实数易错题
- 格式:doc
- 大小:174.00 KB
- 文档页数:3
七年级实数易错题1( )A .3B .3-C .3±D .6 【答案】A2( )A .9B .9或9-C .3D .3或3- 【答案】D3,0.13,27,2π,1.3131131113⋯(每两个3之间依次加一个1),无理数有( )个.A .1B .2C .3D .4 【答案】C40=,则2020()a b -的值为( )A .1B .1-C .1±D .0【答案】D5.下列叙述中,正确的是( )①1的立方根为1±;②4的平方根为2±;③8-立方根是2-; ④116的算术平方根为14. A .①②③B .①②④C .①③④D .②③④【答案】D 6.下列运算正确的是( )A .2020(1)1-=-B .224-=C 4±D 3=-【答案】D7.面积为5的正方形边长为m ,且3n m =-,则估计n 的值所在的范围是( )A .01n <<B .12n <<C .23n <<D .34n << 【答案】A8.如果a的平方根是4±=.【答案】49 1.312= 4.147=,那么172010的平方根是.【答案】414.7±10.已知x y1(xy--的算术平方根为.【答案】311的平方根,338的算术平方根是.【答案】2±.12.若1x-与23x-是同一个数的平方根,则x=.【答案】43或213.一个正数的平方根为21x+和7x-,则这个正数为.【答案】2514.1=23=,⋯,.【答案】n15的平方根是,的立方根是,如果3±,则a=.【答案】2±;2-;8116.若24(1)120x--=,则等式中x的值为.【答案】1+或1-17.规定:[]a表示小于a的最大整数,例如:[5]4=,[ 6.7]7-=-,则方程[]26xπ-+=的解是.【答案】5x=18.已知264x==.【答案】2±19.实数大小比较:【答案】<20.已知5的小数部分是a ,5的小数部分是b ,则2019()a b += .【答案】121.如图,AB AC =,则数轴上点C 所表示的数为 .【答案】122.已知a b <,且a 、b 为两个连续的整数,则a b += .【答案】723.求下列式子中x 的值.(1)218(2)225x -=; (2)364(1)1250x ++=. 【答案】(1)解:(1)218(2)225x -=, 24(2)25x -=,2x -= 225x -=±, 225x =+,或225x =-, 1125x =,285x =; (2)364(1)1250x ++=, 3125(1)64x +=-,1x += 514x +=, 514x =--, 94x =-.。
实数易错题一、填空:1、一组数据–2,0,5,a,2的平均数是1.6,这组数据的中位数是2、一组数据从小到大排列为–1,0,4,x,6,15如果它的中位数是5,则它的众数是3、已知直角三角形的三边长分别为6,8,x,以x为边长的正方形的面积是4、一个正方形的面积是40,它的边长在两个相邻整数与之间。
5、数轴上到原点的距离为2的点表示的数是6、81的平方根是,16= ,38的平方根是7、如果用长为3,x,5的三条线段能围成一个直角三角形看,那么x等于8、一棵树在离地面3米处折断,树的顶部落在离底部2米的地面上,这棵树折断前的高为9、P(-5,2)为直角坐标系中的点,它到原点的距离为10、已知n20是整数,满足条件的最小正整数n为11、已知三角形的三边的长为1,2,3,这个三角形的面积是12、等腰直角三角形一条直角边的长是1,斜边上的高的长为13、2—3的相反数是,3—10的绝对值是,37-的相反数是 ,|2 —3|= ,—2—3的相反数是14、数轴上,点P 与原点的距离是5,点Q 与原点的距离是4,且点Q 在点P 左边,则点P ,Q 之间的距离是15、当m 4时,m -4有意义;当m 时 ,33m -有意义。
16、已知等腰三角形的一条腰长是5,底边长是6,则它的底边上的高是17、若y=1-x +x -1,则x 2008+2008y =18、若x 2=64,则3x =19、已知实数x ,y 满足2-x +(y+1)2=0,则x —y=20、满足—2< x <5的整数x 是 ,21、10在两个连续整数a 和b 之间,那么a 、b 的值分别是22、a 是10的整数部分,b 是10的小数部分,则b (10+a )=23、若一个三角形铁皮余料的三边长分别为12cm ,16 cm ,20 cm ,则这块三角形铁皮余料的面积是24、 如果一个数的平方根是它本身,则这个数是 ,如果一个数的算术平方根是它本身,则这个数是 ,如果一个数的立方根是它本身,则这个数是25、一个梯子AB 长为5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 间的距离为3米,梯子滑动后在DE 的位置上,测得DB 的长为1米,则梯子顶端A 下降了 米。
一、选择题1.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;4±,其中正确的个数有()A.0个B.1个C.2个D.3个C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可.【详解】解:①所有无理数都能用数轴上的点表示,故①正确;②若一个数的平方根等于它本身,则这个数是0,故②错误;③任何实数都有立方根,③说法正确;2±,故④说法错误;故其中正确的个数有:2个.故选:C.【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.2.下列各式计算正确的是()A B= ±2 C= ±2 D. A解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.3.下列说法中错误的有()①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±.A.0个B.1个C.2个D.3个D解析:D【分析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可.【详解】①实数和数轴上的点是一一对应的,正确;②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误.综上,错误的个数有3个.故选:D.【点睛】本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键.4.在0、0.536227-、π、-0.1616616661……(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)这些数中,无理数的个数是()A.3 B.4 C.5 D.6B 解析:B【分析】根据无理数的定义逐一判断即可.【详解】解:0、0.536、227-是有理数,π,0.1616616661-(它的位数无限,相邻两个“1”之间“6”的个数依次增加1个)是无理数,故选:B.【点睛】本题考查无理数的定义,掌握无理数的定义是解题的关键.5.下列实数中,是无理数的为()A.3.14 B.13C D解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.3.14是有限小数,属于有理数;B.13是分数,属于有理数;3,是整数,属于有理数.故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( )A .135B .220C .345D .407D 解析:D【分析】分别算出某数各个数位上数字的立方和,看其是否等于某数本身,若等于即为“水仙花数”,若不等于,即不是“水仙花数” .【详解】解:∵333135153135++=≠,∴A 不是“水仙花数”;∵332216220+=≠,∴B 不是“水仙花数”;∵333345216345++=≠,∴C 不是“水仙花数”;∵3347407+=,∴D 是“水仙花数”;故选D .【点睛】本题考查新定义下的实数运算,正确理解题目所给概念并熟练应用实数运算法则去完成有关计算是解题关键.7.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10C 解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】8.0.31,3π,27-12- 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( )A .1B .2C .3D .4C 解析:C【分析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,据此逐一判断即可得.【详解】解∵3=2=,∴在所列的83π,1.212 212 221…(每两个1之间依次多一个2)这3个,故选:C .【点睛】 本题主要考查的是无理数的概念,熟练掌握无理数的三种类型是解题的关键.9.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- D 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5B解析:B【分析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.【详解】设正方体的棱长为x ,由题意可知316x =,解得x =,∵332163<<, ∴23<,那么它的棱长在2和3之间.故选:B .【点睛】的范围.二、填空题11.计算(1)22234x +=;(2)38130125x +=(3)2|12|(2)---; (4)(x +2)2=25.(1);(2)x=;(3);(4)【分析】(1)方程整理后利用平方根定义开方即可求出解;(2)先求出x3的值再根据立方根的定义解答;(3)直接利用绝对值的性质平方根定义和负指数幂的性质分别化简得出答解析:(1)12x x ==-2)x=35;(3)12;(4)123,7x x ==-. 【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)先求出x 3的值,再根据立方根的定义解答;(3)直接利用绝对值的性质、平方根定义和负指数幂的性质分别化简得出答案; (4)依据平方根的定义求解即可.【详解】(1)22234x +=,2x²=32,x²=18,,∴12x x ==-(2)38130125x +=, 327125x =-,x=35; (3)21|12|(2)16----- =1-1144-=311442-= (4)(x +2)2=25,(x+2)=±5,x+2=5,x+2=-5,∴123,7x x ==-.【点睛】本题考查了利用平方根和立方根解方程,绝对值的性质和负指数幂的性质,掌握有关性质是解题的关键.12.计算:3011(2)(20043)22-+---【分析】根据运算法则和运算顺序准确计算即可【详解】解:【点睛】本题考查了实数得混合运算掌握运算法则和顺序是解题的关键解析:8-【分析】根据运算法则和运算顺序准确计算即可.【详解】解:3011(2)(20043)22-+--- 11822=-+- 8=-【点睛】本题考查了实数得混合运算,掌握运算法则和顺序是解题的关键.13.如图,A ,B ,C 在数轴上对应的点分别为a ,1-,2,其中1a <-,且AB BC =,则a =_______.【分析】根据题意先求出BC 的长度然后求出a 的值即可得到答案【详解】解:根据题意∴∵∴∴∴;故答案为:【点睛】本题考查了数轴上两点之间的距离以及绝对值的意义解题的关键是掌握数轴的定义正确的求出a 的值解析:22+【分析】根据题意,先求出BC 的长度,然后求出a 的值,即可得到答案.【详解】解:根据题意,(1)1BC =-=, ∴1AB BC ==, ∵1AB a =--, ∴11a --=, ∴2a =-∴22a =-=;故答案为:2+【点睛】本题考查了数轴上两点之间的距离,以及绝对值的意义,解题的关键是掌握数轴的定义,正确的求出a 的值.14.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.5cm3【分析】先根据正方体的体积求出正方体的边长要使它锯成8块同样大小的小正方体木块只需要将正方体的每条棱长平均分为两份即可得到小正方体的棱长即可求出表面积【详解】解:∵一个正方体的木块的体积是∴解析:5cm 3.【分析】先根据正方体的体积求出正方体的边长,要使它锯成8块同样大小的小正方体木块,只需要将正方体的每条棱长平均分为两份即可,得到小正方体的棱长,即可求出表面积.【详解】解:∵一个正方体的木块的体积是3343cm ,∴(cm 3),要将它锯成8块同样大小的小正方体木块,则每个小正方体的棱长为7÷2=3.5(cm 3), ∴每个小正方体的表面积为6×3.52=73.5(cm 3).故答案为73.5cm 3.【点睛】本题考查了立方根.解题的关键是能够通过空间想象得出如何将正方体分成8块同样大小的小正方体木块.15.已知290x ,310y +=,求x y +的值.2或4【分析】根据平方根和立方根的性质计算得到x 和y 的值再结合绝对值的性质计算即可得到答案【详解】∵∴∵∴∴当时=当时=【点睛】本题考查了平方根立方根绝对值的知识;解题的关键是熟练掌握平方根立方根绝解析:2或4【分析】根据平方根和立方根的性质计算,得到x 和y 的值,再结合绝对值的性质计算,即可得到答案.【详解】∵290x∴3x =±∵310y +=∴1y =- ∴当3x =,1y =-时,x y +=312-=当3x =-,1y =-时,x y +=314--=.【点睛】本题考查了平方根、立方根、绝对值的知识;解题的关键是熟练掌握平方根、立方根、绝对值的性质,从而完成求解.16.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______【分析】先根据题意求得发现规律即可求解【详解】解:∵a1=3∴∴该数列为每4个数为一周期循环∵∴a2020=故答案为:【点睛】此题主要考查规律的探索解题的关键是根据题意发现规律 解析:43. 【分析】 先根据题意求得2a 、3a 、4a 、5a ,发现规律即可求解.【详解】解:∵a 1=3 ∴22223a ==--,()321222a ==--,4241322a ==-,523423a ==-, ∴该数列为每4个数为一周期循环,∵20204505÷=∴a 2020=443a =. 故答案为:43. 【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.17.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.或【分析】根据题意得出解方程即可求解【详解】依题意得:∵∴或∴或故答案为:或【点睛】本题考查了乘方的意义解一元一次方程熟练掌握乘方的意义是解题的关键 解析:6或2-【分析】根据题意得出()2216x -=,解方程即可求解.【详解】依题意得:()2216x -=,∵2416=,()2416-=,∴24x -=或24x -=-,∴6x =或2x =-,故答案为:6或2-.【点睛】本题考查了乘方的意义,解一元一次方程,熟练掌握乘方的意义是解题的关键. 18.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.19.规定新运算:()*4a b a ab =+.已知算式()3*2*2x =-,x =_______.【分析】根据新运算可得由得到关于x 的一元一次方程求解即可【详解】解:根据新运算可得∵∴解得故答案为:【点睛】本题考查新定义运算解一元一次方程根据题意得出一元一次方程是解题的关键 解析:43- 【分析】根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,由()3*2*2x =-得到关于x 的一元一次方程,求解即可.【详解】解:根据新运算可得()3*334x x =+,()()2*22440-=⨯-+=,∵()3*2*2x =-,∴()3340x +=,解得43x =-, 故答案为:43-. 【点睛】本题考查新定义运算、解一元一次方程,根据题意得出一元一次方程是解题的关键. 20.请仔细阅读材料并完成相应的任务.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根(提示:59319是一个整数的立方).华罗庚脱口而出答案,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?(1)由3101000=,31001000000=,11000593191000000<<______位数;(2)由59319的个位数字是9______;(3)如果划去59319后面的319得到数59,而3327=,3464=上的数是______.(1)两(2)9(3)3【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9据此可判断;(3)<59<据此可判断【详解】解:(1)∵103=10001003=1 000 000解析:(1)两 (2)9 (3)3.【分析】(1)根据题意可以确定为两位数;(2)只有9的立方的个位数字才是9,据此可判断;(3)33<59<34,据此可判断.【详解】解:(1)∵103=1000,1003=1 000 000,而1000<59319<1000000,∴10100,因此结果为两位数;故答案是:两;(2)因为只有9的立方的个位数字才是9,因此结果的个位数字为9,故答案是:9;(3)∵33<59<343.故答案为:3.【点睛】考查实数的意义,立方根的意义以及立方的尾数特征等知识,理解题意是关键.三、解答题21.计算(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ (2)1110623⎛⎫÷-⨯⎪⎝⎭ (3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭(4+解析:(1)-2;(2)360;(3)4;(4)143. 【分析】(1)先去括号和绝对值,再进行混合运算即可.(2)先将括号内通分运算,再将除法改为乘法,最后计算即可.(3)先去括号,再将除法改为乘法,最后计算即可.(4)分别计算出根式的值,在进行加法运算即可.【详解】(1)121|24|234⎛⎫-+-⨯- ⎪⎝⎭ 121242424234=-⨯+⨯-⨯ 12166=-+-2=-(2)1110623⎛⎫÷-⨯ ⎪⎝⎭ 61061=÷⨯ 1066=⨯⨯360=(3)41(1)(54)3⎛⎫---÷- ⎪⎝⎭11(3)=-⨯-13=+4=(4+=153=- 143= 【点睛】本题考查实数的混合运算.掌握其运算法则是解答本题的关键.22.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:a b = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =. 解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】 (1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算.【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b ) =4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.23.计算:(12)-+(2解析:(1)-2;(2)【分析】 (1)原式去括号合并即可得到结果;(2)首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)原式=2-2=-(2)原式22=+=【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.24.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N .(1)解方程:log x 4=2;(2)求值:log 48;(3)计算:(lg2)2+lg2•1g5+1g5﹣2018解析:(1)x=2;(2)32;(3)-2017【分析】(I)根据对数的定义,得出x2=4,求解即可;(Ⅱ)根据对数的定义求解即可;(Ⅲ)根据log a(M•N)=log a M+log a N求解即可.【详解】解:(I)解:∵log x4=2,∴x2=4,∴x=2或x=-2(舍去)(II)解法一:log48=log4(4×2)=log44+log42=1+12=32;解法二:设log48=x,则4x=8,∴22x=32,∴2x=3,x=32,即log48=32;(Ⅲ)解:(lg2)2+lg2•1g5+1g5﹣2018= lg2•( lg2+1g5) +1g5﹣2018= lg2 +1g5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义和运算法则.25.计算下列各题(1)﹣2;(2)﹣(结果保留2位有效数字).解析:(1);(2)2.6【分析】(1)计算立方根、平方根,再合并即可;(2)根据实数的运算法则和顺序计算即可.【详解】(1)(2)100.2=-⨯ 2 1.732 2.23622≈⨯+÷-2.6≈.【点睛】本题考查了平方根和立方根,熟练掌握相关的运算法则是解题的关键.26.解方程:(1)2810x -=;(2)38(1)27x +=.解析:(1)9x =±;(2)12x =. 【分析】 (1)移项,利用平方根的性质解方程;(2)方程两边同时除以8,然后利用立方根的性质解方程.【详解】(1)2810x -=,移项得:281x =,解得:9x =±;(2)()38127x +=,方程两边同时除以8,得:()32718x +=, ∴312x +=, 解得:31122x =-=. 【点睛】本题考查了平方根和立方根,熟练掌握平方根和立方根的定义与性质是解题关键. 27.计算:(1)2019(1)|2|-(2)[(x ﹣2y )2+(x ﹣2y )(x +2y )﹣2x (2x ﹣y )]÷2x解析:(1)1--2)y x --【分析】(1)先根据正整数指数幂、立方根、平方根、去绝对值化简各项,再进行加减运算即可; (2)先去括号,根据完全平方公式和平方差公式计算后合并同类项,再计算除法即可求解.【详解】(1)原式= 1242-+-+1=-(2)原式=22222444422x xy y x y x xy x ⎡⎤-++-⎣⎦÷-+ ()2222xy x x =-÷-y x =--.【点睛】本题主要考查整式的混合运算,解题的关键是掌握立方根、平方根、绝对值及多项式与单项式的除法法则.28.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.解析:(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =; ∵34<<,c 的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.。
实数易错题一.〔共26小〕1.〔2021?雅安〕9的平方根是〔〕A.3B.3C.±3D.812.〔2021?黔南州〕的平方根是〔〕A.3 B.±3C. D.±3.〔2005?南充〕一个数的平方是4,个数的立方是〔〕A.8 B. 8 C.8或8 D.4或44.〔2003?广西〕m≠n,按以下A,B,C,D的推理步,最后推出的是m=n,其中出的推理步是〔〕C.∴mn=nm D.∴m=nA.∵〔mn〕2=〔nm〕B.∴=25.以下出的“25的平方根是±5〞的表达式中,正确的选项是〔〕A.=±5B. = 5 C.±=±5D. =56.数的平方根〔〕A.a B.±a C.±D.±7.〔通州区二模〕,那么〔a+b〕2021的〔〕A.1B.1C.32021D.320218.的算平方根与2的相反数的倒数的是〔〕A.4B.16C.D.9.〔永州〕以下判断正确的选项是〔〕B.2<+<3C.1<<2D.4<<5A.<<210.〔2021?瑞安市模〕以下各中,最小的数是〔〕A.3B.0C.D .11.在数、、0、、3.1415、π、、2.123122312223⋯中,无理数的个数〔〕A.2个B.3个C.4个D.5个12.以下法中正确的选项是〔〕A.根号的数是无理数B.无理数不能在数上表示出来C.无理数是无限小数 D.无限小数是无理数13.估算的是在〔〕A.2与3之B.3与4之C.4与5之D.5与6之114.〔2004?富阳市模〕数上有两点 A、B分表示数a、b,段AB的度是〔〕A.a b B.a+b C.|a b| D.|a+b|15.在中无理数有〔〕个.A.3个B.4个C.5个D.616.数,,π,,0.2021020002⋯〔每两个2之依次增加一个0〕中,无理数的个数是〔〕A.2个B.3个C.4个D.5个17.在数,0,,3.14,,,0,,0.03745,π,,3.14,2.123122312233中,无理数有〔〕A.2B.3C.4D.518.一个立方体的体是9,它的棱是〔〕A.3B.3C.D.19.以下句:①1是1的平方根.②根号的数都是无理数.③1的立方根是1.④的立方根是2.⑤〔2〕2的算平方根是2.⑥125的立方根是±5.⑦有理数和数上的点一一.其中正确的有〔〕A.2个B.3个C.4个D.5个20.的平方根〔〕A.±8B.±4C.±2D.4 21.假设x2=〔3〕2,y327=0,x+y的是〔〕A.0B.6C.0或6D.0或622.使最大的整数,a的〔〕A.±5B.5C.5D.不存在23.以下算正确的选项是〔〕A.B.C.D.24.两个无理数的和,差,,商一定是〔〕A.无理数B.有理数C.0D.数25.化的果是〔〕A.B.C.D.26.假设|a |+〔b+1〕2=0,的是〔〕2A. B. C.D.二.填空题〔共3小题〕27.假设〔x﹣15〕2=169,〔y﹣1〕3=﹣0.125,那么= _________ .28.〔2021?咸宁模拟〕: a和b都是无理数,且a≠b,下面提供的6个数a+b,a﹣b,ab,,ab+a﹣b,ab+a+b可能成为有理数的个数有_________ 个.29.的平方根与﹣的立方根的积为_________ .三.解答题〔共1小题〕30.计算:﹣+ + .32021年11月安琪儿的初中数学组卷参考答案与试题解析一.选择题〔共26小题〕1.〔2021?雅安〕9的平方根是〔〕A.3 B.﹣3 C.±3D.81考点:平方根.分析:如果一个非负数x的平方等于a,那么x是a是算术平方根,根据此定义解题即可解决问题.解答:解:∵〔±3〕2=9,∴9的平方根是±3.应选C.点评:此题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.〔2021?黔南州〕的平方根是〔〕A.3B.±3C.D.±考点:算术平方根;平方根.分析:首先根据平方根概念求出=3,然后求3的平方根即可.解答:解:∵=3,∴的平方根是±.应选D.点评:此题主要考查了平方根、算术平方根概念的运用.如果x2=a〔a≥0〕,那么x是a的平方根.假设a>0,那么它有两个平方根并且互为相反数,我们把正的平方根叫a的算术平方根;假设a=0,那么它有一个平方根,即0的平方根是0,0的算术平方根也是0,负数没有平方根.3.〔2005?南充〕一个数的平方是4,这个数的立方是〔〕A.8B.﹣8C.8或﹣8D.4或﹣4考点:平方根;有理数的乘方.分析:首先利用平方根的定义先求出这个数,再求其立方即可.解答:解:∵〔±2〕2=4,∴这个数为±2,∴〔±2〕3=±8.应选C.点评:此题考查了平方根的定义和求一个数的立方.注意一个正数有两个平方根,它们互为相反数.4.〔2003?广西〕m≠n,按以下A,B,C,D的推理步骤,最后推出的结论是m=n,其中出错的推理步骤是〔〕A.∵〔m﹣n〕2B.C.∴m﹣n=n﹣m D.∴m=n2=〔n﹣m〕∴=B考点:平方根.C专题:计算题.D分析:A、根据平方的定义即可判定;E、根据平方根的定义即可判定;4C、根据平方根的定义即可判定;、根据等式的性质即可判定.解答:解:A、〔m﹣n〕2=〔n﹣m〕2是正确的,应选项正确;B、 = 正确,应选项正确;C、只能说|m﹣n|=|n﹣m|,应选项错误;D、由C可以得到D,应选项正确.应选C.点评:此题主要考查了学生开平方的运算能力,也考查了学生的推理能力.5.以下给出的“25的平方根是±5〞的表达式中,正确的选项是〔〕A.=±5B.=﹣5C.±=±5D.=5考点:算术平方根.分析:根据平方根的定义,一个a数平方后等于这个数,那么它就是这个数的平方根,即可得出答案.解答:解:∵“25的平方根是±5〞,根据平方根的定义,即可得出±=±5.应选C.点评:此题主要考查了平方根的定义,根据平方根的定义直接得出答案是解决问题的关键.6.实数的平方根为〔〕A.a B.±a C.±D.±考点:平方根.专题:计算题.分析:首先根据算术平方根的定义可以求得=|a|,再利用绝对值的定义可以化简|a|即可得到结果.解答:解:∵当a为任意实数时,=|a|,而|a|的平方根为.∴实数的平方根为.应选D.点评:此题主要考查了平方根的性质,注意此题首先利用了=|a|,然后要注意区分平方根、算术平方根的概念.7.〔2021?通州区二模〕,那么〔a+b〕2021的值为〔〕A.﹣1B.1C.﹣32021D.32021考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:此题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0〞解出a、b的值,再代入原式即可.解答:解:依题意得:a+2=0,b﹣1=0,a=﹣2,b=1,a+b〕2021=〔﹣1〕2021=1.应选B.点评:此题考查了非负数的性质,初中阶段有三种类型的非负数:〔1〕绝对值;52〕偶次方;3〕二次根式〔算平方根〕.当它相加和0,必足其中的每一都等于0.根据个可以求解目.8.的算平方根与2的相反数的倒数的是〔〕A.4B.16C.D.考点:算平方根.分析:首先根据算平方根的定求出的,然后利用相反数、倒数的定即可求出果.解答:解:∵的算平方根2,2的相反数的倒数,∴的算平方根与2的相反数的倒数的是.故C.点:此主要考了算平方根的定,算平方根的概念易与平方根的概念混淆而致.弄清概念是解决本的关.9.〔2021?永州〕以下判断正确的选项是〔〕A.<<2B.2<+<3C.1<<2D.4<<5考点:数大小比.分析:先每一的无理数行估算,再每一行逐一比即可.解答:解:∵≈1.7,≈1.4,≈2.2,∴A、1.5<1.7<2,即<<2,故正确;B、∵+≈1.7+1.4=3.1,∴2<+<4,故;C、∵≈2.21.7=0.5,∴1<<2,故;D、∵×= ≈3.9,∴2<<6,故.故A.点:此主要考了数的大小的比,比,解答此的关是无理数行估算,再根据其和差行比.10.〔2021?瑞安市模〕以下各中,最小的数是〔〕A.3B.0C.D.考点:数大小比.:推理填空.分析:先根据数的大小比法行比,再求出答案即可.解答:解:∵3<<0<,∴最小的数是3,故A.点:本考了数的大小比法的用,数的大小比法是:数都小于0,正数都大于0,正数大于一切数,两个数,其大的反而小,目比典型,是一道比容易出的目.11.在数、、0、、3.1415、π、、2.123122312223⋯中,无理数的个数〔〕A.2个B.3个C.4个D.5个6考点:无理数.:推理填空.分析:根据无理数的意:①含π的;②开方开不尽的根式;③一些有律的数,判断即可.解答:解:无理数有、、π、2.123122312223⋯,共4个.故C.点:本考了无理数的意的理解和运用,关是能正确判断一个数是否是无理数.12.以下法中正确的选项是〔〕A.根号的数是无理数B.无理数不能在数上表示出来C.无理数是无限小数 D.无限小数是无理数考点:无理数.:推理填空.分析:出反例如,循小数 1.333⋯,即可判断A、D;根据数上能表示任何一个数即可判断B;根据无理数的定即可判断C.解答:解:A、如=2,不是无理数,故本;、无理数都能在数上表示出来,故本;C、无理数是无限不循小数,即无理数都是无限小数,故本正确;D、如 1.33333333⋯,是无限循小数,是有理数,故本;故C.点:本考了无理数的意的理解和运用,无理数包括:①开方开不尽的数,②含π的,③一些有律的数.13.估算的是在〔〕A.2与3之B.3与4之C.4与5之D.5与6之考点:估算无理数的大小.:算.分析:根据根式的性得出<<,求出、的,代入即可.解答:解:∵<<,4<<5,在4和5之.故C.点:本考了有理数的大小比的用,主要考学生能否知道的范.14.〔2004?富阳市模〕数上有两点 A、B分表示数a、b,段AB的度是〔〕A.a b B.a+b C.|a b| D.|a+b|考点:数与数.分析:根据数上两点之的距离公式即可解决.解答:解:根据数上两点之的距离公式可知,段AB的度是|a b|.故C.点:此主要考了数与数之关系,很,解答此的关是熟知数上两点之的距离公式:7|AB|=|ab|.15.在中无理数有〔〕个.A.3个B.4个C.5个D.6考点:无理数.分析:根据无理数、有理数的定即可判定求解.解答:解:在中,然,=14、3.14、是有理数;0.333⋯是循小数是有理数;是分数,是有理数;所以,在上一列数中,、、0.58588558885⋯是无理数,共有3个;故A.点:此主要考了无理数的定.注意根号的要开不尽方才是无理数,无限不循小数无理数.如π,,0.8080080008⋯〔每两个8之依次多1个0〕等形式.16.数,,π,,0.2021020002⋯〔每两个2之依次增加一个0〕中,无理数的个数是〔〕A.2个B.3个C.4个D.5个考点:无理数.:推理填空.分析:无理数包括三方面的数:①含π的;②开方开不尽的根式;③一些有律的数,根据以上判断即可.解答:解:无理数有,,π,0.2021020002⋯,共4个,故C.点:本考了无理数的定的理解和运用,理解无理数的定是解此的关,无理数是指无限不循小数,包括三方面的①含π的;②开方开不尽的根③一些有律的数.型好,度适中.数:式;17.在数,0,,3.14,,,0,,0.03745,π,,3.14,2.123122312233中,无理数有〔〕A.2B.3C.4D.5考点:无理数.:推理填空.分析:根据无理数的定〔包括①含π的②开方开不尽的数,③一些有律的数〕行判断即可.解答:解:无理数有,,π,共3个,故B.点:本考了无理数的定的理解,关是能判断一个数是否是无理数.18.一个立方体的体是9,它的棱是〔〕A.3B.3C.D.8考点:立方根.专题:常规题型.分析:根据立方根的定义解答即可.解答:解:设立方体的棱长为a,那么a3=9,∴a=.应选D.点评:此题主要考查了立方体的体积公式与立方根的概念,是根底题,但计算时容易出错.19.以下语句:①﹣1是1的平方根.②带根号的数都是无理数.③﹣1的立方根是﹣1.④的立方根是2.⑤〔﹣2〕2的算术平方根是2.⑥﹣125的立方根是±5.⑦有理数和数轴上的点一一对应.其中正确的有〔〕A.2个B.3个C.4个D.5个考点:无理数;平方根;算术平方根;立方根;实数与数轴.专题:推理填空题.分析:根据平方根的意义求出±〔a≥0〕,即可判断①,根据无理数的意义即可判断②;根据立方根的意义求出,即可判断③④⑥,根据算术平方根求出〔a≥0〕,即可判断⑤;根据实数和数轴上的点能建立一一对应关系,即可判断⑦.解答:解:1的平方根是±1,∴①正确;如=2,但是有理数,∴②错误;﹣1的立方根是﹣1,∴③正确;=2,2的立方根是,∴④错误;〔﹣2〕2=4,4的算术平方根是=2,∴⑤正确;125的立方根是﹣5,∴⑥错误;实数和数轴上的点一一对应,∴⑦错误;∴正确的有3个.应选B.点评:此题考查了对无理数,平方根,算术平方根,立方根,实数和数轴等知识点的理解和运用,关键是考查学生能否根据这些定义求出数的平方根、立方根、算术平方根等等.20.的平方根为〔〕A.±8B.±4C.±2D.4考点:立方根;平方根.分析:首先根据立方根的定义化简,然后根据平方根的定义即可求出结果.解答:解:∵=4,又∵〔±2〕2=4,∴的平方根是±2.应选C.点评:此题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.921.假设x2=〔﹣3〕2,y3﹣27=0,那么x+y的值是〔〕A.0B.6C.0或6D.0或﹣6考点:立方根;平方根.分析:先根据平方根和立方根的概念求出x、y的值,然后代入所求代数式求解即可.解答:解:由题意,知:x2=〔﹣3〕2,y3=27,即x=±3,y=3,∴x+y=0或6.应选C.点评:此题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根是0.22.使为最大的负整数,那么a的值为〔〕A.±5B.5C.﹣5D.不存在考点:立方根.分析:由于使为最大的负整数,那么其中的被开方数必须是一个整数的立方,利用立方根的定义和绝对值意义来解即可.解答:解:∵最大负整数为﹣1,∴=﹣1,∴a=±5应选A.点评:此题主要考查了立方根的定义和绝对值的性质,解题关键利用最大负整数为﹣1建立含有绝对值的方程,求出a的值.23.以下计算正确的选项是〔〕A.B.C.D .考点:立方根.分析:A、B、C、D都可以直接根据立方根的定义求解即可判定.解答:解:A、0.53=0.625,应选项错误;、应取负号,应选项错误;C、∵等于,∴的立方根等于,应选项正确;、应取正号,应选项错误.应选C点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.24.两个无理数的和,差,积,商一定是〔〕A.无理数B.有理数C.0 D.实数考点:实数的运算.10分析:根据无理数的加减乘除运算的法那么和无理数的定义即可判定.解答:解:因为+〔﹣〕=0,+=2,所以其和可以为有理数,也可为无理数;因为﹣=0,﹣2=﹣,所以其差可以为有理数,也可为无理数;因为=2,=,所以其积可以为有理数,也可为无理数;因为=1,=,所以其商可以为有理数,也可为无理数.所以两个无理数的和,差,积,商一定是实数.应选D.点评:此题主要考查了实数的运算及无理数的定义,也考查了学生的综合应用能力,要注意举实例的方法.25.化简的结果是〔〕A. B. C.D.考点:实数的运算.分析:在进行根式的运算时要先根据最简二次根式和最简三次根式的性质化简,再计算可使计算简便.解答:解:原式=1﹣+2=3﹣.应选B.点评:此题主要考查了实数的运算,解题关键首先化简去掉根号.26.假设|a﹣|+〔b+1〕2=0,那么的值是〔〕A. B. C.D.考点:实数的运算;非负数的性质:绝对值;非负数的性质:偶次方.专题:计算题.分析:根据非负整数的性质得到a﹣ =0,b+1=0,那么a= ,b=﹣1,然后把它们代入计算即可.解答:解:∵|a﹣|+〔b+1〕2=0,a﹣=0,b+1=0,a=,b=﹣1,∴×2=×2=2.应选A.点评:此题考查了实数的运算:先进行乘法运算,再进行乘除运算,然后进行加减运算;有括号先算括号.也考查了非负整数的性质.二.填空题〔共3小题〕27.假设〔x﹣15〕2=169,〔y﹣1〕3=﹣0.125,那么=1或3.考点:实数的运算.分析:先根据平方根、立方根的定义解的两个方程求出x、y的值,然后再代值求解.解答:解:方程〔x﹣15〕2=169两边开平方得x﹣15=±13,解得:x1=28,x2=2,3方程〔y﹣1〕=﹣0.125两边开立方得11当x=28,y=0.5时,=3;当x=2,y=0.5时,=1.故答案为:1或3.点评:此题主要考查了直接开平方法,直接开立方法的运用,也考查了实数的运算,注意两种开方的结果的不同.28.〔2021?咸宁模拟〕: a和b都是无理数,且a≠b,下面提供的6个数a+b,a﹣b,ab,,ab+a﹣b,ab+a+b可能成为有理数的个数有 6 个.考点:实数的运算.分析:由于a和b都是无理数,且a≠b,可以由此取具体数值,然后根据实数的运算顺序进行计算即可判定.解答:解:当a=,b=﹣,时,a+b=0,ab=﹣2,ab+a+b=﹣2,=﹣1,当a=+1,b=﹣1时,a﹣b=+1﹣+1=2,ab+a﹣b=3+2=5.故可能成为有理数的个数有6个.点评:此题主要考查了实数的运算.解题关键注意无理数的运算法那么与有理数的运算法那么是一样的.29.的平方根与﹣的立方根的积为﹣1或1 .考点:实数的运算.专题:计算题.分析:先求出,再根据平方根的定义求解,然后根据立方根的定义求出﹣的立方根,最后讨论求解即可.解答:解:∵=4,∴的平方根是±2,∵〔﹣〕3=﹣,∴﹣的立方根为﹣,∵2×〔﹣〕=﹣1,﹣2×〔﹣〕=1,∴的平方根与﹣的立方根的积为﹣1或1.故答案为:﹣1或1.点评:此题主要考查了平方根与立方根的定义,注意先求出的值,这也是此题容易出错的地方.三.解答题〔共1小题〕30.计算:﹣+ + .考点:实数的运算.专题:计算题.分析:分别进行开立方及开平方的运算,然后合并即可.解答:解:原式=﹣〔﹣2〕+5+2=9.点评:此题考查了实数的运算,属于根底题,关键是掌握开平方及开立方得运算法那么.12。
专题04 实数易错题之选择题(30题)Part1 与 平方根 有关的易错题1.(2020·广东汕头市·的算术平方根为( )A . BC .2±D .2【答案】B 【解析】的值,再继续求所求数的算术平方根即可.详解:=2,而2, 故选B .名师点拨:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误.2.(2020·河南许昌市·七年级期末)下列各式中,正确的是( )A 3=-B .3=-C 3=±D 3±【答案】B 【提示】如果一个非负数x 的平方等于a ,那么x 是a 的算术平方根,根据此定义即可求出结果. 【详解】解:A 3= ,故本选项错误;B 、3=-,故本选项正确;C 3= ,故本选项错误;D 3= ,故本选项错误; 故选B . 【名师点拨】本题考查算术平方根的定义,主要考查学生的理解能力和计算能力.3.(2020·自贡市期中)已知5a =7=,且a b a b +=+,则-a b 的值为( )A .2或12B .2或12-C .2-或12D .2-或12-【答案】D 【详解】根据a =5,得a 5,b 7=±=±,因为a b a b +=+,则a 5,b 7=±=,则-a b =5-7=-2或-5-7=-12. 故选D.4.(2020·广西防城港市·七年级期中)若30,a -=则+a b 的值是( ) A .2 B .1 C .0D .1-【答案】B 【解析】试题提示:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.5.(2020·安徽铜陵市·七年级期末)若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8【答案】D 【提示】根据单项式的定义可得8m x y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【名师点拨】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数. 6.(2020·安徽阜阳市·七年级期末)面积为4的正方形的边长是( ) A .4的平方根 B .4的算术平方根 C .4开平方的结果 D .4的立方根【答案】B 【提示】已知正方形面积求边长就是求面积的算术平方根. 【详解】解:面积为44的算术平方根; 故选B . 【名师点拨】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.7.(2020·( ) A .±3 B .3C .9D .±9【答案】A 【提示】根据算术平方根、平方根的定义即可解决问题. 【详解】9=,9的平方根3±. 故选:A . 【名师点拨】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型. 8.(2020·浙江杭州市期末)下列说法正确的是()A .116的平方根是14B .16-的算术平方根是4C .2(4)-的平方根是4-D .0的平方根和算术平方根都是0【答案】D 【提示】根据一个正数有两个平方根,且这两个平方根互为相反数及平方根的定义即可判断各选项. 【详解】 解:A 、116的平方根为±14,故本选项错误; B 、-16没有算术平方根,故本选项错误; C 、(-4)2=16,16的平方根是±4,故本选项错误; D 、0的平方根和算术平方根都是0,故本选项正确. 故选D . 【名师点拨】本题考查了平方根和算术平方根的定义,一个正数有两个平方根,其中正的平方根称为算术平方根,负数没有平方根,0的平方根和算术平方根都是0.9.(2020·河北邯郸市七年级期中)下列说法正确的是( ) A .-5是25的平方根B .25的平方根是5C .-5是(-5)2的算术平方根D .±5是(-5)2的算术平方根【答案】A 【解析】试题提示:A 、B 、C 、D 都可以根据平方根和算术平方根的定义判断即可. 解:A 、﹣5是25的平方根,故选项正确; B 、25的平方根是±5,故选项错误;C 、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误;D 、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误. 故选A .10.(2020·江西南昌市·七年级期末)若2m -4与3m -1是同一个数的平方根,则m 的值是( ) A .-3 B .-1C .1D .-3或1【答案】D 【提示】根据平方根的性质列方程求解即可; 【详解】当24=31m m --时,3m =-; 当24310m m +=--时,1m =; 故选:D. 【名师点拨】本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.Part2 与 立方根 有关的易错题11.(2020·内蒙古乌兰察布市·七年级期末)64的立方根是( ) A .4 B .±4 C .8 D .±8【答案】A 【解析】试题提示:∵43=64,∴64的立方根是4, 故选A考点:立方根.12.(2020·)A.±2B.±4C.4D.2【答案】D【提示】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【名师点拨】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义. 13.(2020·河南周口市·七年级期末)有理数-8的立方根为()A.-2B.2C.±2D.±4【答案】A【提示】利用立方根定义计算即可得到结果.【详解】解:有理数-8-2故选A.【名师点拨】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.14.(2020·右玉县期中)立方根等于它本身的有( )A.0,1B.-1,0,1C.0,D.1【答案】B【提示】根据立方根性质可知,立方根等于它本身的实数0、1或-1.【详解】解:∵立方根等于它本身的实数0、1或-1.故选B.【名师点拨】本题考查立方根:如果一个数x的立方等于a,那么这个数x就称为a的立方根,例如:x3=a,x就是a的立方根;任意一个数都有立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0.15.(2020·凉州区期末)若,则x和y的关系是().A.x=y=0B.x和y互为相反数C.x和y相等D.不能确定【答案】B【解析】提示:先移项,再两边立方,即可得出x=-y,得出选项即可.详解:,=∴x=-y,即x、y互为相反数,故选B.名师点拨:考查了立方根,相反数的应用,解此题的关键是能得出x=-y.16.(2020·武威市期中)一个正方体的水晶砖,体积为100 cm3,它的棱长大约在( )A.4 cm~5 cm之间B.5 cm~6 cm之间C.6 cm~7 cm之间D.7 cm~8 cm之间【答案】A【解析】可以利用方程先求正方体的棱长,然后再估算棱长的近似值即可解决问题.解:设正方体的棱长为x,由题意可知x3=100,解得x=,由于43<100<53,所以4<<5.故选A.此题是考查估算无理数的大小在实际生活中的应用,“夹逼法”估算方根的近似值在实际生活中有着广泛的应用,我们应熟练掌握.17.(2020·凉州区期末)下列各组数中互为相反数的是( )A .2-与2B .2-C .2-与12-D .2-【答案】D【提示】根据相反数的性质判断即可; 【详解】A 中-2=2,不是互为相反数;B 2=-,不是相反数;C 中两数互为倒数;D 中两数互为相反数; 故选:D . 【名师点拨】本题主要考查了相反数的性质应用,准确提示是解题的关键.18.(2020·山东滨州市·七年级期中)一个数的算术平方根与它的立方根的值相同,则这个数是( ) A .1 B .0或1 C .0 D .非负数【答案】B 【提示】根据立方根和平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题. 【详解】∵立方根等于它本身的实数0、1或−1; 算术平方根等于它本身的数是0和1.∴一个数的算术平方根与它的立方根的值相同的是0和1. 故选:B. 【名师点拨】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.19.(2020·浙江杭州市·七年级期末)若24,a =1=-,则+ab 的值是( )A .1B .-3C .1或-3D .-1或3【答案】C 【提示】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可. 【详解】解:24,a =1,=-2,a ∴=±1b =-,∴当2,a =-1b =-时,213a b +=--=-;∴当2,a =1b =-时,211a b +=-=. 故选:C . 【名师点拨】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键.20.(2020·武威市期中)若a b a+b 的值是( ) A .4 B .4或0C .6或2D .6【答案】C 【提示】由a a=±2,由b b=4,由此即可求得a+b 的值. 【详解】∵a∴a=±2,∵b∴b=4,∴a+b=2+4=6或a+b=-2+4=2. 故选C . 【名师点拨】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.Part3 与 实数 有关的易错题21.(2020·重庆市期末)黄金分割数12是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间 D .在1.4和1.5之间【答案】B 【提示】根据4.84<5<5.29,可得答案. 【详解】 ∵4.84<5<5.29, ∴, ∴1<1.3, 故选B . 【名师点拨】是解题关键.22.(2020·湖南湘潭市七年级期中)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>【答案】B 【解析】提示:观察数轴得到实数a ,b ,c 的取值范围,根据实数的运算法则进行判断即可. 详解:∵43a -<<-,∴34a <<,故A 选项错误; 数轴上表示b 的点在表示c 的点的左侧,故B 选项正确; ∵0a <,0c >,∴0ac <,故C选项错误;∵0a <,0c >,a c >,∴0a c +<,故D 选项错误. 故选B.名师点拨:主要考查数轴、绝对值以及实数及其运算.观察数轴是解题的关键.23.(2020·的值在( ) A .2到3之间B .3到4之间C .4到5之间D .5到6之间【答案】B 【提示】利用”夹逼法“+1的范围. 【详解】 ∵4 < 6 < 9 , <,即23<<,∴34<<, 故选B.24.(2020·甘南县期末)下列各数中,13.14159 0.131131113 7π⋅⋅⋅--,,,无理数的个数有 A .1个 B .2个C .3个D .4个【答案】B 【解析】试题提示:无限不循环小数为无理数,由此可得出无理数的个数,因此,由定义可知无理数有:0.131131113…,﹣π,共两个.故选B .25.(2020·广东河源市七年级期末)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .a b <C .0a b +>D .0ab< 【答案】D 【提示】先由数轴上a ,b 两点的位置确定a ,b 的取值范围,再逐一验证即可求解. 【详解】由数轴上a ,b 两点的位置可知-2<a <-1,0<b <1, 所以a<b ,故A 选项错误; |a|>|b|,故B 选项错误; a+b<0,故C 选项错误;0ab<,故D 选项正确, 故选D. 【名师点拨】本题考查了实数与数轴,实数的大小比较、实数的运算等,根据数轴的特点判断两个数的取值范围是解题的关键. 26.(2020·河北保定市·七年级期中)有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.B.C.D.8【答案】A【解析】解:由题中所给的程序可知:把64取算术平方根,结果为8,∵8是有理数,∴∴y=.故选A.27.(2020·山东枣庄市·七年级期中)现定义一种新运算:a★b=ab+a-b,如:1★3=1×3+1-3=1,那么(-2)★5的值为()A.17B.3C.13D.-17【答案】D【提示】根据新运算的定义即可得到答案.【详解】∵a★b=ab+a﹣b,∴(﹣2)★5=(﹣2)×5﹣2﹣5=﹣17.故选D.【名师点拨】本题考查了基本的知识迁移能力,运用新定义,求解代数式即可,要灵活运用所学知识,要认真掌握.28.(2020·的点落在()A.段①B.段②C.段③D.段④【答案】C【解析】试题提示:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵7.84<8<8.41,∴2.82<8<2.92,∴2.82.9,③段上.故选C考点:实数与数轴的关系29.(2020·北京市期末)请你观察、思考下列计算过程:因为112=121,:,因为1112=12321=111…( )A .111111B .1111111C .11111111D .111111111 【答案】D【解析】提示:被开方数是从1到n 再到1(n≥1的连续自然数),算术平方根就等于几个1.详解:=11=111…,…,111 111 111.故选D .名师点拨:本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.30.(2020·浙江杭州市·七年级期末)如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形,第1幅图形中“•”的个数为1a ,第2幅图形中“•”的个数为2a ,第3幅图形中“•”的个数为3a ,…,以此类推,则123191111a a a a ++++…的值为( )A .2021B .6184C .589840D .431760【答案】C【提示】根据给定几幅图形中黑点数量的变化可找出其中的变化规律“()2n a n n =+(n 为正整数)”,进而可求出111122n a n n ⎛⎫=- ⎪+⎝⎭,将其代入123191111a a a a ++++…中即可求得结论. 【详解】解:∵第一幅图中“•”有1133a =⨯=个;第二幅图中“•”有2248a =⨯=个;第三幅图中“•”有33515a =⨯=个;∴第n 幅图中“•”有()2n a n n =+(n 为正整数)个 ∴111122n a nn ⎛⎫=- ⎪+⎝⎭∴当19n =时123191111a a a a ++++…11113815399=++++11111324351921=++++⨯⨯⨯⨯1111111111112322423521921⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1111111112324351921⎛⎫=⨯-+-+-++- ⎪⎝⎭11111222021⎛⎫=⨯+-- ⎪⎝⎭589840=.故选:C【名师点拨】此题考查图形的变化规律,找出图形之间的联系,找出规律解决问题.。
实数类型一:平方根1.下列判断中,错误的是()A.﹣1的平方根是±1 B.﹣1的倒数是﹣1C.﹣1的绝对值是1 D.﹣1的平方的相反数是﹣1考点:平方根;相反数;绝对值;倒数。
专题:计算题。
分析:A、利用平方根的定义即可判定;B、利用倒数定义即可判定;C、利用绝对值的定义即可判定;D、利用相反数定义即可判定.解答:解:A、负数没有平方根,故A说法不正确;B、﹣1的倒数是﹣1,故选项正确;C、﹣1的绝对值是1,故选项正确;D、﹣1的平方的相反数是﹣1,故选项正确.故选A.点评:本题考查基本数学概念,涉及平方根、倒数、绝对值等,要求学生熟练掌握.变式:2.下列说法正确的是()A.是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0 C.72的平方根是7D.负数有一个平方根考点:平方根。
专题:计算题。
分析:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.可据此进行判断.解答:解:A、是0.5的平方,故选项错误;B、∵任何一个正数有两个平方根,它们互为相反数,∴这两个平方根之和等于0,故选项正确;C、∵72的平方根是±7,故选项错误;D、∵负数没有平方根,故选项错误.故选B.点评:此题主要考查了平方根的概念,属于基础知识,难度不大.3.如果一个数的平方根等于这个数本身,那么这个数是()A.1 B.﹣1 C.0 D.±1考点:平方根。
专题:计算题。
分析:由于如何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.解答:解:∵±=±0=0,∴0的平方根等于这个数本身.故选C.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.类型二:算术平方根1.的算术平方根是()A.±81 B.±9 C.9 D.3考点:算术平方根。
分析:首先求出的结果,然后利用算术平方根的定义即可解决问题.解答:解:∵=9,而9的算术平方根是3,∴的算术平方根是3.故选D.点评:本题考查的是算术平方根的定义.一个非负数的非负平方根叫做这个数的算术平方根.正数的平方根是正数.特别注意:应首先计算的值.变式:2.的平方根是()A.3 B.±3 C.D.±考点:算术平方根;平方根。
《实数》易错题1____________. 2、"255"±的平方根是的数学表达式是( ).5=± 5= (C) 5=± 5=-3 1.414=, ==____________.4=____________;=__________=__________。
54=, 则m =______________1a =-, 则a 的取值范围是____________;62m =-, 则m 的取值范围是_________________.7a >, 则a 的取值范围是________________。
8、如果x 是()23-的算术平方根, y , 的值.9、已知()24212103x --=, 求x 的值.10、已知10a ==且a b b a -=-, 的值.11、已知a , b , 求a b +的值.12、若2729x =, 则x =_________; 若()224x =-, 则x =____________.13、当x _时, ; 当x ____时x =;当x __时有意义;当x __时,14、已知21x -的负的平方根是3-, 31x y +-的算术平方根是4, 求2x y +的平方根.15、已知99,a b , 求335a b --+得算数平方根.17、一个数的平方根等于它本身,那么这个数是______________.一个数的算术平方根等于它本身,那么这个数是______________.一个数的立方根等于它本身,那么这个数是______________。
19、下列语句及写成的式子正确的是( ).(A)8是64的平方根,8= (B)8±是64的平方根,8=(C) 8±是64的平方根,8=± (D)8是()28-的算术平方根,8=22、已知m 满足1m m -+=,求m 的值.24,最大的负整数m 的值___________.261±, 求x 的值.27=________________;的立方根是___________。
第6章《实数》易错题汇编一.选择题(共10小题)1.的平方根是()A.±3B.3C.±9D.92.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c4.的算术平方根是()A.2B.±2C.D.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b7.若a,且a、b是两个连续整数,则a+b的值是()A.1B.2C.3D.48.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.10.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根二.填空题(共4小题)11.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为.12.一个正数的平方根分别是x+1和x﹣5,则x=.13.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).14.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为(用“<”号连接).三.解答题(共2小题)15.化简求值:(),其中a=2+.16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.试题解析1.的平方根是()A.±3B.3C.±9D.9解:∵,9的平方根是±3,故选:A.2.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个解:据无理数定义得有,π和是无理数.故选:B.3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c 解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.4.的算术平方根是()A.2B.±2C.D.解:=2,2的算术平方根是.故选:C.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解:∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∵=0.6,=0.65,∴0.6<<0.65.所以介于0.6与0.7之间.故选:C.6.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选:A.7.若a,且a、b是两个连续整数,则a+b的值是()A.1B.2C.3D.4解:∵的整数部分是2,∴0<﹣2<1,∵a、b是两个连续整数,∴a=0,b=1,∴a+b=1,故选:A.8.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选:A.9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.解:由图表得,64的算术平方根是8,8的算术平方根是;故选:D.10.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根解:∵方程(x﹣5)2=19的两根为a和b,∴a﹣5和b﹣5是19的两个平方根,且互为相反数,∵a>b,∴a﹣5是19的算术平方根,故选:C.11.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为4.解:∵3<<4,∴3+1<+1<4+1,∴4<+1<5,∴[+1]=4,故答案为:4.12.一个正数的平方根分别是x+1和x﹣5,则x=2.解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.13.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.14.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b <﹣a<a<﹣b(用“<”号连接).解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b15.化简求值:(),其中a=2+.解:原式=[+]•+=•+==,当a=2+时,原式=+1.16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.。
找家教,到 阳光家教网 全国最大家教平台
一、填空题:
1.. 在7.5-,4,-π,0.15 ,722
,23
中,无理数有 个;
2.62的立方根是______.
3.平方根是2±的数是_____________
4.(-4)2的算术平方根是______, 5. 平方根等于它本身的数是 .
6.13-x 有意义,则x 的取值范围是________.
7. 若0942=-x ,则x=
8.15-的相反数是 .
9.25的平方根是__________.
10.16的四次方根是 。
11.近似数0.0250有 个有效数字。
12.330-的小数部分是
13.计算:32
8-=
14.在数轴上表示3-
的点离原点的距离是 。
15.25-的绝对值是 。
16.在数轴上点A 、点B 对应的数分别是52-和3, 则A 、B 两点之间的距离为______.
17.若y x 262++
-=0,则x +y 的立方根是________. 二、选择题:
18. 22
不是…………………………………………………………( )
A .实数
B .小数
C .无理数
D .分数
19.下列说法中正确的是……………………………………………( )
A .带根号的数是无理数
B .无限小数是无理数 北京家教 找家教上阳光家教网
找家教,到 阳光家教网 全国最大家教平台
D .无理数包括正无理数、零、负无理数
20.在数轴上,原点和原点左边的所有点表示的数是………………..( )
A .零和负有理数
B .负实数
C .负有理数
D .零和负实数 21.a 、b 是两个实数,在数轴上的位置如图所示,下面结论正确的是…( )
A .
B .
C .
D . a 、b 互为相反数
22.若a -有意义,则a 是……………………………………………( )
A .不存在
B .非正数
C .非负数
D .负数
23.下列式子正确的是…………………………………………………..( )
A .
B .
C .
D .
24.下列各式正确的是…………………………………………………..( )
A .
B .
C .
D . 25.已知
为实数,那么下列结论中正确的是……………….( ) A .若 ,则 B . ,则
C .若 ,则
D .若 ,则
26.若11a a -=-,则a 的取值范围为………………………….( )
A .1a ≥
B .1a ≤
C .1a >
D .1a <
27.若a 与它的绝对值之和为0,则
的值是….( ) A .-1 B .
C .
D . 1 三、计算题: 28.
0213)13()41(512--+-- 29.312121)425(-
北京家教 找家教上阳光家教网
32..化简:2)23(31-+-
33。
化简:25101222+-++-x x x x
34. 323234
632⨯÷ 35. 结果用幂的形式表示:4341328⨯
36.利用幂的性质计算:
(1)
64384⨯ (2)662284÷⨯
(3)884643÷
⨯ (4)35333913⨯-÷
北京家教 找家教上阳光家教网。