初中数学实数易错题汇编及答案解析
- 格式:doc
- 大小:457.00 KB
- 文档页数:9
(易错题精选)初中数学实数经典测试题附答案解析一、选择题1.+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 【答案】B【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.2.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ).A .x +1B .x 2+1C 1 D【答案】D【解析】一个自然数的算术平方根是x ,则这个自然数是2,x 则它后面一个数的算术平方根是.故选D.3的平方根是( )A .2B C .±2 D .【答案】D【解析】【分析】,然后再根据平方根的定义求解即可.【详解】,2的平方根是,.故选D .【点睛】正确化简是解题的关键,本题比较容易出错.4.若a 、b 分别是2a-b 的值是( )A .B .CD .【答案】C【解析】根据无理数的估算,可知34,因此可知-4<-3,即2<3,所以可得a 为2,b 为2a-b=4-(故选C.5.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定+1]的值为( )A .3B .4C .5D .6 【答案】B【解析】【分析】【详解】解:根据91016<<,则34<<,即415<<,根据题意可得:14⎤=⎦. 考点:无理数的估算6.在3.14,237,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选:B.【点睛】 考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.在-2,3.14,5π,这6个数中,无理数共有( ) A .4个B .3个C .2个D .1个【答案】C【解析】-22=, 3.14,3=-是有理数;,5π是无理数; 故选C. 点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,① 等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个).8.1,0( )AB .﹣1C .0D 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:10-<<<则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.9.在整数范围内,有被除数=除数⨯商+余数,即a bq r a b =+≥(且)00b r b ≠≤<,,若被除数a 和除数b 确定,则商q 和余数r 也唯一确定,如:11,2a b ==,则11251=⨯+此时51q r ==,.在实数范围中,也有 (a bq r a b =+≥且0b ≠,商q 为整数,余数r 满足:0)r b ≤<,若被除数是,除数是2,则q 与r 的和( )A .4B .6C .4D .4 【答案】A【解析】【分析】根据2=q 即可先求出q 的值,再将a 、q 、b 的值代入a =bq +r 中即可求出r 的值,从而作答.【详解】∵2=7=45,的整数部分是4,∴商q=4,∴余数r=a﹣bq=2×4=8,∴q+r=4+8=4.故选:A.【点睛】本题考查了整式的除法、估算无理数的大小,解答本题的关键理解q即的整数部2分.10.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣;④0.01的立方根是0.00001,其中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.11.25的算数平方根是A B.±5 C.D.5【答案】D【解析】【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0 负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位.【详解】255=, ∴25的算术平方根是:5. 故答案为:5. 【点睛】 本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.12.下列各组数中互为相反数的是( )A .5和2(5)-B .2--和(2)--C .38-和38-D .﹣5和15 【答案】B【解析】【分析】 直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5和()25-=5,两数相等,故此选项错误;B 、-|-2|=-2和-(-2)=2互为相反数,故此选项正确;C 、-38=-2和38-=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.13.如图,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( )A .3B .3C .3D .3【答案】A【解析】【分析】由于A ,B 两点表示的数分别为-13OC 的长度,根据C 在原点的左侧,进而可求出C 的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB ,33,∴OC=2+3,而C点在原点左侧,∴C表示的数为:-2-3.故选A.【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.14.如图,数轴上表示实数3的点可能是( )A.点P B.点Q C.点R D.点S【答案】A【解析】【分析】33的点可能是哪个.【详解】∵132,3的点可能是点P.故选A.【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.15.101的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】<<4,∵310<1<5.∴410故选C.【点睛】<<4是解本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出310题的关键,又利用了不等式的性质.16.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是()A.1 B.3 C.4 D.9【答案】D【解析】∵一正数的两个平方根分别是2a−1与−a+2,∴(2a−1)+(−a+2)=0,解得a=−1.∴−a+2=1+2=3,∴这个正数为32=9.故选:D.17.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是( ).A.0 B.1 C.2 D.3【答案】D【解析】【分析】直接利用数轴结合,A B点位置进而得出答案.【详解】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:2故选:D.【点睛】此题主要考查了实数轴,正确应用数形结合分析是解题关键.18.在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.88<2.9,8③段上.故选C考点:实数与数轴的关系19.下列说法正确的是()A.无限小数都是无理数B.1125-没有立方根C.正数的两个平方根互为相反数D.(13)--没有平方根【答案】C【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A、无限循环小数是有理数,故不符合题意;B、1125-有立方根是15-,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.20.下列实数中的无理数是()A B C D.22 7【答案】C【解析】【分析】无限不循环小数是无理数,根据定义解答.【详解】=1.1是有理数;,是有理数;是无理数;D. 227是分数,属于有理数,故选:C.【点睛】此题考查无理数的定义,熟记定义是解题的关键.。
(易错题精选)初中数学实数专项训练及答案(1)一、选择题1.估算101+的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∵310<<4,∴410+<1<5.故选C.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出310<<4是解题的关键,又利用了不等式的性质.2.如图,M、N、P、Q是数轴上的四个点,这四个点中最适合表示15﹣1的点是()A.点M B.点N C.点P D.点Q【答案】D【解析】【分析】15151的范围,即可得出答案.【详解】解:∵3.5154<<,∴2.51513<<,151的点是Q点,故选D.【点睛】本题考查估算无理数的大小,实数与数轴.一般用夹逼法估算无理数.3.在-3.5,227,0,2π230.001,0.161161116…(相邻两个6之间依次多一个1)中,无理数有()A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】∵-3.5是有限小数,,∴-3.5、 ∵227=22÷7=3.142857&&是循环小数, ∴227是有理数; ∵0是整数,∴0是有理数;∵2π,,0.161161116…都是无限不循环小数,∴2π,,0.161161116…都是无理数,∴无理数有3个:2π,,0.161161116…. 故选C .【点睛】 此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.4.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③2a 的算术平方根是a ;④算术平方根不可能是负数;⑤()24π-的算术平方根是4π-,其中不正确的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】【分析】根据算术平方根的定义判断即可.【详解】负数没有算术平方根,①错误;0的算术平方根是0,②错误;2a 的算术平方根是a ,③错误;算术平方根不可能是负数,④正确;()24π-的算术平方根是4-π,⑤正确.所以不正确的个数为3个,选B .【点睛】掌握算术平方根的定义.注意:0的算术平方根是0、负数没有算术平方根.5.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( )A .45B 52C 51D .35【答案】C【解析】【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB === ∴22521AC =+=∴AE 5∵A 点表示的数是1-∴E 51【点睛】掌握勾股定理;熟悉圆弧中半径不变性.6.25的平方根是( )A .±5B .5C .﹣5D .±25【答案】A【解析】【分析】如果一个数 x 的平方是a ,则x 是a 的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A .【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.7.下列说法正确的是( )A .任何数的平方根有两个B .只有正数才有平方根C .负数既没有平方根,也没有立方根D .一个非负数的平方根的平方就是它本身【答案】D【解析】A 、O 的平方根只有一个即0,故A 错误;B 、0也有平方根,故B 错误;C 、负数是有立方根的,比如-1的立方根为-1,故C 错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .8.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.9.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5, 1.==按照此规定, 1⎤⎦的值为( )A 1B 3C 4D 1+ 【答案】B【解析】【分析】根据3<4的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案.【详解】解:由34,得4+1<5.3-,故选:B .【点睛】本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.10.( )A .3B .3-C .3±D .4.5【答案】A【解析】分析:本题只需要根据算术平方根的定义,求9的算术平方根即可..故选A .点睛:本题考查了算术平方根的运算,比较简单.11.设2a =.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】<<56<<,进而可得出a 的范围,即可求得答案.【详解】<<∴56<<∴52262-<<-,即324<<,∴a 在3和4之间,故选:C .【点睛】此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.1?0,?-,?,?0.10100100013π⋅⋅⋅(相邻两个1之间依次多一个0),其中无理数是( )个.A .1B .2C .3D .4 【答案】B【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.无理数就是无限不循环小数,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,因此,4==,013是有理数. ∴无理数有:﹣π,0.1010010001….共有2个.故选B.【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.13.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.14.下列说法中,正确的是( )A .-2是-4的平方根B .1的立方根是1和-1C .-2是(-2)2的算术平方根D .2是(-2)2的算术平方根【答案】D【分析】根据平方根、算术平方根、立方根的定义进行解答即可.【详解】A . -4没有平方根,故A 错误;B . 1的立方根是1,故B 错误;C . (-2)2的算术平方根是2,故C 错误;D . 2是(-2)2的算术平方根,故D 正确故选:D【点睛】本题主要考查的是算术平方根与平方根\立方根,掌握算术平方根与平方根\立方根的定义是解题的关键.15.用“☆”定义一种新运算:对于任意有理数x 和y ,21x y a x ay =++☆(a 为常数),如:2223231231a a a a =⋅+⋅+=++☆.若123=☆,则48☆的值为( )A .7B .8C .9D .10 【答案】C【解析】【分析】先根据123=☆计算出a 的值,进而再计算48☆的值即可. 【详解】因为212a 2a 13=++=☆,所以2a 2a 2+=,则()224a 8a 14a 2a 1421948=++=++=⨯+=☆,故选:C .【点睛】此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.16.下列说法:①36的平方根是6; ②±9的平方根是3; 164±; ④ 0.01是0.1的平方根; ⑤24的平方根是4; ⑥ 81的算术平方根是±9. 其中正确的说法是( )A .0B .1C .3D .5 【答案】A【解析】【分析】依据平方根、算术平方根的定义解答即可.【详解】①36的平方根是±6;故此说法错误;②-9没有平方根,故此说法错误;4±说法错误;④ 0. 1是0. 01的平方根,故原说法错误;⑤24的平方根是±4,故原说法错误;⑥ 81的算术平方根是9,故原说法错误.故选A.17.计算2|=()A. 1 B.1﹣C.﹣1 D.3【答案】D【解析】【分析】根据绝对值的性质去掉绝对值的符号后进行合并即可.【详解】原式=+2=3,故选D.【点睛】本题考查了实数的运算,熟练掌握绝对值的性质是解本题的关键. 18.下列说法正确的是()A.a的平方根是B.aC的平方根是0.1D3=-【答案】B【解析】试题解析:A、当a≥0时,a的平方根为A错误;B、a B正确;C=0.1,0.1的平方根为,故C错误;D,故D错误,故选B.19.25的算数平方根是A B.±5 C.D.5【答案】D【解析】【分析】一个正数的平方根有2个,且这两个互为相反数,而算数平方根只有一个且必须是正数,特别地,我们规定0的算术平方根是0 负数没有算术平方根,但i的平方是-1,i是一个虚数,是复数的基本单位.【详解】=,5∴25的算术平方根是:5.故答案为:5.【点睛】本题考查了算术平方根,熟练掌握该知识点是本题解题的关键.20.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.。
一、选择题1.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;4±,其中正确的个数有()A.0个B.1个C.2个D.3个C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C.【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.2.下列各式计算正确的是()A B= ±2 C= ±2 D. A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.3.下列说法中错误的有()①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±.A.0个B.1个C.2个D.3个D解析:D【分析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可.【详解】①实数和数轴上的点是一一对应的,正确;②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误.综上,错误的个数有3个.故选:D.【点睛】本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键.4.在0、0.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是()A.3 B.4 C.5 D.6B 解析:B【分析】根据无理数的定义逐一判断即可.【详解】解:0、0.536、227-是有理数,π,0.1616616661-(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)是无理数,故选:B.【点睛】本题考查无理数的定义,掌握无理数的定义是解题的关键.5.下列实数中,是无理数的为()A.3.14 B.13C D解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .407D 解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.7.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10C 解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】8.0.31,3π,27-12- 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .4C 解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵3=2=,∴在所列的83π,1.212 212 221…(每两个1之间依次多一个2)这3个,故选:C .【点睛】 本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键.9.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- D 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.二、填空题11.计算(1)22234x +=;(2)38130125x +=(3)2|12|(2)---; (4)(x +2)2=25.(1);(2)x=;(3);(4)【分析】(1)方程整理后利用平方根定义开方即可求出解;(2)先求出x3的值再根据立方根的定义解答;(3)直接利用绝对值的性质平方根定义和负指数幂的性质分别化简得出答解析:(1)12x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.【详解】(1)22234x +=,2x²=32,x²=18,,∴12x x ==-(2)38130125x +=, 327125x =-,x=35; (3)21|12|(2)16----- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.12.计算:3011(2)(20043)22-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(20043)22-+--- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.13.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.【分析】根据题意先求出BC 的长度然后求出a 的值即可得到答案【详解】解:根据题意∴∵∴∴∴;故答案为:【点睛】本题考查了数轴上两点之间的距离以及绝对值的意义解题的关键是掌握数轴的定义正确的求出a 的值解析:22+【分析】根据题意,先求出BC 的长度,然后求出a 的值,即可得到答案.【详解】解:根据题意,(1)1BC =-=, ∴1AB BC ==, ∵1AB a =--, ∴11a --=, ∴2a =-∴22a =-=;故答案为:2+【点睛】本题考查了数轴上两点之间的距离,以及绝对值的意义,解题的关键是掌握数轴的定义,正确的求出a 的值.14.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.15.已知290x ,310y +=,求x y +的值.2或4【分析】根据平方根和立方根的性质计算得到x 和y 的值再结合绝对值的性质计算即可得到答案【详解】∵∴∵∴∴当时=当时=【点睛】本题考查了平方根立方根绝对值的知识;解题的关键是熟练掌握平方根立方根绝解析:2或4【分析】根据平方根和立方根的性质计算,得到x 和y 的值,再结合绝对值的性质计算,即可得到答案.【详解】∵290x∴3x =±∵310y +=∴1y =- ∴当3x =,1y =-时,x y +=312-=当3x =-,1y =-时,x y +=314--=.【点睛】本题考查了平方根、立方根、绝对值的知识;解题的关键是熟练掌握平方根、立方根、绝对值的性质,从而完成求解.16.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______【分析】先根据题意求得发现规律即可求解【详解】解:∵a1=3∴∴该数列为每4个数为一周期循环∵∴a2020=故答案为:【点睛】此题主要考查规律的探索解题的关键是根据题意发现规律 解析:43. 【分析】 先根据题意求得2a 、3a 、4a 、5a ,发现规律即可求解.【详解】解:∵a 1=3 ∴22223a ==--,()321222a ==--,4241322a ==-,523423a ==-, ∴该数列为每4个数为一周期循环,∵20204505÷=∴a 2020=443a =. 故答案为:43. 【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.17.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.或【分析】根据题意得出解方程即可求解【详解】依题意得:∵∴或∴或故答案为:或【点睛】本题考查了乘方的意义解一元一次方程熟练掌握乘方的意义是解题的关键 解析:6或2-【分析】根据题意得出()2216x -=,解方程即可求解.【详解】依题意得:()2216x -=,∵2416=,()2416-=,∴24x -=或24x -=-,∴6x =或2x =-,故答案为:6或2-.【点睛】本题考查了乘方的意义,解一元一次方程,熟练掌握乘方的意义是解题的关键. 18.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.19.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.【分析】根据新运算可得由得到关于x 的一元一次方程求解即可【详解】解:根据新运算可得∵∴解得故答案为:【点睛】本题考查新定义运算解一元一次方程根据题意得出一元一次方程是解题的关键 解析:43- 【分析】根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,由()3*2*2x =-得到关于x 的一元一次方程,求解即可.【详解】解:根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,∵()3*2*2x =-,∴()3340x +=,解得43x =-, 故答案为:43-. 【点睛】本题考查新定义运算、解一元一次方程,根据题意得出一元一次方程是解题的关键. 20.请仔细阅读材料并完成相应的任务.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根(提示:59319是一个整数的立方).华罗庚脱口而出答案,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?(1)由3101000=,31001000000=,11000593191000000<<______位数;(2)由59319的个位数字是9______;(3)如果划去59319后面的319得到数59,而3327=,3464=上的数是______.(1)两(2)9(3)3【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9据此可判断;(3)<59<据此可判断【详解】解:(1)∵103=10001003=1 000 000解析:(1)两 (2)9 (3)3.【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9,据此可判断;(3)33<59<34,据此可判断.【详解】解:(1)∵103=1000,1003=1 000 000,而1000<59319<1000000,∴10100,因此结果为两位数;故答案是:两;(2)因为只有9的立方的个位数字才是9,因此结果的个位数字为9,故答案是:9;(3)∵33<59<343.故答案为:3.【点睛】考查实数的意义,立方根的意义以及立方的尾数特征等知识,理解题意是关键.三、解答题21.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ (2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+解析:(1)-2;(2)360;(3)4;(4)143. 【分析】(1)先去括号和绝对值,再进行混合运算即可.(2)先将括号内通分运算,再将除法改为乘法,最后计算即可.(3)先去括号,再将除法改为乘法,最后计算即可.(4)分别计算出根式的值,在进行加法运算即可.【详解】(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ 121242424234=-⨯+⨯-⨯ 12166=-+-2=-(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ 61061=÷⨯ 1066=⨯⨯360=(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭11(3)=-⨯-13=+4=(4+=153=- 143= 【点睛】本题考查实数的混合运算.掌握其运算法则是解答本题的关键.22.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:a b = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =. 解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】 (1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算.【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b ) =4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.23.计算:(12)-+(2解析:(1)-2;(2)【分析】 (1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2-2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.24.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(1)解方程:log x 4=2;(2)求值:log 48;(3)计算:(lg2)2+lg2•1g5+1g5﹣2018解析:(1)x=2;(2)32;(3)-2017【分析】(I)根据对数的定义,得出x2=4,求解即可;(Ⅱ)根据对数的定义求解即可;(Ⅲ)根据log a(M•N)=log a M+log a N求解即可.【详解】解:(I)解:∵log x4=2,∴x2=4,∴x=2或x=-2(舍去)(II)解法一:log48=log4(4×2)=log44+log42=1+12=32;解法二:设log48=x,则4x=8,∴22x=32,∴2x=3,x=32,即log48=32;(Ⅲ)解:(lg2)2+lg2•1g5+1g5﹣2018= lg2•( lg2+1g5) +1g5﹣2018= lg2 +1g5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义和运算法则.25.计算下列各题(1)﹣2;(2)﹣(结果保留2位有效数字).解析:(1);(2)2.6【分析】(1)计算立方根、平方根,再合并即可;(2)根据实数的运算法则和顺序计算即可.【详解】(1)(2)100.2=-⨯ 2 1.732 2.23622≈⨯+÷-2.6≈.【点睛】本题考查了平方根和立方根,熟练掌握相关的运算法则是解题的关键.26.解方程:(1)2810x -=;(2)38(1)27x +=.解析:(1)9x =±;(2)12x =. 【分析】 (1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=, ∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键. 27.计算:(1)2019(1)|2|-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x解析:(1)1--2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 1242-+-+1=-(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.28.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.解析:(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =; ∵34<<,c 的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。
专题04 实数易错题之选择题(30题)Part1 与 平方根 有关的易错题1.(2020·广东汕头市·的算术平方根为( )A . BC .2±D .2【答案】B 【解析】的值,再继续求所求数的算术平方根即可.详解:=2,而2, 故选B .名师点拨:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.2.(2020·河南许昌市·七年级期末)下列各式中,正确的是( )A 3=-B .3=-C 3=±D 3±【答案】B 【提示】如果一个非负数x 的平方等于a ,那么x 是a 的算术平方根,根据此定义即可求出结果. 【详解】解:A 3= ,故本选项错误;B 、3=-,故本选项正确;C 3= ,故本选项错误;D 3= ,故本选项错误; 故选B . 【名师点拨】本题考查算术平方根的定义,主要考查学生的理解能力和计算能力.3.(2020·自贡市期中)已知5a =7=,且a b a b +=+,则-a b 的值为( )A .2或12B .2或12-C .2-或12D .2-或12-【答案】D 【详解】根据a =5,得a 5,b 7=±=±,因为a b a b +=+,则a 5,b 7=±=,则-a b =5-7=-2或-5-7=-12. 故选D.4.(2020·广西防城港市·七年级期中)若30,a -=则+a b 的值是( ) A .2 B .1 C .0D .1-【答案】B 【解析】试题提示:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.5.(2020·安徽铜陵市·七年级期末)若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8【答案】D 【提示】根据单项式的定义可得8m x y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【名师点拨】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 6.(2020·安徽阜阳市·七年级期末)面积为4的正方形的边长是( ) A .4的平方根 B .4的算术平方根 C .4开平方的结果 D .4的立方根【答案】B 【提示】已知正方形面积求边长就是求面积的算术平方根. 【详解】解:面积为44的算术平方根; 故选B . 【名师点拨】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.7.(2020·( ) A .±3 B .3C .9D .±9【答案】A 【提示】根据算术平方根、平方根的定义即可解决问题. 【详解】9=,9的平方根3±. 故选:A . 【名师点拨】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型. 8.(2020·浙江杭州市期末)下列说法正确的是()A .116的平方根是14B .16-的算术平方根是4C .2(4)-的平方根是4-D .0的平方根和算术平方根都是0【答案】D 【提示】根据一个正数有两个平方根,且这两个平方根互为相反数及平方根的定义即可判断各选项. 【详解】 解:A 、116的平方根为±14,故本选项错误; B 、-16没有算术平方根,故本选项错误; C 、(-4)2=16,16的平方根是±4,故本选项错误; D 、0的平方根和算术平方根都是0,故本选项正确. 故选D . 【名师点拨】本题考查了平方根和算术平方根的定义,一个正数有两个平方根,其中正的平方根称为算术平方根,负数没有平方根,0的平方根和算术平方根都是0.9.(2020·河北邯郸市七年级期中)下列说法正确的是( ) A .-5是25的平方根B .25的平方根是5C .-5是(-5)2的算术平方根D .±5是(-5)2的算术平方根【答案】A 【解析】试题提示:A 、B 、C 、D 都可以根据平方根和算术平方根的定义判断即可. 解:A 、﹣5是25的平方根,故选项正确; B 、25的平方根是±5,故选项错误;C 、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误;D 、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误. 故选A .10.(2020·江西南昌市·七年级期末)若2m -4与3m -1是同一个数的平方根,则m 的值是( ) A .-3 B .-1C .1D .-3或1【答案】D 【提示】根据平方根的性质列方程求解即可; 【详解】当24=31m m --时,3m =-; 当24310m m +=--时,1m =; 故选:D. 【名师点拨】本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.Part2 与 立方根 有关的易错题11.(2020·内蒙古乌兰察布市·七年级期末)64的立方根是( ) A .4 B .±4 C .8 D .±8【答案】A 【解析】试题提示:∵43=64,∴64的立方根是4, 故选A考点:立方根.12.(2020·)A.±2B.±4C.4D.2【答案】D【提示】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【名师点拨】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义. 13.(2020·河南周口市·七年级期末)有理数-8的立方根为()A.-2B.2C.±2D.±4【答案】A【提示】利用立方根定义计算即可得到结果.【详解】解:有理数-8-2故选A.【名师点拨】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.14.(2020·右玉县期中)立方根等于它本身的有( )A.0,1B.-1,0,1C.0,D.1【答案】B【提示】根据立方根性质可知,立方根等于它本身的实数0、1或-1.【详解】解:∵立方根等于它本身的实数0、1或-1.故选B.【名师点拨】本题考查立方根:如果一个数x的立方等于a,那么这个数x就称为a的立方根,例如:x3=a,x就是a的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0.15.(2020·凉州区期末)若,则x和y的关系是().A.x=y=0B.x和y互为相反数C.x和y相等D.不能确定【答案】B【解析】提示:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y,即x、y互为相反数,故选B.名师点拨:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.16.(2020·武威市期中)一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( )A.4 cm~5 cm之间B.5 cm~6 cm之间C.6 cm~7 cm之间D.7 cm~8 cm之间【答案】A【解析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.解:设正方体的棱长为x,由题意可知x3=100,解得x=,由于43<100<53,所以4<<5.故选A.此题是考查估算无理数的大小在实际生活中的应用,“夹逼法”估算方根的近似值在实际生活中有着广泛的应用,我们应熟练掌握.17.(2020·凉州区期末)下列各组数中互为相反数的是( )A .2-与2B .2-C .2-与12-D .2-【答案】D【提示】根据相反数的性质判断即可; 【详解】A 中-2=2,不是互为相反数;B 2=-,不是相反数;C 中两数互为倒数;D 中两数互为相反数; 故选:D . 【名师点拨】本题主要考查了相反数的性质应用,准确提示是解题的关键.18.(2020·山东滨州市·七年级期中)一个数的算术平方根与它的立方根的值相同,则这个数是( ) A .1 B .0或1 C .0 D .非负数【答案】B 【提示】根据立方根和平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题. 【详解】∵立方根等于它本身的实数0、1或−1; 算术平方根等于它本身的数是0和1.∴一个数的算术平方根与它的立方根的值相同的是0和1. 故选:B. 【名师点拨】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.19.(2020·浙江杭州市·七年级期末)若24,a =1=-,则+ab 的值是( )A .1B .-3C .1或-3D .-1或3【答案】C 【提示】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可. 【详解】解:24,a =1,=-2,a ∴=±1b =-,∴当2,a =-1b =-时,213a b +=--=-;∴当2,a =1b =-时,211a b +=-=. 故选:C . 【名师点拨】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键.20.(2020·武威市期中)若a b a+b 的值是( ) A .4 B .4或0C .6或2D .6【答案】C 【提示】由a a=±2,由b b=4,由此即可求得a+b 的值. 【详解】∵a∴a=±2,∵b∴b=4,∴a+b=2+4=6或a+b=-2+4=2. 故选C . 【名师点拨】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.Part3 与 实数 有关的易错题21.(2020·重庆市期末)黄金分割数12是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间 D .在1.4和1.5之间【答案】B 【提示】根据4.84<5<5.29,可得答案. 【详解】 ∵4.84<5<5.29, ∴, ∴1<1.3, 故选B . 【名师点拨】是解题关键.22.(2020·湖南湘潭市七年级期中)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B 【解析】提示:观察数轴得到实数a ,b ,c 的取值范围,根据实数的运算法则进行判断即可. 详解:∵43a -<<-,∴34a <<,故A 选项错误; 数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误. 故选B.名师点拨:主要考查数轴、绝对值以及实数及其运算.观察数轴是解题的关键.23.(2020·的值在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间【答案】B 【提示】利用”夹逼法“+1的范围. 【详解】 ∵4 < 6 < 9 , <,即23<<,∴34<<, 故选B.24.(2020·甘南县期末)下列各数中,13.14159 0.131131113 7π⋅⋅⋅--,,,无理数的个数有 A .1个 B .2个C .3个D .4个【答案】B 【解析】试题提示:无限不循环小数为无理数,由此可得出无理数的个数,因此,由定义可知无理数有:0.131131113…,﹣π,共两个.故选B .25.(2020·广东河源市七年级期末)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0ab< 【答案】D 【提示】先由数轴上a ,b 两点的位置确定a ,b 的取值范围,再逐一验证即可求解. 【详解】由数轴上a ,b 两点的位置可知-2<a <-1,0<b <1, 所以a<b ,故A 选项错误; |a|>|b|,故B 选项错误; a+b<0,故C 选项错误;0ab<,故D 选项正确, 故选D. 【名师点拨】本题考查了实数与数轴,实数的大小比较、实数的运算等,根据数轴的特点判断两个数的取值范围是解题的关键. 26.(2020·河北保定市·七年级期中)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.B.C.D.8【答案】A【解析】解:由题中所给的程序可知:把64取算术平方根,结果为8,∵8是有理数,∴∴y=.故选A.27.(2020·山东枣庄市·七年级期中)现定义一种新运算:a★b=ab+a-b,如:1★3=1×3+1-3=1,那么(-2)★5的值为()A.17B.3C.13D.-17【答案】D【提示】根据新运算的定义即可得到答案.【详解】∵a★b=ab+a﹣b,∴(﹣2)★5=(﹣2)×5﹣2﹣5=﹣17.故选D.【名师点拨】本题考查了基本的知识迁移能力,运用新定义,求解代数式即可,要灵活运用所学知识,要认真掌握.28.(2020·的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题提示:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵7.84<8<8.41,∴2.82<8<2.92,∴2.82.9,③段上.故选C考点:实数与数轴的关系29.(2020·北京市期末)请你观察、思考下列计算过程:因为112=121,:,因为1112=12321=111…( )A .111111B .1111111C .11111111D .111111111 【答案】D【解析】提示:被开方数是从1到n 再到1(n≥1的连续自然数),算术平方根就等于几个1.详解:=11=111…,…,111 111 111.故选D .名师点拨:本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.30.(2020·浙江杭州市·七年级期末)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .431760【答案】C【提示】根据给定几幅图形中黑点数量的变化可找出其中的变化规律“()2n a n n =+(n 为正整数)”,进而可求出111122n a n n ⎛⎫=- ⎪+⎝⎭,将其代入123191111a a a a ++++…中即可求得结论. 【详解】解:∵第一幅图中“•”有1133a =⨯=个;第二幅图中“•”有2248a =⨯=个;第三幅图中“•”有33515a =⨯=个;∴第n 幅图中“•”有()2n a n n =+(n 为正整数)个 ∴111122n a nn ⎛⎫=- ⎪+⎝⎭∴当19n =时123191111a a a a ++++…11113815399=++++11111324351921=++++⨯⨯⨯⨯1111111111112322423521921⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111111112324351921⎛⎫=⨯-+-+-++- ⎪⎝⎭11111222021⎛⎫=⨯+-- ⎪⎝⎭589840=.故选:C【名师点拨】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.。
实数类型一:平方根1.下列判断中,错误的是()A.﹣1的平方根是±1 B.﹣1的倒数是﹣1C.﹣1的绝对值是1 D.﹣1的平方的相反数是﹣1考点:平方根;相反数;绝对值;倒数。
专题:计算题。
分析:A、利用平方根的定义即可判定;B、利用倒数定义即可判定;C、利用绝对值的定义即可判定;D、利用相反数定义即可判定.解答:解:A、负数没有平方根,故A说法不正确;B、﹣1的倒数是﹣1,故选项正确;C、﹣1的绝对值是1,故选项正确;D、﹣1的平方的相反数是﹣1,故选项正确.故选A.点评:本题考查基本数学概念,涉及平方根、倒数、绝对值等,要求学生熟练掌握.变式:2.下列说法正确的是()A.是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0 C.72的平方根是7D.负数有一个平方根考点:平方根。
专题:计算题。
分析:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.可据此进行判断.解答:解:A、是0.5的平方,故选项错误;B、∵任何一个正数有两个平方根,它们互为相反数,∴这两个平方根之和等于0,故选项正确;C、∵72的平方根是±7,故选项错误;D、∵负数没有平方根,故选项错误.故选B.点评:此题主要考查了平方根的概念,属于基础知识,难度不大.3.如果一个数的平方根等于这个数本身,那么这个数是()A.1 B.﹣1 C.0 D.±1考点:平方根。
专题:计算题。
分析:由于如何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.解答:解:∵±=±0=0,∴0的平方根等于这个数本身.故选C.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.类型二:算术平方根1.的算术平方根是()A.±81 B.±9 C.9 D.3考点:算术平方根。
分析:首先求出的结果,然后利用算术平方根的定义即可解决问题.解答:解:∵=9,而9的算术平方根是3,∴的算术平方根是3.故选D.点评:本题考查的是算术平方根的定义.一个非负数的非负平方根叫做这个数的算术平方根.正数的平方根是正数.特别注意:应首先计算的值.变式:2.的平方根是()A.3 B.±3 C.D.±考点:算术平方根;平方根。
最新初中数学实数易错题汇编附答案一、选择题1.( )A.3 B.3-C.3±D.4.5【答案】A【解析】分析:本题只需要根据算术平方根的定义,求9的算术平方根即可..故选A.点睛:本题考查了算术平方根的运算,比较简单.2.1的值在( )A.1到2之间B.2到3之间C.3到4之间D.4到5之间【答案】C【解析】分析:根据平方根的意义,由16<17<25的近似值进行判断.详解:∵16<17<25∴4<5∴3-1<4-1在3到4之间.故选:C.点睛:此题主要考查了无理数的估算,根据平方根的被开方数的大小估算是解题关键.3.是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间【答案】B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,【点睛】 本题考查了估算无理数的大小,利用5≈2.236是解题关键. 4.下列六个数:0、315,9,,,0.13π•-中,无理数出现的频数是( ) A .3 B .4 C .5 D .6【答案】A【解析】【分析】根据无理数的定义找出无理数,根据频数的定义可得频数.【详解】 因为六个数:0、315,9,,,0.13π•-中,无理数是35,9,π 即:无理数出现的频数是3故选:A【点睛】考核知识点:无理数,频数.理解无理数,频数的定义是关键.5.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可: ∵由数轴可知,b >0>a ,且 |a|>|b|,∴()2a a b a a b b -+=-++=.故选C .考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.6.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立;若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.7.如图,数轴上的A 、B 、C 、D 四点中,与数﹣3表示的点最接近的是( )A .点AB .点BC .点CD .点D【答案】B【解析】【分析】 3 1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】3 1.732≈-,()1.7323 1.268---≈ ,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以3-表示的点与点B 最接近,故选B.8.若320,a b -+=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.9.下列说法正确的是()A.﹣81的平方根是±9 B.7C.127的立方根是±13D.(﹣1)2的立方根是﹣1【答案】B【解析】【分析】由平方根、算术平方根及立方根的定义依次判定各项即可解答.【详解】选项A,﹣81没有平方根,选项A错误;选项B,7B正确;选项C,127的立方根是13,选项C错误;选项D,(﹣1)2的立方根是1,选项D错误.故选B.【点睛】本题考查了平方根、算术平方根及立方根的应用,熟知平方根、算术平方根及立方根的定义是解决问题的关键.10.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是()A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.11.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是3和﹣1,则点C所对应的实数是( )A.3B.3C.3 1 D.3【答案】D【解析】【分析】【详解】设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有()x3=31-,解得x=23+1.故选D.12.下列运算正确的是()A4 =-2 B.|﹣3|=3 C4=± 2 D39【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C42=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.故选B.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.13.在-1.414,0,π,227,3.14,3 3.212212221…,这些数中,无理数的个数为()A.5 B.2 C.3 D.4【答案】C【分析】根据无理数的概念解答即可.【详解】-1.414,0,π,227,3.14,2+3,3.212212221…,这些数中,无理数有:π,2+3,3.212212221…,无理数的个数为:3个故选:C【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.14.实数a,b,c,d在数轴上的对应点的位置如图所示,则下列结论正确的是()A.|a|>|b| B.a>﹣3 C.a>﹣d D.11 c<【答案】A【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】由数轴可知,﹣4<a<﹣3,b=﹣1,0<c<1,d=3,∴|a|>|b|,A正确;a<﹣3,B错误;a<﹣d,C错误;11c>,D错误,故选A.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义等,熟练掌握是解题的关键.15.若x使(x﹣1)2=4成立,则x的值是( )A.3 B.﹣1 C.3或﹣1 D.±2【答案】C【解析】试题解析:∵(x-1)2=4成立,解得:x 1=3,x 2=-1.故选C .16.计算|1+3|+|3﹣2|=( ) A .23﹣1B .1﹣23C .﹣1D .3【答案】D【解析】 【分析】 根据绝对值的性质去掉绝对值的符号后进行合并即可.【详解】原式=1+3+2﹣3=3,故选D .【点睛】本题考查了实数的运算,熟练掌握绝对值的性质是解本题的关键.17.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.18.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.19.估计2值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间 【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:2=∵91216<<<<∴34<<∴估计2值应在3到4之间. 故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.20.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】== 1.414222≈,即可解答.【详解】== 1.414222≈,∴2 6.242≈,即介于6和7,故选:C.【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.。
(易错题精选)初中数学实数真题汇编及答案解析一、选择题1的算术平方根为()A.B C.2±D.2【答案】B【解析】的值,再继续求所求数的算术平方根即可.=2,而2,,故选B.点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误.2的平方根是( )A.2 B C.±2 D.【答案】D【解析】【分析】,然后再根据平方根的定义求解即可.【详解】,2的平方根是,.故选D.【点睛】正确化简是解题的关键,本题比较容易出错.3.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内【详解】 ∵10a-≥,且0a ≠, ∴a<0,∴-,∴-= 故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.4.已知一个正方体的表面积为218dm ,则这个正方体的棱长为( )A .1dmB C D .3dm【答案】B【解析】【分析】设正方体的棱长为xdm ,然后依据表面积为218dm 列方程求解即可.【详解】设正方体的棱长为xdm .根据题意得:2618(0)x x =>,解得:x.故选:B .【点睛】此题考查算术平方根的定义,依据题意列出方程是解题的关键.5.在-3.5,227,0,2π,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.∵-3.5是有限小数,,∴-3.5、 ∵227=22÷7=3.142857&&是循环小数, ∴227是有理数; ∵0是整数,∴0是有理数;∵2π,,0.161161116…都是无限不循环小数,∴2π,,0.161161116…都是无理数,∴无理数有3个:2π,,0.161161116…. 故选C .【点睛】 此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.6.1,0( )AB .﹣1C .0D 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:10-<<<则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.7.下列实数中的无理数是( )AB C D .227【答案】C【解析】无限不循环小数是无理数,根据定义解答.【详解】 A. 1.21=1.1是有理数;B. 38-=-2,是有理数;C. 33-是无理数;D.227是分数,属于有理数, 故选:C.【点睛】 此题考查无理数的定义,熟记定义是 解题的关键.8.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( )A .45B 52C 51D .35【答案】C【解析】 【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB ===∴22521AC =+= ∴AE 5∵A 点表示的数是1-∴E 51【点睛】掌握勾股定理;熟悉圆弧中半径不变性.9.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ). A .x +1B .x 2+1C 1xD 21x +【答案】D一个自然数的算术平方根是x ,则这个自然数是2,x 则它后面一个数的算术平方根是21x +.故选D.10.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.11.19+2的值是在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间【答案】B【解析】解:由于16<19<25,所以419<5,因此619<7.故选B .点睛:本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.362g 在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.13.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c =0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7-3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形, ∴4a =20,∴a=5,∴c =5,∴a +b +c =5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.14.下列说法中,正确的是( )A .-2是-4的平方根B .1的立方根是1和-1C .-2是(-2)2的算术平方根D .2是(-2)2的算术平方根【答案】D【解析】【分析】根据平方根、算术平方根、立方根的定义进行解答即可.【详解】A . -4没有平方根,故A 错误;B . 1的立方根是1,故B 错误;C . (-2)2的算术平方根是2,故C 错误;D . 2是(-2)2的算术平方根,故D 正确故选:D【点睛】本题主要考查的是算术平方根与平方根\立方根,掌握算术平方根与平方根\立方根的定义是解题的关键.15.在-1.414,0,π,227,3.14, 3.212212221…,这些数中,无理数的个数为( )A .5B .2C .3D .4 【答案】C【解析】【分析】根据无理数的概念解答即可.【详解】-1.414,0,π,227,3.14,3.212212221…,这些数中,无理数有:π,3.212212221…,无理数的个数为:3个故选:C【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.已知3y =,则y x 的值为()n n A .43 B .43- C .34 D .34- 【答案】C【解析】由题意得,4−x ⩾0,x−4⩾0,解得x=4,则y=3,则y x =34, 故选:C.17.若x 使(x ﹣1)2=4成立,则x 的值是( )A .3B .﹣1C .3或﹣1D .±2【答案】C【解析】试题解析:∵(x-1)2=4成立,∴x-1=±2,解得:x 1=3,x 2=-1.故选C .18.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.19.下列说法正确的是( )A .无限小数都是无理数B .1125-没有立方根 C .正数的两个平方根互为相反数D .(13)--没有平方根【答案】C【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A 、无限循环小数是有理数,故不符合题意;B、1125-有立方根是15-,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.20.如图,数轴上的点P表示的数可能是()A5B.5C.-3.8 D.10-【答案】B【解析】【分析】【详解】5 2.2≈,所以P点表示的数是5-。
八年级数学上册 第二章 实数知识点+易错题精选一、实数的概念及分类1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数概念:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o 等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a= —b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|= -a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算 逐步逼近法的正确使用 三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a”,读作“正、负根号a ”。
专题01实数(重点+难点)一、单选题1.下列各数中:﹣227,﹣39,0,0.15,3π,﹣49,1.010010001……(0的个数依次加一个),23.1313313332中,无理数有()个A .1B .2C .3D .4【答案】C【分析】无限不循环小数称为无理数,根据此概念判断即可.【解析】根据无理数的概念知:无理数有﹣39,3π, 1.010010001……(0的个数依次加一个)三个;故选:C .【点睛】本题考查了无理数的含义,常见三类无理数:不能开尽方的平方根或立方根;π与有理数的和差积商;形如1.010010001……(0的个数依次加一个)的数.2.下列说法中,不.正确的是()A .4的平方根是2±B .8的立方根是2C .64的立方根是4±D .9的算术平方根是3【答案】C【分析】根据平方根和立方根的定义进行计算,一个正数的平方根有正负两个,正的平方根是该数的算术平方根,所有实数的立方根只有一个,然后进行逐一判断即可.【解析】A.4的平方根是2±,原选项不合题意;B.8的立方根是2,原选项不合题意;C.64的立方根是4,原选项符合题意;D.9的算术平方根是3,原选项不合题意.故选:C【点睛】本题考查了平方根和立方根的概念,熟练掌握相关知识是解题的关键.3.如图,数轴上点P 表示的数可能是()A.①②【答案】D【分析】根据运算规则即可求解.【解析】解:①x的值不唯一.②输入值x为16时,③对于任意的正无理数④当x=1时,始终输不出其中错误的是①③.故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:及像0.1010010001…,等有这样规律的数.二、填空题11.比较大小:6【答案】<【分析】根据实数的大小比较方法求解即可.<,【解析】解:∵67∴67<,1615>故答案为:<,>.【点睛】本题考查实数的大小比较,三、解答题(1)已知点A、B表示两个实数﹣3、2,请在数轴上描出它们大致的位置,用字母标示出来;(2)O为原点,求出O、A两点间的距离.(3)求出A、B两点间的距离.【答案】(1)见解析;(2)解:∵表示点A的数为﹣3,表示点O的数为0,∴OA=0﹣(﹣3)=3;(3)解:∵表示点A的数为﹣3,表示点B的数为2,∴AB=2﹣(﹣3)=2+3.【点睛】本题考查了实数与数轴以及两点间的距离,在数轴上准确表示出点∴103823的立方根的十位数字是4,又∵103823的立方根的个位数字是7,∴103823的立方根是47.【点睛】考查了立方根的概念和求法,解题关键是理解一个数的立方的个位数就是这个数的个位数的立方的个位数.一、单选题A.216【答案】D【分析】由4A纸张的宽为【解析】解:由图得,当∵纸张长与宽的比为∴0A纸的长为42x米,∵0A纸面积为1平方米,∴421x x⋅=,∴2²32x=,∴x的值为232的算术平方根.故选:D.【点睛】本题考查了平方根的计算,根据图形表示出二、填空题三、解答题。
初中数学实数易错题汇编及答案解析一、选择题1.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣;④0.01的立方根是0.00001,其中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.2.1的值在( )A.1到2之间B.2到3之间C.3到4之间D.4到5之间【答案】C【解析】分析:根据平方根的意义,由16<17<25的近似值进行判断.详解:∵16<17<25∴4<5∴3-1<4-1在3到4之间.故选:C.点睛:此题主要考查了无理数的估算,根据平方根的被开方数的大小估算是解题关键. 3.已知一个正方体的表面积为218dm,则这个正方体的棱长为()A.1dm B C D.3dm【答案】B【解析】【分析】设正方体的棱长为xdm ,然后依据表面积为218dm 列方程求解即可.【详解】设正方体的棱长为xdm .根据题意得:2618(0)x x =>, 解得:3x =. 所以这个正方体的棱长为3dm . 故选:B . 【点睛】此题考查算术平方根的定义,依据题意列出方程是解题的关键.4.已知,x y 为实数且110x y ++-=,则2012x y ⎛⎫ ⎪⎝⎭的值为( ) A .0B .1C .-1D .2012 【答案】B【解析】【分析】利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可.【详解】由题意,得x+1=0,y-1=0,解得:x=-1,y=1,所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1, 故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.5.-2的绝对值是( ) A .B .C .D .1 【答案】A【解析】【分析】根据差的绝对值是大数减小数,可得答案.【详解】-2的绝对值是2-. 故选A .【点睛】本题考查了实数的性质,差的绝对值是大数减小数.6.下列实数中的无理数是( )AB C D .227【答案】C【解析】【分析】无限不循环小数是无理数,根据定义解答.【详解】=1.1是有理数;,是有理数;是无理数; D.227是分数,属于有理数, 故选:C.【点睛】 此题考查无理数的定义,熟记定义是 解题的关键.7.对于实数a 、b 定义运算“※”:22()()a ab a b a b ab b a b ⎧-≥=⎨-<⎩※,例如2424428=-⨯=※,若x ,y 是方程组33814x y x y -=⎧⎨-=⎩的解,则y ※x 等于( ) A .3B .3-C .1-D .6- 【答案】D【解析】【分析】先根据方程组解出x 和y 的值,代入新定义计算即可得出答案.【详解】解:∵33814x y x y -=⎧⎨-=⎩∴21x y =⎧⎨=-⎩所以()()2y x=-12=-12-2=-2-4=-6⨯※※.故选:D .【点睛】本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.8.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( )A .45B 52C 51D .35【答案】C【解析】【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB === ∴22521AC =+=∴AE 5∵A 点表示的数是1-∴E 51【点睛】掌握勾股定理;熟悉圆弧中半径不变性.9.下列说法正确的是( )A .﹣81的平方根是±9B .77C .127的立方根是±13D .(﹣1)2的立方根是﹣1 【答案】B【解析】【分析】 由平方根、算术平方根及立方根的定义依次判定各项即可解答.【详解】 选项A ,﹣81没有平方根,选项A 错误;选项B ,77B ,选项正确;选项C ,127的立方根是13,选项C 错误;选项D ,(﹣1)2的立方根是1,选项D 错误. 故选B.【点睛】本题考查了平方根、算术平方根及立方根的应用,熟知平方根、算术平方根及立方根的定义是解决问题的关键.10.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥ 【答案】A【解析】【分析】利用特殊值法即可判断. 【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a >,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.11.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3 【答案】D【解析】【分析】【详解】设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有 ()x 3=31-,解得x=23+1.故选D.12.3( )A .点PB .点QC .点RD .点S【答案】A【解析】【分析】 33的点可能是哪个.【详解】∵132, 3的点可能是点P .故选A .【点睛】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.13.若320,a b -+=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.14.3127,?0,?-,?16,?,?0.10100100013π⋅⋅⋅(相邻两个1之间依次多一个0),其中无理数是( )个.A .1B .2C .3D .4 【答案】B【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.无理数就是无限不循环小数,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,因此,【详解】 327164==327,01613是有理数. ∴无理数有:﹣π,0.1010010001….共有2个.故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.15.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.16.用“☆”定义一种新运算:对于任意有理数x 和y ,21x y a x ay =++☆(a 为常数),如:2223231231a a a a =⋅+⋅+=++☆.若123=☆,则48☆的值为( )A .7B .8C .9D .10 【答案】C【解析】【分析】先根据123=☆计算出a 的值,进而再计算48☆的值即可. 【详解】因为212a 2a 13=++=☆,所以2a 2a 2+=,则()224a 8a 14a 2a 1421948=++=++=⨯+=☆,故选:C .【点睛】此题考查了定义新运算以及代数式求值.熟练运用整体代入思想是解本题的关键.17.若x 使(x ﹣1)2=4成立,则x 的值是( )A .3B .﹣1C .3或﹣1D .±2【答案】C【解析】试题解析:∵(x-1)2=4成立,∴x-1=±2,解得:x 1=3,x 2=-1.故选C .18.最接近的整数是( ).A .3B .4C .5D .6 【答案】A【解析】【分析】由于91016<<<10与9的距离小于16与10的距离,可得答案.【详解】由于91016<<<10与9的距离小于16与10的距离,可得答案.解:∵2239,416==,∴34<<,10与9的距离小于16与10的距离,最接近的是3.故选:A .【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.19.实数a 、b +4a 2+4ab+b 2=0,则b a 的值为( )A .2B .12C .﹣2D .﹣12【答案】B【解析】【分析】【详解】+(2a+b )2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=12.故选:B.【点睛】本题考查非负数的性质.20.如图,数轴上的点可近似表示(4630-)6÷的值是()A.点A B.点B C.点C D.点D【答案】A【解析】【分析】先化简原式得45-5545【详解】原式=45-由于25<<3,∴1<45-<2.故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.。