直角三角形,∴∠B=45°,∵QD⊥BC,∴△QBD是等腰直角三角形,∴QD=√22∵QB=AB=2,∴QD=√2,∴线段PF 的最小值是为√2. 故选B.【点睛】本题考查了全等三角形的判定与性质以及垂线段最短问题,解题的关键是得到QD=PF . 二、填空题(本大题共4小题,每小题5分,满分20分) 11.(2020·安徽初三)分解因式:32a 4ab -= .【答案】()()a a 2b a 2b +-【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式a 后继续应用平方差公式分解即可: 【解析】()()()3222a 4ab a a 4ba a 2b a 2b -=-=+-.【点睛】此题主要考查了提公因式法和公式法分解因式,关键是掌握提取公因式后利用平方差公式进行二次分解,注意分解要彻底.12.(2020·安徽初三期末)点()1,1P 向左平移两个单位后恰好位于双曲线ky x=上,则k =__________. 【答案】1-【分析】首先求出点P 平移后的坐标,然后代入双曲线即可得解. 【解析】点()1,1P 向左平移两个单位后的坐标为()1,1-,代入双曲线,得11k=- ∴1k =- 故答案为-1.【点睛】此题主要考查坐标的平移以及双曲线的性质,熟练掌握,即可解题.13.(2020·安徽初三学业考试)如图,AB 为O e 的直径,C ,D 为O e 上的两点,且C 为»AD 的中点,若20BAD ∠=︒,则ACO ∠的度数为__________.【答案】55°【分析】先根据垂径定理得出OC AD ⊥,从而可得出70AOC ∠=︒,再根据等腰三角形的性质、三角形的内角和定理即可得.【解析】∵AB 为O e 的直径,C 为»AD 的中点OC AD ∴⊥20BAD ∠=︒Q9070AOC BAD ∴∠=︒-∠=︒OA OC =Q180180705522AOC ACO CAO ︒-∠︒-︒∴∠=∠===︒故答案为:55︒.【点睛】本题考查了垂径定理、直角三角形的性质、等腰三角形的性质等知识点,利用垂径定理得出OC AD ⊥是解题关键.14.(2020·安徽合肥市五十中学新校初三)在四边形ABCD 中,5AB AD ==,12BC =,90B D ∠=∠=︒,点M 在边BC 上,点N 在四边形ABCD 内部且到边AB 、AD 的距离相等,若要使CMN ∆是直角三角形且AMN ∆是等腰三角形,则MN =__________.【答案】6517或6518【分析】分两种情况,根据相似三角形的判定与性质求解即可.【解析】在四边形ABCD 中,5AB AD ==,12BC =,90B D ∠=∠=︒,∴13=在Rt △ACD 中,12==∴BC=DC , ∴△ACB ≌△ACD,∴∠ACB=∠ACD ,∠BAC=∠DAC∵点N 在四边形ABCD 内部且到边AB 、AD 的距离相等, ∴点N 在AC 上.(1)如图1,当MN ⊥AC 时,易证得△CMN ∽△CAB, ∴CN MNCB AB=, ∵AMN ∆是等腰三角形,∴AM=MN∴CN=13-AN=13-MN ,∴13125MN MN-=, ∴MN=6517; (2) 如图2,当MN ⊥BC 时,易证得△CMN ∽△CBA, ∴CN MNCA AB=, ∵AMN ∆是等腰三角形, ∴AM=MN∴CN=13-AN=13-MN ,∴13135MN MN-=, ∴MN=6518. 故答案为6517或6518. 【点睛】本题考查了相似三角形的判定与性质,同时也考查了角平分线的性质以及全等三角形的判定与性质,证明△CMN ∽△CBA 是解题关键,同时要注意分类讨论,不要遗漏. 三、(本大题共2小题,每小题8分,满分16分) 15.(2020·安徽初三)先化简,再求值:23()111x x x x x x -÷+--,其中x =-2. 【答案】-2x -4 ,0 【分析】先根据分式混合运算的相关法则对原式进行化简计算,然后再代值计算即可. 【解析】原式=2233(1)(1)(1)(1)x x x x x x x x x---+-⨯+- =2(2)x x x-+=24x --. 当2x =-时,原式=2(2)4440-⨯--=-=.【点睛】本题考察因式分解,约分等基本知识点,熟练运用相关内容是解题关键。