七年级初一数学下学期第六章 实数单元 易错题难题检测
- 格式:doc
- 大小:718.50 KB
- 文档页数:17
人教版七年级初一数学第二学期第六章 实数单元 易错题难题测试基础卷试题一、选择题1.一列数1a , 2a , 3a ,…… n a ,其中1a =﹣1, 2a =111a -,3a =211a -,……,n a =111n a --,则1a ×2a ×3a ×…×2017a =( ) A .1B .-1C .2017D .-20172.下列数中π、227,﹣3,3343,3.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数的个数是( ) A .1个B .2个C .3个D .4个3.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,……,根据这个规律,则21+22+23+24+…+22019的末位数字是( ) A .0B .2C .4D .64.若23(2)0m n -++=,则m+n 的值为( ) A .-1B .1C .4D .75.若定义f (x )=3x ﹣2,如f (﹣2)=3×(﹣2)﹣2=﹣8,下列说法中:①当f (x )=1时,x =1;②对于正数x ,f (x )>f (﹣x )均成立;③f (x ﹣1)+f (1﹣x )=0;④当a =2时,f (a ﹣x )=a ﹣f (x ).其中正确的是( ) A .①②B .①③C .①②④D .①③④6.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n7.27 ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间8.下列实数中的无理数是( ) A 1.21B 38-C 33-D .2279.下列说法:①有理数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③某数的绝对值是它本身,则这个数是非负数;④16的平方根是±4,用式子表示是164=±.⑤若a ≥0,则2()a a =,其中错误的有( )A .1个B .2个C .3个D .4个10.已知实数x ,y 241x y -+y 2﹣9|=06x y + ) A .±3B .3C .﹣33D .33二、填空题11.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______12.如图,四个实数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个实数中,绝对值最大的是________.13.写出一个3到4之间的无理数____.14.m 的平方根是n +1和n ﹣5;那么m +n =_____.15.规定运算:()a b a b *=-,其中b a 、为实数,则(154)15*+=____ 16.如果一个数的平方根和它的立方根相等,则这个数是______. 17.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.18.已知:202044.9444≈⋯,20214.21267≈⋯,则20.2(精确到0.01)≈__________.19.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________20.若x ,y 为实数,且|2|30x y ++-=,则(x+y) 2012的值为____________.三、解答题21.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形. (1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?22.规律探究,观察下列等式:第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭ 第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++23.阅读下列解题过程: (1)221(54)54545254(54)(54)(5)(4)⨯--===-=-++--; (2)1(65)6565(65)(65)⨯-==-++-; 请回答下列问题:(1)观察上面解题过程,请直接写出1n n +-的结果为__________________.(2)利用上面所提供的解法,请化简: (12)2334989999100++++++++++24.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程) (2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳 25.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下: 里程范围 4公里以内(含4公里) 4-12公里以内(含12公里) 12-24公里以内(含24公里) 24公里以上 收费标准2元4公里/元6公里/元8公里/元①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?26.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为()2M x .如()()22735111, 561101M M ==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定: 0与 0相加得 0; 0与1相加得1;1与1相加得 0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M 的值为______ ,()()22589653M M +的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M ==,因为()()()222124630110,124630110M M M +=+=,所以()()()222124*********M M M +=+,即124与630满足“模二相加不变”.①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由; ②与23“模二相加不变”的两位数有______个【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 因为1a =﹣1,所以2a =11111112a ==---(),3 a =21121112a ==--,4 a =3111112a ==---,通过观察可得:1 a ,2a ,3a ,4 a ……的值按照﹣1,12, 2三个数值为一周期循环,将2017除以3可得372余1,所以2017a 的值是第273个周期中第一个数值﹣1,因为每个周期三个数值的乘积为:11212-⨯⨯=-,所以1a ×2a ×3a ×…×2017a =()()372111,-⨯-=-故选B.2.C解析:C 【解析】 【分析】根据无理数的概念解答即可. 【详解】 解:在π、2273.1416,3.2121121112…(每两个2之间多一个1),0.3中,无理数是: π3.2121121112…(每两个2之间多一个1),共3个, 故选C. 【点睛】本题考查了无理数的定义.注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.是有理数中的整数.3.C解析:C 【分析】观察已知等式,发现末位数字以2,4,8,6进行循环,每4个数一个循环的和位数为0,只要把原式的数的个数除以4得出余数即可求解. 【详解】∵21=2,22=4,23=8,24=16,25=32,26=64,…… ∴末位数字以2,4,8,6循环 ∵2019÷4=504…3,∴21+22+23+24+…+22019的末位数字与(2+4+8+6)×504+2+4+8的末位数字相同为4 故选:C. 【点睛】本题考查了尾数特征,弄清题中的数字循环规律是解本题的关键.4.B解析:B 【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解. 【详解】∵23(2)0m n -++= ∴m-3=0,n+2=0, 解得:m=3,n=-2, ∴m+n=1 故选B. 【点睛】此题考查非负数的性质:偶次方,非负数的性质:绝对值,解题关键在于掌握其性质.5.C解析:C 【分析】首先理解新定义运算的算法,再根据新定义运算方法列出所求式子,计算得到结果 【详解】 ∵f (x )=1, ∴3x ﹣2=1, ∴x =1,故①正确,f (x )﹣f (﹣x )=3x ﹣2﹣(﹣3x ﹣2)=6x , ∵x >0,∴f (x )>f (﹣x ),故②正确,f (x ﹣1)+f (1﹣x )=3(x ﹣1)﹣2+3(1﹣x )﹣2=﹣4, 故③错误,∵f (a ﹣x )=3(a ﹣x )﹣2=3a ﹣3x ﹣2, a ﹣f (x )=a ﹣(3x ﹣2), ∵a =2,∴f (a ﹣x )=a ﹣f (x ),故④正确. 故选:C . 【点睛】本题考查新定义运算,理解运算方法是重点,并且注意带入数据6.B解析:B根据n+p=0可以得到n 和p 互为相反数,原点在线段PN 的中点处,从而可以得到绝对值最大的数. 【详解】 解:∵n+p=0, ∴n 和p 互为相反数, ∴原点在线段PN 的中点处, ∴绝对值最大的一个是Q 点对应的q . 故选B . 【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.7.D解析:D 【分析】用平方法进行比较,看27在哪两个整数平方之间即可. 【详解】∵252527=<,263627=>∴5<6 故选:D 【点睛】本题考查比较二次根式的大小,常见方法有2种: (1)将数字平方,转化为不含二次根号的数字比较; (2)将数字都转化到二次根式中,然后进行比较.8.C解析:C 【分析】无限不循环小数是无理数,根据定义解答. 【详解】=1.1是有理数;,是有理数;是无理数;D.227是分数,属于有理数, 故选:C. 【点睛】此题考查无理数的定义,熟记定义是 解题的关键.9.B解析:B利用实数的分类,无理数的定义,绝对值的性质、平方根的定义及二次根式的性质.【详解】①有理数和数轴上的点是一一对应的,正确;②无理数不一定是开方开不尽的数,例如π,错误;③绝对值是它本身的数是非负数,正确;±,错误;④16的平方根是±4,用式子表示是4==,正确;⑤若a≥0,则2a a则其中错误的是2个,故选B.【点睛】本题考查了有理数,无理数,绝对值,平方根及二次根式,熟练掌握各自的定义是解本题的关键.10.D解析:D【分析】由非负数的性质可得y2=9,4x-y2+1=0,分别求出x与y的值,代入所求式子即可.【详解】2﹣9|=0,∴y2=9,4x﹣y2+1=0,∴y=±3,x=2,∴y+6=9或y+6=3,3=故选:D.【点睛】本题考查绝对值、二次根式的性质;熟练掌握绝对值和二次根式的性质,能够准确计算是解题的关键.二、填空题11..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=. 故答案为:. 【点睛】此题主要考查规律的探索,解析:43. 【分析】先根据题意求得2a 、3a 、4a 、5a ,发现规律即可求解. 【详解】 解:∵a 1=3∴22223a ==--,()321222a ==--,4241322a ==-,523423a ==-, ∴该数列为每4个数为一周期循环, ∵20204505÷= ∴a 2020=443a =. 故答案为:43. 【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.12.【分析】根据可以得到的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵,∴n 和q 互为相反数,O 在线段NQ 的中点处, ∴绝对值最大的是点P 表示的数. 故 解析:p【分析】根据0n q +=可以得到n q 、的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决. 【详解】 ∵0n q +=,∴n 和q 互为相反数,O 在线段NQ 的中点处,∴绝对值最大的是点P表示的数p.故答案为:p.【点睛】本题考查了实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.13.π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.解析:π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解.解:3到4之间的无理数π.答案不唯一.14.11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答解析:11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答案为11.【点睛】此题主要考查了平方根,正确利用平方根的定义得出n的值是解题关键.15.4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】===4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】4)+4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.16.0【解析】试题解析:平方根和它的立方根相等的数是0.解析:0【解析】试题解析:平方根和它的立方根相等的数是0.17.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:. 【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】设1120182019m =+,代入原式化简即可得出结果. 【详解】原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭221202*********m m m m mm =-+--++ 12020= 故答案为:12020. 【点睛】本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 18.50 【分析】根据算术平方根小数点移动的规律解答. 【详解】∵20.2是2020的小数点向左移动了两位, ∴应是的小数点向左移动一位得到的, ∴,故答案为:4.50. 【点睛】 此题考查算术平解析:50 【分析】根据算术平方根小数点移动的规律解答. 【详解】∵20.2是2020的小数点向左移动了两位,的小数点向左移动一位得到的,04.5≈,故答案为:4.50.【点睛】此题考查算术平方根小数点的移动规律,熟记规律是解题的关键.19.【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数,即可得到答案.【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,从数轴可以看出,A点在和之间,解析:【分析】先把数轴的原点找出来,再找出数轴的正方向,分析A点位置附近的点和实数1-.2【详解】解:∵数轴的正方向向右,A点在原点的左边,∴A为负数,-之间,从数轴可以看出,A点在2-和1<=-,故不是答案;2刚好在2-和1-之间,故是答案;1->-,故不是答案;12是正数,故不是答案;故答案为.【点睛】本题主要考查了数轴的基本概念、实数的比较大小,要掌握能从数轴上已标出的点得到有用的信息,学会实数的比较大小是解题的关键.20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x、y的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】 本题考查了解析:1 【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可. 【详解】由绝对值的非负性、算术平方根的非负性得:2030x y +=⎧⎨-=⎩解得23x y =-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1. 【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析 【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长; (2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形, ∴大正方形的面积为4002cm ,20cm = 故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x =520x =>,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形. 【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.22.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可; (3)利用题(2)的结论,先写出1234100a a a a a +++++中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可. 【详解】(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯ 则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭故应填:11316⨯;11131316⎛⎫⨯-⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯ 第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯ 第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯ 第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯ 归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+ 则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数)故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭则1234100a a a a a +++++1111144771010132983011+++++⨯⨯⨯⨯⨯=111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎝⎭111111111++++344771*********3018=-⎛⎫⨯-+--- ⎪⎝⎭1330111⎛=⨯-⎫ ⎪⎝⎭30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.23.(1-2)9 【分析】(1)利用已知数据变化规律直接得出答案; (2)利用分母有理化的规律将原式化简进而求出即可. 【详解】解:(1==(2......==-1+10 =9 【点睛】此题主要考查了分母有理化,正确化简二次根式是解题关键.24.;(2)数轴上的点和实数是一一对应关系;(3)A. 【分析】(1)首先根据勾股定理求出线段OB 的长度,然后结合数轴的知识即可求解; (2)根据数轴上的点与实数的对应关系即可求解; (3)本题利用实数与数轴的对应关系即可解答. 【详解】解:(1)OB 2=12+12=2,∴OB ,∴OA =(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合. 故选A. 【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.25.(1)3;6-;(2)①2;3;6.②这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里. 【分析】(1)根据题意,确定实数左侧第一个整数点所对应的数即得;(2)①根据表格确定乘坐里程的对应段,然后将乘坐里程分段计费并累加即得; ②根据表格将每段的费用从左至右依次累加直至费用为7元,进而确定7元乘坐的具体里程即得. 【详解】(1)∵3 3.44<< ∴[]3.43= ∵6 5.75-<-<- ∴[]5.76-=- 故答案为:3;6-. (2)①∵3.074< ∴3.07公里需要2元 ∵47.9312<<∴7.93公里所需费用分为两段即:前4公里2元 ,后3.93公里1元 ∴7.93公里所需费用为:2+1=3(元) ∵19.212174<<∴19.17公里所需费用分为三段计费即: 前4公里2元,4至12公里2元,12公里至19.17公里2元;∴19.17公里所需费用为:2226++=(元) 故答案为:2;3;6.②由题意得:乘坐24公里所需费用分为三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需费用为:2226++=(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里 ∴7元可以乘坐的地铁最大里程为:24+8=32(公里)∴这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里 答:这个乘客花费7元乘坐的地铁行驶的路程范围为:大于24公里小于等于32公里. 【点睛】本题是阅读材料题,考查了实数的实际应用,根据材料中的新定义举一反三并挖掘材料中深层次含义是解题关键.26.(1)1011,1101;(2)①12,65,97,见解析,②38 【分析】(1) 根据“模二数”的定义计算即可;(2) ①根据“模二数”和模二相加不变”的定义,分别计算126597,,和12+23,65+23,97+23的值,即可得出答案②设两位数的十位数字为a ,个位数字为b ,根据a 、b 的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与23“模二相加不变”的两位数的个数 【详解】解: (1) ()296531011M =,()()221010111108531596M M =+=+ 故答案为:1011,1101()2①()()222301,1210M M ==, ()()()222122311,122311M M M +=+=()()()22212231223M M M ∴+=+, 12∴与23满足“模二相加不变”.()()222301,6501M M ==,, ()()()222652310,652300M M M +=+= ()()()22265236523M M M +≠+, 65∴与23不满足“模二相加不变”.()()222301,9711M M ==,()()()2229723100,9723100M M M +=+=, ()()()22297239723M M M +=+,97∴与23满足“模二相加不变”②当此两位数小于77时,设两位数的十位数字为a ,个位数字为b ,1a 70b 7≤≤<<,; 当a 为偶数,b 为偶数时()()2210002013,a b M M +==,∴()()()()22222301,102310(2)(3)1001M M M a b M a a b b +=++++++== ∴与23满足“模二相加不变”有12个(28、48、68不符合) 当a 为偶数,b 为奇数时()()2210012013,a b M M +==,∴()()()()22222310,102310(2)(3)1000M M M a b M a a b b +=++++++== ∴与23不满足“模二相加不变”.但27、47、67、29、49、69符合共6个 当a 为奇数,b 为奇数时()()2210112013,a b M M +==,∴()()()()222223100,102310(2)(3)1010M M M a b M a a b b +=++++++== ∴与23不满足“模二相加不变”.但17、37、57、19、39、59也不符合 当a 为奇数,b 为偶数时()()2210102013,a b M M +==,∴()()()()22222311,102310(2)(3)1011M M M a b M a a b b +=++++++== ∴与23满足“模二相加不变”有16个,(18、38、58不符合) 当此两位数大于等于77时,符合共有4个综上所述共有12+6+16+4=38故答案为:38【点睛】本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法.能够理解定义是解题的关键.。
七年级初一数学第二学期第六章 实数单元 易错题难题测试综合卷检测试卷一、选择题1.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2B .()10080,2-C .()10090,2-D .()10090,22.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 2410 14 19 2515 20 2621 2728则第20行从左至右第10个数为( ) A .425 B .426 C .427 D .428 3.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍C .m 倍D .2m 倍4.下列各数中,不是无理数的是( ) A .30.8B .﹣3πC .14D .0.121 121 112…5.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .66.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( ) A .1B .2C .3D .47.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x8.下列说法正确的个数是( ). (1)无理数不能在数轴上表示(2)两条直线被第三条直线所截,那么内错角相等 (3)经过一点有且只有一条直线与已知直线平行 (4)两点之间线段最短 A .0个B .1个C .2个D .3个9.若320,a b -++=则+a b 的值是( ) A .2 B 、1 C 、0 D 、1- 10.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行; ②立方根等于它本身的数只有0; ③两条边分别平行的两个角相等; ④互为邻补角的两个角的平分线互相垂直 A .4个B .3个C .2个D .1个二、填空题11.若x +1是125的立方根,则x 的平方根是_________. 12.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____. 13.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.14.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡=⎣,现对72进行如下操作:72→72⎡⎤⎣⎦=8→82⎡=⎣→2=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________. 15.若()221210a b c -+-=,则a b c ++=__________.16.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____. 17.设a ,b 都是有理数,规定 3*=a b a b ()()48964***-⎡⎤⎣⎦=__________.18.已知2(21)10a b ++-=,则22004a b +=________.19.0.050.55507.071≈≈≈≈,按此规500_____________ 20.11133+=112344+=113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.对数运算是高中常用的一种重要运算,它的定义为:如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作:x =log a N ,例如:32=9,则log 39=2,其中a =10的对数叫做常用对数,此时log 10N 可记为lgN .当a >0,且a ≠1,M >0,N >0时,log a (M •N )=log a M +log a N . (I )解方程:log x 4=2; (Ⅱ)log 28=(Ⅲ)计算:(lg 2)2+lg 2•1g 5+1g 5﹣2018= (直接写答案)22.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:________=23.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 24.观察下列等式:①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= .(3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 25.(1的一系列不足近似值和过剩近似值来估计它的大小的过程如下:因为2211,24==,所以12,<<因为21.4 1.96=,21.5 2.25=,所以1.4 1.5,<<因为221.41 1.9881,1.422.0164==,所以1.41 1.42<<因为221.414 1.999396,1.4152.002225==,所以1.414 1.415,<<1.41≈(精确到百分位),(精确到百分位).(2)我们规定用符号[]x 表示数x 的整数部分,例如[]0,2.42,34=⎤⎢⎥⎦=⎡⎣①按此规定102⎡+⎤⎣⎦= ;②如果3的整数部分是,5a 的小数部分是,b 求a b -的值.26.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ; (2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点A B 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点A B 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【详解】 因为()()11,10,2P -=,()()()()()21111,11,10,2=2,2P P P P -=-=-,()()()()()31211,11,22,20,4P P P P -=-=-=,()()41,14,4P -=-,()()51,10,8P -= ()()61,18,8P -=-,所以()()211,10,2n n P --=,()()21,12,2n nn P -=-,所以 ()()100920171,10,2P -=,故选D.2.B解析:B 【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列,便知第20行第一个数为210,而每行的公差为等差数列, 则第20行第10个数为426, 故选B.3.C解析:C 【分析】设面积增加后的半径为R ,增加前的半径为r ,根据题意列出关系式计算即可. 【详解】设面积增加后的半径为R ,增加前的半径为r , 根据题意得:πR 2=mπr 2,∴,故选:C . 【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.4.C解析:C 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】B.3π-是无理数;12=,是有理数; D.0.121 121 112…是无理数; 故选:C . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.C解析:C 【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,… ∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8. 故答案是:8. 【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….6.A解析:A 【分析】根据平方根的定义对①②进行判断;根据立方根的定义对③④进行判断;根据命题的定义对⑤进行判断. 【详解】解:81的平方根是±9,所以①错误;±2,所以②正确;-0.003有立方根,所以③错误; −64的立方根为-4,所以④错误;故选:A . 【点睛】本题考查了立方根和平方根的应用,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.7.C解析:C 【分析】根据点E ,F ,M ,N 表示的实数的位置,计算个代数式即可得到结论. 【详解】解:∵﹣2<0<x <2<y ,∴x +y >0,2+y >0,x ﹣2<0,2+x >0, 故选:C . 【点睛】本题考查了实数,以及实数与数轴,弄清题意是解本题的关键.8.B解析:B 【分析】根据数轴与实数,平行线的性质与判定以及两点之间线段最短对每个说法逐一判断后即可【详解】(1)实数与数轴上的点一一对应,故无理数能在数轴上表示出来,故原说法错误;(2)两条平行直线被第三条直线所截,那么内错角相等,故原说法错误;(3)经过直线外一点有且只有一条直线与已知直线平行,故原说法错误;(4)两点之间线段最短,正确.故选B.【点睛】本题考查了命题与定理的知识,解题的关键是熟知课本上的一些定义与定理.9.B解析:B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B.考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.10.D解析:D【分析】利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项.【详解】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,±1,故错误,是假命题;③两条边分别平行的两个角相等或互补,故错误,是假命题;④互为邻补角的两个角的平分线互相垂直,正确,是真命题,真命题有1个,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、立方根及互补的定义等知识,难度不大.二、填空题11.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.12.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26, 解得n=5.解析:131或26或5. 【解析】试题解析:由题意得,5n+1=656, 解得n=131, 5n+1=131, 解得n=26, 5n+1=26, 解得n=5.14.255 【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案. 【详解】 解:(1)解析:255 【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案. 【详解】解:(1)由题意得:64→=8→2=→=1,∴对64只需进行3次操作后变为1, 故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255; 故答案为255. 【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.15.【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:,解得,则,故答案为:.【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键. 16.【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c+d =0,然后代入求值即可.【详解】∵a、b 互为倒数,∴ab=1,∵c、d 互为相反数,∴c+d=0,∴=﹣1+0+1=0.解析:【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.17.1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵,∴=()()=(2+2)(3-4)=4(-1)==2-1=1.故答案为:1【点睛】本题考查平方解析:1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵*=a b∴()()48964***-⎡⎤⎣⎦=*)=(2+2)*(3-4)=4*(-1)==2-1=1.故答案为:1【点睛】本题考查平方根与立方根,正确理解规定,熟练掌握平方根和立方根的定义是解题关键.18.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b −1=0,∴a=,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.19.36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】解:观察,不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,因此得到第三个数的解析:36【分析】从题目已经给出的几个数的估值,寻找规律即可得到答案.【详解】≈≈≈≈,7.071不难发现估值的规律即:第一个数扩大10倍得到第三个数,第二个数扩大10倍得到第四个数,≈.因此得到第三个数的估值扩大1022.36故答案为22.36.【点睛】本题是规律题,主要考查找规律,即各数之间的规律变化,在做题时,学会观察,利用已知条件得到规律是解题的关键.20.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)=+≥n n【分析】=+=(2=+n(n≥1)的等式表示出来是(3=+≥(1)n n【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是=+≥(1)n nn n=+≥(1)【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.三、解答题21.(I) x=2;(Ⅱ) 3; (Ⅲ) -2017.【分析】(I)根据对数的定义,得出x2=4,求解即可;(Ⅱ)根据对数的定义求解即;;(Ⅲ)根据log a(M•N)=log a M+log a N求解即可.【详解】(I)解:∵log x4=2,∴x2=4,∴x=2或x=-2(舍去)(Ⅱ)解:∵8=23,∴log28=3,故答案为3;(Ⅲ)解:(lg2)2+lg2•1g5+1g5﹣2018= lg2•( lg2+1g5) +1g5﹣2018= lg2 +1g5﹣2018=1-2018=-2017故答案为-2017.【点睛】本题主要考查同底数幂的乘法,有理数的乘方,是一道关于新定义运算的题目,解答本题的关键是理解给出的对数的定义.22.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100,故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040.3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∵只有个位数是4的立方数是个位数是4,4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∵只有个位数是8的立方数是个位数是2,8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.23.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.24.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯ (1100102)⨯ =12×(111122334++⨯⨯⨯+…+15051⨯) =12×5051=2551. 点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.25.(1)2.24;(2)①5,②3-【分析】(1近似值的方法解答即可;(22的范围,再根据规定解答即可;的整数部分a b 的值,再代入所求式子化简计算即可.【详解】解:(1)因为2224,39==,所以23,<<因为222.2 4.84,2.3 5.29==,所以2.2 2.3<<,因为222.23 4.9729,2.24 5.0176==,所以2.23 2.24,<< 因为222.236 4.999696,2.237 5.004169==,所以2.236 2.237<<,2.24≈.(2)①因为3.12=9.61,3.22=10.24,所以3.1 3.2<<,所以5.12 5.2<<,所以2⎤⎦=5;故答案为:5;②因为12,23<<<,所以1,2a b ==,所以原式12=)12123=-== 【点睛】本题考查了利用夹逼法求算术平方根的近似值、对算术平方根的整数和小数部分的认识以及实数的简单计算,属于常考题型,正确理解题意、熟练掌握算术平方根的相关知识是解题关键.26.(1)5;(2)5或1;(3)1+y-2x ;(4)t 1=3;t 2=53【分析】(1)根据题中的新运算列出算式,计算即可得到结果;(2)根据题中的新运算列出方程,解方程即可得到结果;(3)根据题中的新运算列出代数式,根据数轴得出x 、y 的取值范围进行化简即可;(4)根据A 、B 在数轴上的移动方向和速度可分别用代数式表示出数a 和b ,再根据(2)的解题思路即可得到结果.【详解】解:(1)5(3)5(3)(3)5⊗-=--+-=;(2)依题意得:335-+=x , 化简得:3=2-x ,所以32x -=或32x -=-,解得:x =5或x =1;(3)由数轴可知:0<x <1,y <0,所以1x y x ⊗-⊗ = (1)()-+--+x x y x x=1-++--x x y x x=12+-y x(4)依题意得:数a =−1+t ,b =3−t ;因为2a b ⊗=, 所以(1)(3)32-+--+-=t t t , 化简得:241-=-t t ,解得:t =3或t =53, 所以当2a b ⊗=时,t 的值为3或53. 【点睛】本题主要考查了定义新运算、有理数的混合运算和解一元一次方程,根据定义新运算列出关系式是解题的关键.。
七年级初一数学第二学期第六章 实数单元 易错题难题测试题试卷一、选择题1.下列说法正确的是( )A .有理数是整数和分数的统称B .立方等于本身的数是0,1C .a -一定是负数D .若a b =,则a b = 2.下列计算正确的是( ) A .42=± B .1193±= C .2(5)5-= D .382=±3.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( )A .4mB .4m +4nC .4nD .4m ﹣4n 4.定义a *b =3a -b ,2a b b a ⊕=-则下列结论正确的有( )个.①3*2=11.②()215⊕-=-. ③(13*25)712912425⎛⎫⊕⊕=- ⎪⎝⎭. ④若a *b=b *a ,则a=b.A .1个B .2个C .3个D .4个 5.如果-1<x<0,比较x 、x 2、x -1的大小A .x -1<x<x 2B .x<x -1<x 2C .x 2<x<x -1D .x 2<x -1<x 6.下列各组数中,互为相反数的是( )A .2-与2B .2-与12-C .()23-与23-D .38-与38-7.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C .42=± D .()515-=- 8.下列命题是假命题的是( ) A .0的平方根是0 B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣1 9.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上10.2243522443355+=22444333555+=,仔细观察上面几道题的计算结果,试猜想222020420203444333+个个等于( ) A .20174555个 B .20185555个 C .20195555个 D .20205555个 二、填空题11.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .12.若实数a 、b 满足240a b ++-=,则a b=_____. 13.m 的平方根是n +1和n ﹣5;那么m +n =_____.14.请先在草稿纸上计算下列四个式子的值:①31;②3312+;③333123++;④33331234+++,观察你计算的结果,用你发现的规律直接写出下面式子的值333312326++++=__________.15.规定运算:()a b a b *=-,其中b a 、为实数,则(154)15*+=____ 16.已知72m =-,则m 的相反数是________. 17.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.18.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.19.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b =+.例如89914*=+=,那么*(*16)m m =__________.20.若x ,y 为实数,且|2|30x y ++-=,则(x+y) 2012的值为____________.三、解答题21.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<(7)2<32 ,即2<<3, 7的整数部分为27-2).请解答:(110的整数部分是__________,小数部分是__________(2)如果5的小数部分为a ,37的整数部分为b ,求a +b -5的值;22.请回答下列问题:(1)17介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ; (2)x 是172+的小数部分,y 是171-的整数部分,求x = ,y = ; (3)求()17yx -的平方根. 23.计算:(1)()()232018311216642⎛⎫-+-⨯+-⨯ ⎪⎝⎭ (2)535323-+-+-24.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?25.(1)计算:3231927|25(2)-++-;(2)若21x -的平方根为2±,21x y +-的立方根为2-,求2x y -的算术平方根.26.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯= 计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据有理数的定义、立方的性质、负数的性质、绝对值的性质对各项进行分析即可.【详解】A. 有理数是整数和分数的统称,正确;B. 立方等于本身的数是-1,0,1,错误;C. a -不一定是负数,错误;D. 若a b =,则a b =或=-a b ,错误;故答案为:A .【点睛】本题考查了判断说法是否正确的问题,掌握有理数的定义、立方的性质、负数的性质、绝对值的性质是解题的关键.2.C解析:C【分析】A 、根据算术平方根的定义即可判定;B 、根据平方根的定义即可判定;C 、根据平方根的性质计算即可判定;D 、根据立方根的定义即可判定.【详解】A 2=,故选项错误;B 、13=±,故选项错误;C 、2(=5,故选项正确;D 2,故选项错误.故选:C .【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.3.C解析:C【分析】根据题意得到m ,n 的相反数,分成三种情况⑴m ,n ;-m ,-n ⑵m ,-m ;n ,-n ⑶m ,-n ;n ,-m 分别计算,最后相加即可.【详解】解:依题意,m ,n (m <n )的相反数为﹣m ,﹣n ,则有如下情况:m ,n 为一组,﹣m ,﹣n 为一组,有A =|m +n |+|(﹣m )+(﹣n )|=2m +2nm ,﹣m 为一组,n ,﹣n 为一组,有A =|m +(﹣m )|+|n +(﹣n )|=0m ,﹣n 为一组,n ,﹣m 为一组,有A =|m +(﹣n )|+|n +(﹣m )|=2n ﹣2m 所以,所有A 的和为2m +2n +0+2n ﹣2m =4n故选:C .【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.4.B解析:B【分析】根据新定义的运算把各式转化成混合运算进行计算,即可得出结果.【详解】解:∵a *b =3a -b ,2a b b a ⊕=-,∴①3*2=3×3-2=7,故①错误;②()22112145,⊕-=--=--=-故②正确; ③(13*25)7124⎛⎫⊕⊕ ⎪⎝⎭. 21217(3)()3542⎡⎤=⨯-⊕-⎢⎥⎣⎦ 3(12)5=⊕- 2312()5=-- 30925=- 故③错误;④若a *b=b *a ,则有3a -b=3b-a,化简得a=b,故④正确;正确的有②④,故选:B【点睛】本题考查了含有乘方的有理数的混合运算,熟练掌握计算法则是解题关键.5.A解析:A【分析】直接利用负整数指数幂的性质结合x 的取值范围得出答案.【详解】∵-1<x <0,∴x -1<x <x 2,故选A.【点睛】此题主要考查了负整数指数幂的性质以及实数的大小比较,正确利用x 的取值范围分析是解题的关键.6.C解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.7.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-= ⎪⎝⎭,所以,选项A 运算错误,不符合题意; B.()239-=,正确,符合题意;2=,所以,选项C 运算错误,不符合题意;D.()511-=-,所以,选项D 运算错误,不符合题意;故选:B .本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.8.B解析:B【分析】分别根据平方根的定义、无理数的定义、算术平方根的定义、负整数逐一判断即可.【详解】解:A 、0的平方根为0,所以A 选项为真命题;B 、无限不循环小数是无理数,所以B 选项为假命题;C 、算术平方根最小的数是0,所以C 选项为真命题;D 、最大的负整数是﹣1,所以D 选项为真命题.故选:B .【点睛】本题考查平方根的定义、无理数的定义、算术平方根和负整数,掌握无理数指的是无限不循环小数是解题的关键.9.B解析:B【分析】【详解】由被开方数越大算术平方根越大,得由不等式的性质得:故选B.【点睛】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.10.D解析:D【分析】当根号内的两个平方的底数为1位数时,结果为5,当根号内的两个平方的底数为2位数时,结果为55,当根号内的两个平方的底数为3位数时,结果为555,据此即可找出规律,根据此规律作答即可.【详解】5,55=,555=,……20205555个.【点睛】本题主要考查了与算术平方根有关的数的规律探求问题,解题的关键是由前三个式子找到规律,再根据所找到的规律解答.二、填空题11..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.12.﹣【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则=﹣.故答案是﹣.解析:﹣12【解析】根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则ab=﹣12.故答案是﹣12.13.11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答解析:11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答案为11.【点睛】此题主要考查了平方根,正确利用平方根的定义得出n的值是解题关键.14.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=10+=1+2+3+n+=351=1+2+326故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.15.4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】===4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】4)+4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.16.【分析】根据相反数的定义即可解答.【详解】解:的相反数是,故答案为:.【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.解析:2【分析】根据相反数的定义即可解答.【详解】解:m的相反数是2)2-=,故答案为:2【点睛】本题考查了求一个数的相反数以及实数,解题的关键是熟知只有符号不同的两个数是相反数.17.【解析】由数轴得,a+b<0,b-a>0,|a+b|+=-a-b+b-a=-2a.故答案为-2a.点睛:根据,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小解析:2a-【解析】由数轴得,a+b<0,b-a>0,=-a-b+b-a=-2a.故答案为-2a.点睛:根据,0,0a aaa a≥⎧=⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简. 18.9【分析】根据一个正数的平方根有2个,且互为相反数求出a的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得:,解得:,则这个正数是.故答案为:9.【解析:9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键. 19.+1【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..【点睛】此题考查实数的运算,解题的关键是要掌握运算法则.20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】本题考查了解析:1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:2030x y +=⎧⎨-=⎩解得23x y =-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1.【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.(1)33;(2)4【解析】分析:求根据题目中所提供的方法求无理数的整数部分和小数部分.详解:(1的整数部分是3,3;(2)∵∴a 2, ∵∴6b =, ∴a b +264+=.点睛:求无理数的整数部分和小数部分,需要先给这个无理数平方,观察这个数在哪两个整数平方数之间.需要记忆1-20平方数,1²= 1, 2² = 4 ,3² = 9, 4² = 16, 5² = 25, 6² = 36 ,7² = 49 ,8² = 64 ,9² = 81 ,10² = 100,11² = 121, 12² = 144 ,13² = 169 ,14² = 196 ,15² = 225, 16² = 256, 17² = 289 ,18² = 324, 19² = 361 ,20² = 400.22.(1)4;b =(2−4;3(3)±8【分析】((1)由16<17<25a ,b 的值; (2)根据(1)的结论即可确定x 与y 的值;(3)把(2)的结论代入计算即可.【详解】解:(1)∵16<17<25,∴4<5,∴a =4,b =5,故答案为:4;5;(2)∵4<5,∴6+2<7,由此整数部分为6,∴x −4,∵4<5,∴3-1<4,∴y =3;;3(3)当x ,y =3时,)y x =)3=64, ∴64的平方根为±8.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.23.(1)-34;(2)3【分析】(1)利用乘方、立方、二次根式、开立方等概念分别化简每项,再整理计算即可; (2)利用绝对值的意义化简每一项,再整理计算即可.【详解】解:(1)()2320181122⎛⎫-+- ⎪⎝⎭()()118444=-+-⨯+-⨯()1321=--+-=-34;(233=-+-+-3=【点睛】此题考查了有理数的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.24.(1;(2)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,cm ,(2)∵22r ππ=,∴r =∴2=2C r π=圆,设正方形的边长为a∵22a π=,∴a∴=4C a =正∴1C C ===<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.25.(11;(2【分析】(1)根据立方根、绝对值、乘方进行运算即可;(2)利用平方根、立方根的定义求出x 、y 的值,再利用算术平方根的定义即可解答【详解】解:(1)原式=1334-+-++=(2)∵21x -的平方根为2±,21x y +-的立方根为2- ∴2x 142x y 18-=⎧⎨+-=-⎩∴5x 2y 12⎧=⎪⎨⎪=-⎩ ∴52=2+12=172-⨯x y ∴2x y -【点睛】本题考查了绝对值、乘方、平方根、立方根、算术平方根的定义,解题的关键是掌握计算的方法,准确的进行化简求值.26.(1)2550;(2)50505150a m +【分析】(1)利用所给规律计算求解即可;(2)先去括号,再分组利用所给规律计算.【详解】解:(1)原式()()()21004985052=++++⋅⋅⋅++102252550=⨯=(2)原式()()23100234101a a a a m m m m =+++⋅⋅⋅+++++⋅⋅⋅+50505150=+a m【点睛】本题考查的知识点是去括号与添括号、有理数的加法、合并同类项,灵活运用加法的运算律是解此题的关键.。
人教版七年级初一数学下学期第六章 实数单元 易错题难题综合模拟测评检测一、选择题1.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……②②-①得10661S S -=-,即10561S =-,所以10615S -=.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是A .201811a a --B .201911a a --C .20181a a-D .20191a -2.2-是( ) A .负有理数B .正有理数C .自然数D .无理数3.25的算术平方根是( ) A .5±B .5C .52±D .54.130a b -+-=,则a b +的值是( ) A .0B .±2C .2D .45.实数33,10,25的大小关系是( ) A .310325<< B .331025<<C .310253<< D .325310<<6.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒7.规定用符号[]n 表示一个实数的小数部分,例如:[]3.50.5,22 1.⎡=⎣=按照此规定, 101⎡⎤⎣⎦的值为( )A 101B 103C 104D 101+8.下列命题是假命题的是( )A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣19.在实数:3.14159,1.010010001....,4.21••,π,227中,无理数有( ) A .1个 B .2个 C .3个D .4个10.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间二、填空题11.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______ 12.观察下列算式:16+4=20;40+4=44;…__________13.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.14.2(2)0x -=,则y x -的平方根_________.15.__________0.5.(填“>”“<”或“=”)16.设a ,b 都是有理数,规定 *=a b ()()48964***-⎡⎤⎣⎦=__________.17.下列说法: -10=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________18.44.9444≈⋯14.21267≈⋯(精确到0.01)≈__________.19.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数.例如:[][][]3.93,55,4π==-=-,若[]6a =-,则[]2a 的值为______.20.若x 、y 分别是8-2x -y 的值为________.三、解答题21.观察下列各式的计算结果2113131-1-24422===⨯ 2118241-1-39933===⨯21115351-1-4161644===⨯ 21124461-1-5252555===⨯ (1)用你发现的规律填写下列式子的结果: 211-6= × ; 211-10= × ; (2)用你发现的规律计算: 22222111111-1-1-1-1-23420162017⨯⨯⨯⋯⨯⨯()()()()() (3)计算()2222211111111112341n n ⎡⎤⎛⎫-⨯-⨯-⨯⨯-⨯-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦()()()(直接写出结果) 22.观察下列各式,回答问题21131222-=⨯, 21241333-=⨯ 21351444-=⨯ ….按上述规律填空: (1)211100-= × ,2112005-= ×, (2)计算:21(1)2-⨯21(1)...3-⨯21(1)2004-⨯21(1)2005-= . 23.我们规定:a p -=1p a(a ≠0),即a 的负P 次幂等于a 的p 次幂的倒数.例:24-=214(1)计算:25-=__;22-(﹣)=__; (2)如果2p -=18,那么p =__;如果2a -=116,那么a =__; (3)如果a p -=19,且a 、p 为整数,求满足条件的a 、p 的取值. 24.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O 为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA 的长度是多少?(要求写出求解过程) (2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了 的数学思想方法.(将下列符合的选项序号填在横线上)A .数形结合B .代入C .换元D .归纳25.z 是64的方根,求x y z -+的平方根26.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则;2与2的大小∵224-=<<则45<<∴2240-=>∴22>请根据上述方法解答以下问题:比较2-与3-的大小.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】首先根据题意,设M=1+a+a 2+a 3+a 4+…+a 2014,求出aM 的值是多少,然后求出aM-M 的值,即可求出M 的值,据此求出1+a+a 2+a 3+a 4+…+a 2019的值是多少即可. 【详解】∵M=1+a+a 2+a 3+a 4+…+a 2018①, ∴aM=a+a 2+a 3+a 4+…+a 2014+a 2019②, ②-①,可得aM-M=a 2019-1, 即(a-1)M=a 2019-1,∴M=201911a a --. 故选:B. 【点睛】考查了整式的混合运算的应用,主要考查学生的理解能力和计算能力.2.A【解析】【分析】由于开不尽方才是无理数,无限不循环小数为无理数,根据有理数和无理数的定义及分类作答.【详解】∵2-是整数,整数是有理数,∴D错误;∵2-小于0,正有理数大于0,自然数不小于0,∴B、C错误;∴2-是负有理数,A正确.故选:A.【点睛】本题考查了有理数和实数的定义及分类,其中开不尽方才是无理数,无限不循环小数为无理数.3.B解析:B【分析】直接根据算术平方根的定义计算即可.【详解】,∴5故选B.【点睛】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.4.C解析:C【分析】由算术平方根和绝对值的非负性,求出a、b的值,然后进行计算即可.【详解】解:根据题意,得a﹣1=0,b﹣3=0,解得:a=1,b=3,∴a+b=1+3=4,∴2.故选:C.本题考查了算术平方根和绝对值的非负性,解题的关键是正确求出a、b的值.5.D解析:D【分析】先把3化成二次根式和三次根式的形式,再把3做比较即可得到答案.【详解】解:∵3==∴3=<3=>3<<,故D为答案.【点睛】本题主要考查了实数的大小比较,能熟练化简二次根式和三次根式是解题的关键,当二次根式和三次根式无法再化简时,可把整数化成二次根式或者三次根式的形式再做比较. 6.B解析:B【分析】根据平行线的性质和角平分线性质可求.【详解】解:∵AB∥CD,∴∠1+∠BEF=180°,∠2=∠BEG,∴∠BEF=180°-50°=130°,又∵EG平分∠BEF,∴∠BEG=12∠BEF=65°,∴∠2=65°.故选:B.【点睛】此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.7.B解析:B【分析】根据3<4的小数部分,根据用符号[n]表示一个实数的小数部分,可得答案.【详解】解:由34,得4+1<5.3,故选:B.【点睛】本题考查了估算无理数的大小,利用了无理数减去整数部分就是小数部分.8.B解析:B【分析】分别根据平方根的定义、无理数的定义、算术平方根的定义、负整数逐一判断即可.【详解】解:A、0的平方根为0,所以A选项为真命题;B、无限不循环小数是无理数,所以B选项为假命题;C、算术平方根最小的数是0,所以C选项为真命题;D、最大的负整数是﹣1,所以D选项为真命题.故选:B.【点睛】本题考查平方根的定义、无理数的定义、算术平方根和负整数,掌握无理数指的是无限不循环小数是解题的关键.9.B解析:B【分析】有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】解:因为3.14159,227是有限小数,4.21是无限循环小数,所以它们都是有理数;=4,4是有理数;因为1.010010001…,π=3.14159265…,所以1.010010001…,π,都是无理数.综上,可得无理数有2个:1.010010001…,π.故选:B.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.10.C解析:C【解析】试题分析:∵16<20<25,∴∴4<5. 故选C .考点:估算无理数的大小.二、填空题 11.. 【分析】先根据题意求得、、、,发现规律即可求解. 【详解】 解:∵a1=3 ∴,,,,∴该数列为每4个数为一周期循环, ∵ ∴a2020=. 故答案为:. 【点睛】此题主要考查规律的探索,解析:43. 【分析】先根据题意求得2a 、3a 、4a 、5a ,发现规律即可求解. 【详解】 解:∵a 1=3∴22223a ==--,()321222a ==--,4241322a ==-,523423a ==-, ∴该数列为每4个数为一周期循环, ∵20204505÷= ∴a 2020=443a =. 故答案为:43. 【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.12.【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】解:==1080+4=1084.故答案为:1084.【点睛】解析:【分析】根据题目数据,计算结果等于首尾两个偶数的乘积的平方的算术平方根再加上16的算术平方根,依此进行计算即可.【详解】==1080+4=1084.故答案为:1084.【点睛】本题考查了算术平方根,读懂题目信息,观察出计算结果等于首尾两个偶数的乘积加上4是解题的关键.13.或【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【解析】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x +3,5x}= min{2,52,52}=2,成立; ②2x+1=-x+3,x=23,此时min{2,-x +3,5x}= min{2,73,103}=2,不成立; ③2x+1=5x ,x=13,此时min{2,-x +3,5x}= min{2,83,53}=53,成立,∴x=12或13, 故答案为12或13. 【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.14.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】 解:,且, ∴y -3=0,x-2=0, . .的平方根是. 故答案为:. 【点睛】 此题考查算术平 解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x ∴-=.y x ∴-的平方根是±1.故答案为:±1. 【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x 与y 的值是解题的关键.15.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.16.1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵,∴=()()=(2+2)(3-4)=4(-1)==2-1=1.故答案为:1【点睛】本题考查平方解析:1【分析】根据规定,利用算术平方根与立方根的定义计算即可得答案.【详解】∵*=a b∴()()48964***-⎡⎤⎣⎦=*)=(2+2)*(3-4)=4*(-1)==2-1=1.故答案为:1【点睛】本题考查平方根与立方根,正确理解规定,熟练掌握平方根和立方根的定义是解题关键. 17.2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】①10=,故①错误;②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误; ④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数. 18.50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,∴应是的小数点向左移动一位得到的,∴,故答案为:4.50.【点睛】此题考查算术平解析:50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,的小数点向左移动一位得到的,04.5 ,故答案为:4.50.【点睛】此题考查算术平方根小数点的移动规律,熟记规律是解题的关键.19.-11或-12【分析】根据题意可知,,再根据新定义即可得出答案.【详解】解:由题意可得:∴∴的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小解析:-11或-12【分析】根据题意可知65a -≤<-,12210a -≤<-,再根据新定义即可得出答案.【详解】解:由题意可得:65a -≤<-∴12210a -≤<-∴[]2a 的值为-11或-12.故答案为:-11或-12.【点睛】本题考查的知识点是有理数比较大小,理解题目的新定义,根据新定义得出a 的取值范围是解此题的关键.20.【分析】估算出的取值范围,进而可得x ,y 的值,然后代入计算即可.【详解】解:∵,∴,∴的整数部分x =4,小数部分y =,∴2x-y =8-4+,故答案为:.【点睛】本题考查了估算无理解析:4+【分析】估算出8-x ,y 的值,然后代入计算即可.【详解】解:∵34<<,∴4<85,∴8x =4,小数部分y =448=∴2x -y =8-44=故答案为:4【点睛】本题考查了估算无理数的大小,解题的关键是求出x ,y 的值.三、解答题21.(1)5766⨯;9111010⨯(2)10092017(3)12n n+ 【解析】 试题分析:(1)根据题目中所给的规律直接写出答案;(2)根据所得的规律进行计算即可;(3)根据所得的规律进行计算即可德结论.试题解析:(1)5766⨯ , 9111010⨯; (2)原式=1324352016201822334420172017⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭() =1201822017⨯ =10092017 ; (3)12n n+. 点睛:本题是一个数字规律探究题,解决这类问题的基本方法为:通过观察,分析、归纳发现其中的规律,并应用规律解决问题.22.(1)99101100100⨯,2004200620052005⨯;(2)10032005. 【分析】 (1)观察已知等式可知等式右边为两个分数的积,其分母相等且与等式左边分母的底数相等,分子一个比分母小1,一个比分母大1,由此填空(2)根据(1)发现的规律将每个括号部分分解为两个分数的积再寻找约分规律.【详解】解:(1)211100-=99101100100⨯,2112005-=2004200620052005⨯. (2)2112⎛⎫-⨯ ⎪⎝⎭ 211...3⎛⎫-⨯ ⎪⎝⎭ 2112004⎛⎫-⨯ ⎪⎝⎭ 2112005⎛⎫- ⎪⎝⎭ =1322⨯ ×2433⨯ ×…×2003200520042004⨯×2004200620052005⨯ =12×20062005. =10032005.. 【点睛】本题考查的是有理数的运算能力,关键是根据已知等式由特殊到一般得出分数的拆分规律和约分规律.23.(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【分析】(1)根据题意规定直接计算.(2)将已知条件代入等式中,倒推未知数.(3)根据定义,分别讨论当a为不同值时,p的取值即可解答.【详解】解:(1)5﹣2=125;(﹣2)﹣2=14;(2)如果2﹣p=18,那么p=3;如果a﹣2=116,那么a=±4;(3)由于a、p为整数,所以当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.故答案为(1)125;14;(2)3;±4.(3)当a=9时,p=1;当a=3时,p=2;当a=﹣3时,p=2.【点睛】本题考查新定义,能够理解a的负P次幂等于a的p次幂的倒数这个规定定义是解题关键.24.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB的长度,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB2=12+12=2,∴OB,∴OA=(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.25.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.26.23>-【分析】根据例题得到2(3)5--=-5.【详解】解:2(3)5--=- ∵<,∴45<<, ∴2(3)50-=->, ∴23>-.【点睛】此题考查实数的大小比较方法,两个实数可以利用做差法比较大小.。
人教版七年级初一数学下学期第六章 实数单元 易错题难题测试基础卷试题一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个 B .2个C .3个D .4个 2.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则( )A .132B .146C .161D .6663.在下面各数中无理数的个数有( )-3.14,,227,0.1010010001...,+1.99,-3π A .1个B .2个C .3个D .4个 4.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( )A .n +1B .21n +C D5.若2a a a -=,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧6.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3-7.在实数227,0中,是无理数的是( )A .227B .0C D8的平方根是( )A B . C .±2 D .29.估计2+的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间 10.下列判断中不正确的是( )AB .无理数都能用数轴上的点来表示C 4D .﹣5的绝对值为5 二、填空题 11.实数,,a b c 在数轴上的点如图所示,化简()()222a a b c b c ++---=__________.12.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.13.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.14.若()221210a b c -+++-=,则a b c ++=__________.15.规定运算:()a b a b *=-,其中b a 、为实数,则(154)15*+=____16.比较大小:512-__________0.5.(填“>”“<”或“=”) 17.3是______的立方根;81的平方根是________;32-=__________.18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.已知:202044.9444≈⋯,20214.21267≈⋯,则20.2(精确到0.01)≈__________.20.观察下列各式:111233+=,112344+=,113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.如图,长方形ABCD 的面积为300cm 2,长和宽的比为3:2.在此长方形内沿着边的方向能否并排裁出两个面积均为147cm 2的圆(π取3),请通过计算说明理由.22.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ . (2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ; ( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值. 23.观察下列各式的计算结果 2113131-1-24422===⨯ 2118241-1-39933===⨯ 21115351-1-4161644===⨯ 21124461-1-5252555===⨯ (1)用你发现的规律填写下列式子的结果:211-6= × ; 211-10= × ; (2)用你发现的规律计算:22222111111-1-1-1-1-23420162017⨯⨯⨯⋯⨯⨯()()()()() (3)计算()2222211111111112341n n ⎡⎤⎛⎫-⨯-⨯-⨯⨯-⨯-⎢⎥ ⎪⎝⎭-⎢⎥⎣⎦()()()(直接写出结果) 24.观察下列等式: ①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得 1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= . (3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 25.观察下列解题过程:计算231001555...5+++++解:设231001555...5S =+++++①则23410155555....5S =+++++②由-②①得101451S =-101514S -∴= 即10123100511555 (54)-+++++= 用学到的方法计算:2320191222...2+++++26.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法: 设22019202012222s =+++++ ① 则22020202122222s =++++ ②②-①得,2021221s s s -==-请仿照小明的方法解决以下问题:(1)291222++++=________;(2)220333+++=_________; (3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将2,24,27,n 分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可.【详解】解:∵2=1×2,∴F (2)=12,故①正确; ∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小 ∴F (24)=42=63,故②是错误的; ∵27=1×27=3×9,且3和9的绝对值差最小∴F (27)=31=93,故③错误; ∵n 是一个完全平方数,∴n 能分解成两个相等的数的积,则F (n )=1,故④是正确的.正确的共有2个.故答案为B .【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.2.B解析:B【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案.详解:1.52=2.25,可得出有2个1;2.52=6.25,可得出有4个2;3.52=12.25,可得出有6个3;4.52=20.25,可得出有8个4;5.52=30.25,可得出有10个5;则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选:B.点睛本题考查了估算无理数的大小.3.C解析:C【分析】根据无理数的三种形式求解.【详解】-3.14,,227,0.1010010001...,+1.99,-3π无理数的有:,0.1010010001...,-3π共3个 故选:C【点睛】 本题考查了无理数的定义,辨析无理数通常要结合有理数的概念进行.初中范围内学习的无理数有三类:①π类,如2π,3π等;②③虽有规律但是无限不循环的数,如0.1010010001…,等.4.D解析:D【分析】根据算术平方根的平方等于这个这个自然数,得出下一个自然数,可得答案.解:这个自然数是2n,则和这个自然数相邻的下一个自然数是21n+,.故选:D.【点睛】本题考查了算术平方根,掌握一个数算术平方根的平方等于这个数是解题关键.5.B解析:B【分析】根据非正数的绝对值是它的相反数,可得答案.【详解】解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.6.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3-是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.D解析:D无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:227是分数,属于有理数,故选项A不合题意;0是整数,属于有理数,故选项B不合题意;2=-,是整数,属于有理数,故选项C不合题意;是无理数,故选项D符合题意.故选:D.【点睛】本题考查了无理数的定义,掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是关键.8.B解析:B【分析】【详解】2,.故选:B.【点睛】9.D解析:D【分析】2与3之间,所以2在4与5之间.【详解】解:∵22=4,32=9,∴23,∴2+2<3+2,则4<2+<5,故选:D.【点睛】键.10.C解析:C【分析】运用实数大小的比较、绝对值有理数和无理数的定义和性质逐项分析即可.【详解】解:A 是无理数,原说法正确,故此选项不符合题意;B 、无理数都能用数轴上的点来表示,原说法正确,故此选项不符合题意;C 44,原说法错误,故此选项符合题意;D故答案为C .【点睛】本题主要考查了实数大小的比较、绝对值有理数和无理数的定义和性质等知识点,灵活运用相关定义和性质是解答本题的关键.二、填空题11.0【分析】由数轴可知,,则,即可化简算术平方根求值.【详解】解:由数轴可知,,则,,故答案为:0.【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算. 解析:0【分析】由数轴可知,0b c a <<<,则0,0a b b c +<-<,即可化简算术平方根求值.【详解】解:由数轴可知,0b c a <<<,则0,0a b b c +<-<,||()()0c a a b c b c a a b c b c =-+++-=--++-=, 故答案为:0.【点睛】此题考查数轴上数的大小关系,算术平方根的性质,整式的加减计算.12.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.14.【分析】先根据绝对值、算术平方根、偶次方的非负性求出a、b、c的值,再代入即可得.【详解】由题意得:,解得,则,故答案为:.【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键. 15.4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】===4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可.【详解】4)+4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.16.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.17.±9 2-【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵ ,∴3是27的立方根;∵ ,∴81的平方根是 ;∵ ,∴;故答案为:2解析:【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵3327= ,∴3是27的立方根;∵2(9)81±= ,∴81的平方根是9± ;2< ,22=故答案为:27,9±,;【点睛】本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.18.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键.解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 19.50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,∴应是的小数点向左移动一位得到的,∴,故答案为:4.50.【点睛】此题考查算术平解析:50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,的小数点向左移动一位得到的,04.5≈,故答案为:4.50.【点睛】此题考查算术平方根小数点的移动规律,熟记规律是解题的关键.20.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)n n =+≥ 【分析】=(2=+(3=+n(n ≥1)的等式表示出来是(1)n n =+≥ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥ 【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.三、解答题21.不能,说明见解析.【分析】根据长方形的长宽比设长方形的长DC 为3xcm ,宽AD 为2xcm ,结合长方形ABCD 的面积为300cm 2,即可得出关于x 的一元二次方程,解方程即可求出x 的值,从而得出AB 的长,再根据圆的面积公式以及圆的面积147cm 2 ,即可求出圆的半径,从而可得出两个圆的直径的长度,将其与AB 的长进行比较即可得出结论.【详解】解:设长方形的长DC 为3xcm ,宽AD 为2xcm .由题意,得 3x•2x=300,∵x >0,∴x =∴AB=,BC=cm .∵圆的面积为147cm 2,设圆的半径为rcm ,∴πr 2=147,解得:r=7cm .∴两个圆的直径总长为28cm .∵382428<=⨯=<,∴不能并排裁出两个面积均为147cm 2的圆.22.(1)111n n -+;1n n +;(2)①1341-;②112424+;( 3 )14. 【分析】(1)利用材料中的“拆项法”解答即可; (2)①先变形为111234=⨯,再利用(1)中的规律解题;②先变形为121224=,再逆用分数的加法法则即可分解; (3)按照定义“⊗”法则表示出193⊗,再利用(1)中的规律解题即可. 【详解】 解:(1)观察发现:()11n n =+111n n -+, 1111122334(1)n n ++++⨯⨯⨯+ =11111111223341n n -+-+-+⋯+-+ =111n -+ =1n n +; 故答案是:111n n -+;1n n +. (2)初步应用: ①111234=⨯=1134-; ②121112242424==+; 故答案是:1134-;112424+. ( 3 )由定义可知: 193⊗=11111111112203042567290110132++++++++=455111111611311412-+-+-+⋯+- =13211- =14. 故193⊗的值为14. 【点睛】 考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.23.(1)5766⨯;9111010⨯(2)10092017(3)12n n + 【解析】试题分析:(1)根据题目中所给的规律直接写出答案;(2)根据所得的规律进行计算即可;(3)根据所得的规律进行计算即可德结论.试题解析:(1)5766⨯ , 9111010⨯; (2)原式=1324352016201822334420172017⎛⎫⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭() =1201822017⨯ =10092017; (3)12n n+. 点睛:本题是一个数字规律探究题,解决这类问题的基本方法为:通过观察,分析、归纳发现其中的规律,并应用规律解决问题.24.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算.解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯ (1100102)⨯ =12×(111122334++⨯⨯⨯+…+15051⨯) =12×5051=2551. 点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.25.22020−1【分析】根据题目提供的求解方法进行计算即可得解.【详解】设S =2320191222...2+++++①则2S =2+22+23+…+22019+22020,②②−①得,S =(2+22+23+…+22019+22020)-(2320191222...2+++++)=22020−1 即2320191222...2+++++=22020−1.【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,读懂题目信息,理解并掌握求解方法是解题的关键.26.(1)1021-;(2)21332-;(3)111n a a +-- 【分析】(1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++①, ∴2s=29102222++++②, ②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++①, ∴3s=22021333+++②,②-①得:2s=2133-, ∴21332s -=, 故答案为: 21332-; (3)设s=231n a a a a ++++①, ∴as=231n n a a a a a +++++②,②-①得:(a-1)s=11n a +-,∴s=111n a a +--. 【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.。
七年级初一数学下学期第六章 实数单元 易错题难题自检题检测试卷一、选择题1.在求234567891666666666+++++++++的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:234567891666666666S =+++++++++……① 然后在①式的两边都乘以6,得:234567891066666666666S =+++++++++……②②-①得10661S S -=-,即10561S =-,所以10615S -=.得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出23420181...a a a a a ++++++的值?你的答案是A .201811a a --B .201911a a --C .20181a a-D .20191a -2.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( ) A .4mB .4m +4nC .4nD .4m ﹣4n3.有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③过一点有且只有一条直线与这条直线平行;④邻补角是互补的角;⑤实数与数轴上的点一一对应. 其中正确的有( ) A .1个B .2个C .3个D .4个4.下列说法中正确的个数有( ) ①0是绝对值最小的有理数; ②无限小数是无理数;③数轴上原点两侧的数互为相反数; ④相反数等于本身的数是0; ⑤绝对值等于本身的数是正数; A .2个B .3个C .4个D .5个5.下列一组数2211-8,3,0,2,0.010010001 (7)223π,,,(相邻两个1之间依次增加一个0),其中无理数的个数有( )A .0个B .1个C .2个D .3个6.在如图所示的数轴上,,AB AC A B =,两点对应的实数分别是3和1,-则点C 所对应的实数是( )A .13B .23C .231-D .2317.下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)232;(4)7是7的平方根. A .1B .2C .3D .48.下列命题是假命题的是( )A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣19.若33=0x y +,则x 和y 的关系是( ). A .x =y =0 B .x 和y 互为相反数 C .x 和y 相等D .不能确定10.借助计算器可求得22435,22443355+=,22444333555+=,仔细观察上面几道题的计算结果,试猜想222020420203444333+个个等于( )A .20174555个B .20185555个C .20195555个D .20205555个二、填空题11.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______ 12.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…; (2)f (12)=2,f (13)=3,f (14)=4,f (15)=5,… 利用以上规律计算:1(2019)()2019f f ____. 13.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________. 14.m 的平方根是n +1和n ﹣5;那么m +n =_____.15.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___16.某校数学课外小组利用数轴为学校门口的一条马路设计植树方案如下:第k 棵树种植在点k x 处,其中11x =,当2k ≥时,112()()55k k k k x x T T ---=+-,()T a 表示非负实数a 的整数部分,例如(26)2T .=,(02)0T .=. 按此方案,第6棵树种植点6x 为________;第2011棵树种植点2011x ________. 17.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________. 18.如果某数的一个平方根是﹣5,那么这个数是_____.19.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____. 20.34330035.12=30.3512x =-,则x =_____________.三、解答题21.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, ……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______.22.2是无理数,而无理是无限不循环小数,因2212的小数部分,事2的整数部分是1,将这个数减去其整数部2的小数部分,又例如:∵232273<<,即273<<7的整数部分为2,小数部分为)72。
七年级初一数学下学期第六章 实数单元 易错题难题检测试卷一、选择题1.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2B .()10080,2-C .()10090,2-D .()10090,22.一列数1a , 2a , 3a ,…… n a ,其中1a =﹣1, 2a =111a -, 3a =211a -,……,n a =111n a --,则1a ×2a ×3a ×…×2017a =( ) A .1B .-1C .2017D .-20173.已知x 、y(y ﹣3)2=0.若axy ﹣3x =y ,则实数a 的值是( ) A .14B .﹣14C .74D .﹣744) A .5和6 B .6和7 C .7和8 D .8和9 5.现定义一种新运算:a ★b=ab+a-b ,如:1★3=1×3+1-3=1,那么(-2)★5的值为( ) A .17 B .3C .13D .-176.若一个正方形边长为a ,面积为3,即23a =,可知a 是无理数,它的大小在下列哪两个数之间( ) A .1.5 1.6a <<B .1.6 1.7a <<C .1.7 1.8a <<D .1.8 1.9a <<7.观察下列各等式:231-+=-5-6+7+8=4-10-l1-12+13+14+15=9 -17-18-19-20+21+22+23+24=16 ……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1338.下列各数中3.14,0.1010010001…,﹣17,2π有理数的个数有( )A .1个B .2个C .3个D .4个9.若4a =,2=3b ,且a +b<0,则a -b 的值是( ) A .1或7 B .﹣1或7 C .1或﹣7 D .﹣1或﹣7 10.下列各数中,介于6和7之间的数是( )A .43B .50C .58D .339二、填空题11.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤3722-的最大整数,则M +N 的平方根为________.12.如果一个有理数a 的平方等于9,那么a 的立方等于_____.13.将1,2,3,6按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___14.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____. 15.若23(2)0y x -+-=,则y x -的平方根_________.16.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___.17.实a 、b 在数轴上的位置如图所示,则化简()2a b b a ++-=___________.18.49的平方根是________,算术平方根是______,-8的立方根是_____.19.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.20.观察下列各式:111233+=,112344+=,113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.三、解答题21.观察下列各式﹣1×12=﹣1+12﹣1123⨯=﹣11+23﹣1134⨯=﹣11+34(1)根据以上规律可得:﹣1145⨯= ;11-1n n += (n ≥1的正整数). (2)用以上规律计算:(﹣1×12)+(﹣1123⨯)+(﹣1134⨯)+…+(﹣1120152016⨯).22.化简求值:()1已知a 是13的整数部分,3b =,求54ab +的平方根.()2已知:实数a ,b 在数轴上的位置如图所示,化简:22(1)2(1)a b a b ++---.23.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式 1a b ab -=+成立的一对有理数,a b 为“共生有理数对”,记为(),a b ,如:数对12,3⎛⎫ ⎪⎝⎭,25,3⎛⎫⎪⎝⎭,都是“共生有理数对”. (1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).(2,1)- ,(13,2) .(2)若 5,2a ⎛⎫-⎪⎝⎭是“共生有理数对”,求a 的值; (3)若(),m n 是“共生有理数对”,则(),n m --必是“共生有理数对”.请说明理由; (4)请再写出一对符合条件的 “共生有理数对”为 (注意:不能与题目中已有的“共生有理数对”重复).24.七年某班师生为了解决“22012个位上的数字是_____”这个问题,通过观察、分析、猜想、验证、归纳等活动,从而使问题得以解决,体现了从特殊到一般的数学思想方法.师生共同探索如下: (1)认真填空,仔细观察.因为21=2,所以21个位上的数字是2 ;因为22=4,所以22个位上的数字是4; 因为23=8,所以23个位上的数字是8; 因为24= _____ ,所以24个位上的数字是_____; 因为25= _____ ,所以25个位上的数字是_____; 因为26= _____ ,所以26个位上的数字是_____;(2)小明是个爱动脑筋的学生,他利用上述方法继续探索,马上发现了规律,于是猜想:210个位上的数字是4,你认为对吗?(3)利用上述得到的规律,可知:22012个位上的数字是_____;(4)利用上述研究数学问题的思想与方法,试求:32013个位上的数字是_____. 25.阅读下列材料:()1121230123⨯=⨯⨯-⨯⨯ 123(234123)3⨯=⨯⨯-⨯⨯()1343452343⨯=⨯⨯-⨯⨯ 由以上三个等式相加,可得 读完以上材料,请你计算下列各题. (1)求1×2+2×3+3×4+…+10×11的值.(2)1×2+2×3+3×4+……+n×(n+1)=___________.26.已知2a -的平方根是2±,33a b --的立方根是3,整数c 满足不等式1c c <+. (1)求,,a b c 的值.(2)求2232a b c ++的平方根.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【详解】 因为()()11,10,2P -=,()()()()()21111,11,10,2=2,2P P P P -=-=-,()()()()()31211,11,22,20,4P P P P -=-=-=,()()41,14,4P -=-,()()51,10,8P -= ()()61,18,8P -=-,所以()()211,10,2n n P --=,()()21,12,2n n n P -=-,所以()()100920171,10,2P -=,故选D.2.B解析:B 【解析】 因为1a =﹣1,所以2a =11111112a ==---(),3 a =21121112a ==--,4 a =3111112a ==---,通过观察可得:1 a ,2a ,3a ,4 a ……的值按照﹣1,12, 2三个数值为一周期循环,将2017除以3可得372余1,所以2017a 的值是第273个周期中第一个数值﹣1,因为每个周期三个数值的乘积为:11212-⨯⨯=-,所以1a ×2a ×3a ×…×2017a =()()372111,-⨯-=-故选B.3.A解析:A 【分析】()230y -=可得:34030x y +=⎧⎨-=⎩,据此求出x 、y 的值,然后把求出的x 、y 的值代入axy-3x=y ,求出实数a 的值即可. 【详解】()230y -=,∴34030x y +=⎧⎨-=⎩,解得433x y ⎧=-⎪⎨⎪=⎩,∵axy-3x=y , ∴a(﹣43)·3-3×(﹣43)=3, ∴﹣4a +4=3, 解得a =14. 故选:A . 【点睛】本题考查了算数平方根平方数的非负性,利用非负数性质求x 、y 的值是解决问题的关键.4.B解析:B【分析】6<7. 【详解】所以6<7. 故选:B . 【点睛】的取值范围是解题关键.5.D解析:D 【分析】根据新运算的定义即可得到答案. 【详解】∵a ★b =ab +a ﹣b ,∴(﹣2)★5=(﹣2)×5﹣2﹣5=﹣17. 故选D . 【点睛】本题考查了基本的知识迁移能力,运用新定义,求解代数式即可,要灵活运用所学知识,要认真掌握.6.C解析:C 【分析】分别计算出1.5、1.6、1.7、1.8、1.9的平方,然后与3进行比较,即可得出a 的范围. 【详解】解:∵222221.52.25,1.6 2.56,1.7 2.89,1.83.24,1.9 3.61===== 又2.89<3<3.24 ∴1.7 1.8a << 故选:C. 【点睛】此题主要考查了估算无理数的大小,利用平方法是解题关键.7.C解析:C 【分析】通过观察发现:每一行等式右边的数就是行数的平方,故第n 行右边的数就是n 的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正. 【详解】解:第一行:211=;第二行:224=; 第三行:239=; 第四行:2416=; …… 第n 行:2n ; ∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132. 故选:C . 【点睛】此题主要考查探索数与式的规律,正确找出规律是解题关键.8.C解析:C 【分析】直接利用有理数的定义进而判断得出答案. 【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个. 故选C . 【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键.9.D解析:D 【分析】根据题意,利用绝对值的代数意义及二次根式性质化简,确定出a 与b 的值,即可求出-a b 的值.【详解】解:∵3a ==, 且a +b <0, ∴a =−4,a =−3;a =−4,b =3, 则a −b =−1或−7. 故选D . 【点睛】本题考查实数的运算,掌握绝对值即二次根式的运算是解题的关键.10.A解析:A 【分析】求出每个根式的范围,再判断即可.【详解】解:A、67,故本选项正确;B、78,故本选项错误;C、78,故本选项错误;D、34,故本选项错误;故选:A.【点睛】本题考查了估算无理数的大小的应用,关键是求出每个根式的范围.二、填空题11.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】<<a的和,解:∵M a∴M=-1+0+1+2=2,∵N是满足不等式x∴N=2,∴M+N=±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.12.±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了解析:±27【分析】根据a的平方等于9,先求出a,再计算a3即可.【详解】∵(±3)2=9,∴平方等于9的数为±3,又∵33=27,(-3)3=-27.故答案为±27.【点睛】本题考查了平方根及有理数的乘方.解题的关键是掌握平方根的概念及有理数乘方的法则. 13.【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算.【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,÷=……,即1中第三个数∵1994493故答案为.【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.14.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0, ∴[x]+(x )+[x )=-2或-1; ②当时,[x]=0,(x )=0,[x )=0, ∴[x]解析:﹣2或﹣1或0或1或2. 【分析】 有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0, ∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0, ∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1, ∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2. 故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键. 【详解】 请在此输入详解!15.【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】 解:,且, ∴y-3=0,x-2=0, . .的平方根是. 故答案为:. 【点睛】 此题考查算术平 解析:±1【分析】根据算术平方根的性质及乘方的性质解答,得到y=3,x=2,再进行计算即可. 【详解】解:23(2)0y x -+-=20,(2)0x -≥,∴y-3=0,x-2=0,3,2y x ∴==.1y x∴-=.y x∴-的平方根是±1.故答案为:±1.【点睛】此题考查算术平方根的性质及乘方的性质,求一个数的平方根,根据算术平方根的性质及乘方的性质求出x与y的值是解题的关键.16.【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】(⊕2)⊕3=⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关解析:【分析】根据“⊕”的含义,以及实数的运算方法,求出算式的值是多少即可.【详解】2)⊕3=3,故答案为3.【点睛】本题考查了定义新运算,以及实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.【解析】由数轴得,a+b<0,b-a>0,|a+b|+=-a-b+b-a=-2a.故答案为-2a.点睛:根据,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小解析:2a-【解析】由数轴得,a+b<0,b-a>0,=-a-b+b-a=-2a.故答案为-2a.点睛:根据,0,0a aaa a≥⎧=⎨-<⎩,推广此时a可以看做是一个式子,式子整体大于等于0,把绝对值变为括号;式子整体小于0,把绝对值变为括号,前面再加负号.最后去括号,化简. 18.±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.解析:±77-2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.19.π 圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π解析:π圆的周长=π•d=1×π=π【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.20.【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式,找(1)n n =+≥ 【分析】=(2=+(3=+n(n ≥1)的等式表示出来是(1)n n =+≥ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是(1)n n =+≥(1)n n =+≥ 【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.三、解答题21.(1)1145-+,111n n -++;(2)20152016-. 【分析】(1)根据题目中的式子,容易得到式子的规律;(2)根据题目中的规律,将乘法变形为加法即可计算出所求式子的结果.【详解】解:(1)11114545-⨯=-+,1111-=-11n n n n +++, 故答案为:1145-+,111n n -++; (2)1111111(1)()()()2233420152016-⨯+-⨯+-⨯+⋯+-⨯ 11111111()()()2233420152016=-++-++-++⋯+-+ 112016=-+20152016=-.【点睛】本题考查规律性:数字的变化类,解题的关键是明确题意,找出所求式子中数的变化的特点.22.(1)±3;(2)2a+b﹣1.【解析】分析:(1)由于34a=3,根据算术平方根的定义可求b(2)利用数轴得出各项符号,进而利用二次根式和绝对值的性质化简求出即可.详解:(1)∵34,∴a=3.=3,∴b=993;(2)由数轴可得:﹣1<a<0<1<b,则a+1>0,b﹣1>0,a﹣b<0,则+|a﹣b|=a+1+2(b﹣1)+(a﹣b)=a+1+2b﹣2+a﹣b=2a+b﹣1.点睛:本题考查了算术平方根与平方根的定义和估算无理数的大小,熟记概念,先判断所给的无理数的近似值是解题的关键.23.(1)不是;是;(2)a=37-;(3)见解析;(4)(4,35)或(6,57)【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义即可解决问题;【详解】解:(1)-2-1=-3,-2×1+1=1,∴-2-1≠-2×1+1,∴(-2,1)不是“共生有理数对”,∵3-12=52,3×12+1=52,∴3-12=3×12+1,∴(3,12)是“共生有理数对”;故答案为:不是;是;(2)由题意得:a-5()2- =512a-+,解得a=37 -.(3)是.理由:-n-(-m)=-n+m,-n•(-m)+1=mn+1∵(m,n)是“共生有理数对”∴m-n=mn+1∴-n+m=mn+1∴(-n,-m)是“共生有理数对”,(4)3344155-=⨯+;5566177-=⨯+∴(4,35)或(6,57)等.故答案为:是,(4,35)或(6,57)【点睛】本题考查有理数的混合运算、“共生有理数对”的定义,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.(1)16,6;32,2;64,4;(2)对;(3)6;(4)3.【分析】(1)利用乘方的概念分别求出24、25、26的结果,即可解决;(2)算出210的结果,即可知道个位数是多少,即可解决;(3)按照上述规律,以4为周期,个位数重复2、4、8、6,故2012中刚好有503组,故能得出答案;(4)分别求出31,32,33,34,找出规律,个位数重复3,9,7,1,2013中是4的503倍,而且余1,故得出结论.【详解】解:(1)∵24=16、25=32、26=64∴24的个位数为6;25的个位数为2;26的个位数为4;(2)∵210=1024∴个位数是4,该说法对(3)可以知道规律,以4为周期,各位数重复2、4、8、6,故2012中刚好有503组,故22012个位数刚好为6;(4)∵31=3,32=9,33=27,34=81,35=243;∴个位数重复3,9,7,1∵2013中是4的503倍,而且余1∴个位数为3.【点睛】本题主要考查了乘方的运算以及找规律,熟练乘方的运算以及找出规律是解决本题的关键.25.(1)440;(2)()()1123n n n ++. 【分析】通过几例研究n(n+1)数列前n 项和,根据题目中的规律解得即可.【详解】.(1)1×2+2×3+3×4+…+10×11 =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+1(10111291011)3⨯⨯-⨯⨯ =1101112=4403⨯⨯⨯.(2)1×2+2×3+3×4+……+n×(n+1) =1(123012)3⨯⨯-⨯⨯+1(234123)3⨯⨯-⨯⨯+1(345234)3⨯⨯-⨯⨯+…+ ()()()()121113n n n n n n ++--+⎡⎤⎣⎦ =()()1123n n n ++. 故答案为:()()1123n n n ++.【点睛】本题考查数字规律问题,读懂题中的解答规律,掌握部分探究的经验,用题中规律进行计算是关键.26.(1)6a =,8b =-,2c =;(2)12±【分析】(1)利用平方根,立方根定义以及估算方法确定出a ,b ,c 的值即可;(2)把a ,b ,c 的值代入计算即可求出所求.【详解】解:(1)根据题意得:a−2=4,a−3b−3=27,23<<,∴a=6,b=−8,c=2;(2)原式=2×62+(-8)2+23=72+64+8=144,144的平方根是±12.∴2232a b c ++的平方根是±12.【点睛】此题考查了估算无理数的大小,平方根以及立方根的定义,熟练掌握运算法则是解本题的关键.。
人教版七年级初一数学下学期第六章 实数单元 易错题难题自检题检测一、选择题1.对一组数(),x y 的一次操作变换记为()1,P x y ,定义其变换法则如下:()()1,,P x y x y x y =+-,且规定()()()11,,n n Px y P P x y -=(n 为大于1的整数), 如,()()11,23,1P =-,()()()()()21111,21,23,12,4P P P P ==-=,()()()()()31211,21,22,46,2P P P P ===-,则()20171,1P -=( ). A .()10080,2B .()10080,2-C .()10090,2-D .()10090,22.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 2410 14 19 2515 20 2621 2728则第20行从左至右第10个数为( ) A .425B .426C .427D .4283.下列说法中正确的是( ) A .若a a =,则0a > B .若22a b =,则a b = C .若a b >,则11a b> D .若01a <<,则32a a a <<4)A.BC .52±D .55.若一个正数x 的平方根为27a -和143a -,则x =( )A .7B .16C .25D .49630b -=) A .0B .±2C .2D .47.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;=﹣;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个8.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒9.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >010.在实数227,042 ) A .227B .0C 4D 2二、填空题11.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).12.若x +1是125的立方根,则x 的平方根是_________. 13.写出一个3到4之间的无理数____. 14.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 15.规定运算:()a b a b *=-,其中b a 、为实数,则154)15+=____ 16.写出一个大于3且小于4的无理数:___________.17.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d -+=_____. 18.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.19.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________. 20.已知2(21)10a b ++-=,则22004a b +=________.三、解答题21.定义:对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.将一个“奇异数”的个位数字与十位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()f a例如:19=a ,对调个位数字与十位数字后得到新两位数是91,新两位数与原两位数的和为9119110+=,和与11的商为1101110÷=,所以()1910f = 根据以上定义,完成下列问题:(1)填空:①下列两位数:10,21,33中,“奇异数”有 . ②计算:()15f = .()10f m n += .(2)如果一个“奇异数”b 的十位数字是k ,个位数字是21k -,且()8f b =请求出这个“奇异数”b(3)如果一个“奇异数”a 的十位数字是x ,个位数字是y ,且满足()510a f a -=,请直接写出满足条件的a 的值. 22.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n 个a (a ≠0)记作a ⓝ,读作“a 的圈n 次方”. (初步探究)(1)直接写出计算结果:2③= ,(﹣12)⑤= ; (深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式. (﹣3)④= ;5⑥= ;(﹣12)⑩= . (2)想一想:将一个非零有理数a 的圈n 次方写成乘方的形式等于 ; 23.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2, (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n aa a a a ÷÷÷÷个(a≠0)记作a ,读作“a 的圈n 次方”.初步探究(1)直接写出计算结果:2③=________,1)2-(⑤=________; (2)关于除方,下列说法错误的是________A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1=1;C .3④=4③D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. 深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于________; (3)算一算:()3242162÷+-⨯④.24.对非负实数x “四舍五入”到各位的值记为x <>.即:当n 为非负整数时,如果12n x -≤<1n 2+,则x n <>=;反之,当n 为非负整数时,如果x n <>=,则1122n x n -<+≤. 例如: 00.480<>=<>=,0.64 1.491, 3.5 4.124<>=<>=<>=<>=. (1)计算: 1.87<>= ;= ;(2)①求满足12x <->=的实数x 的取值范围, ②求满足43x x <>=的所有非负实数x 的值; (3)若关于x 的方程21122a x x -<>+-=-有正整数解,求非负实数a 的取值范围. 25.已知A 、B 在数轴上对应的数分别用a 、b 表示,且2110|2|02ab a ⎛⎫++-= ⎪⎝⎭,点P 是数轴上的一个动点.(1)求出A 、B 之间的距离;(2)若P 到点A 和点B 的距离相等,求出此时点P 所对应的数;(3)数轴上一点C 距A 点36c 满足||ac ac =-.当P 点满足2PB PC =时,求P 点对应的数.26.阅读下列材料:小明为了计算22019202012222+++++的值,采用以下方法:设22019202012222s =+++++ ①则22020202122222s =++++ ②②-①得,2021221s s s -==- 请仿照小明的方法解决以下问题: (1)291222++++=________;(2)220333+++=_________;(3)求231n a a a a ++++的和(1a >,n 是正整数,请写出计算过程).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【详解】 因为()()11,10,2P -=,()()()()()21111,11,10,2=2,2P P P P -=-=-,()()()()()31211,11,22,20,4P P P P -=-=-=,()()41,14,4P -=-,()()51,10,8P -= ()()61,18,8P -=-,所以()()211,10,2n n P --=,()()21,12,2n n n P -=-,所以 ()()100920171,10,2P -=,故选D.2.B解析:B 【解析】试题解析:寻找每行数之间的关系,抓住每行之间的公差成等差数列, 便知第20行第一个数为210,而每行的公差为等差数列, 则第20行第10个数为426, 故选B.3.D解析:D 【分析】根据绝对值的性质、平方根的性质、倒数的性质、平方和立方的性质对各项进行判断即可. 【详解】若a a =则0a ≥,故A 错误; 若22a b =则a b =或=-a b ,故B 错误; 当0a b >>时11b a<,故C 错误; 若01a <<,则32a a a <<,正确, 故答案为:D . 【点睛】本题考查了有理数的运算,掌握有理数性质的运算是解题的关键.解析:B 【分析】直接根据算术平方根的定义计算即可. 【详解】,∴5故选B . 【点睛】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.5.D解析:D 【解析】 【分析】首先根据正数的两个平方根互为相反数,列的方程:(27a -)+(143a -)=0,解方程即可求得a 的值,代入即可求得x 的两个平方根,则可求得x 的值. 【详解】∵一个正数x 的平方根为27a -和143a -, ∴(27a -)+(143a -)=0, 解得:a=7.∴27a -=7,143a -=-7, ∴x=(±7)2 =49. 故选D. 【点睛】此题考查平方根,解题关键在于求出a 的值.6.C解析:C 【分析】由算术平方根和绝对值的非负性,求出a 、b 的值,然后进行计算即可. 【详解】 解:根据题意,得 a ﹣1=0,b ﹣3=0, 解得:a =1,b =3, ∴a +b =1+3=4, ∴2.故选:C .本题考查了算术平方根和绝对值的非负性,解题的关键是正确求出a、b的值.7.A解析:A【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.8.B解析:B【分析】根据平行线的性质和角平分线性质可求.【详解】解:∵AB∥CD,∴∠1+∠BEF=180°,∠2=∠BEG,∴∠BEF=180°-50°=130°,又∵EG平分∠BEF,∴∠BEG=12∠BEF=65°,∴∠2=65°.故选:B.【点睛】此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.9.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.10.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:227是分数,属于有理数,故选项A不合题意;0是整数,属于有理数,故选项B不合题意;2=-,是整数,属于有理数,故选项C不合题意;是无理数,故选项D符合题意.故选:D.【点睛】本题考查了无理数的定义,掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数是关键.二、填空题11.③,④【分析】①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x1-≤[x)<x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.12.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.13.π(答案不唯一).【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解. 解:3到4之间的无理数π. 答案不唯一.解析:π(答案不唯一). 【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解. 解:3到4之间的无理数π. 答案不唯一.14.【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1, ∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…, ∴第n 个数的分母为n2+3,∴第n 个数 解析:2213n n -+ 【解析】∵分子分别为1,3,5,7,…,∴第n 个数的分子是2n -1, ∵4-3=1=12,7-3=4=22,12-3=9=32,19-3=16=42,…, ∴第n 个数的分母为n 2+3,∴第n 个数是2213n n -+,故答案为:2213n n -+. 15.4 【分析】根据题意将原式展开,然后化简绝对值,求解即可. 【详解】 = = =4故答案为4. 【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4 【分析】根据题意将原式展开,然后化简绝对值,求解即可. 【详解】4)+4=4=4故答案为4.【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.16.如等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.17.【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c+d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c+d =0,∴=﹣1+0+1=0.解析:【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.18.3【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】 本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.19.9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: ,解得:,则这个正数是.故答案为:9.【解析:9【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键.20.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a+1=0,b −1=0,∴a=,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】 本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.三、解答题21.(1)①21,②6,m n +;(2)35b =;(3)65a =【分析】(1)①由“奇异数”的定义可得;②根据定义计算可得;(2)由f (10m+n )=m+n ,可求k 的值,即可求b ;(3)根据题意可列出等式,可求出x 、y 的值,即可求a 的值.【详解】解:(1)①∵对任意一个两位数a ,如果a 满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“奇异数”.∴“奇异数”为21;②f (15)=(15+51)÷11=6,f (10m+n )=(10m+n+10n+m )÷11=m+n ;(2)∵f (10m+n )=m+n ,且f (b )=8∴k+2k-1=8∴k=3∴b=10×3+2×3-1=35;(3)根据题意有()f a x y =+∵()510a f a -=∴()10510x y x y +-+=∴5410x y -=∵x 、y 为正数,且x≠y∴x=6,y=5∴a=6×10+5=65故答案为:(1)①21,②6,m n +;(2)35b =;(3)65a =【点睛】本题考查了新定义下的实数运算,能理解“奇异数”定义是本题的关键.22.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21n a -⎛⎫ ⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a ,则11n a a a -⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】解:初步探究:(1)2③=2÷2÷2=12, 111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤ 111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8;深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2; 5⑥=5÷5÷5÷5÷5÷5=(15)4; 同理可得:(﹣12)⑩=82; (2)21n a a -⎛⎫= ⎪⎝⎭ⓝ【点睛】 本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.23.初步探究(1)12;—8;(2)C ;深入思考(1)213;415;28;(2)21n a -;(3)—1. 【解析】试题分析:理解除方运算,利用除方运算的法则和意义解决初步探究,通过除方的法则,把深入思考的除方写成幂的形式解决(1),总结(1)得到通项(2).根据法则计算出(3)的结果.试题解析:概念学习(1)2③=2÷2÷2=,(﹣)⑤=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1÷(﹣)÷(﹣)÷(﹣)=(﹣2)÷(﹣)÷(﹣)=﹣8故答案为,﹣8;(2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确;C 、3④=3÷3÷3÷3=,4③=4÷4÷4=,则 3④≠4③; 所以选项C 错误;D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;本题选择说法错误的,故选C ;深入思考:(1)(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×()2=;5⑥=5÷5÷5÷5÷5÷5=1×()4=; (﹣)⑩=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1×2×2×2×2×2×2×2×2=28; 故答案为,,28.(2)a ⓝ=a ÷a ÷a…÷a=1÷a n ﹣2=. (3):24÷23+(﹣8)×2③=24÷8+(﹣8)×=3﹣4=﹣1.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.24.(1)2,3 (2)①5722x ≤<②330,,42(3)00.5a ≤< 【分析】(1)根据新定义的运算规则进行计算即可;(2)①根据新定义的运算规则即可求出实数x 的取值范围;②根据新定义的运算规则和43x 为整数,即可求出所有非负实数x 的值; (3)先解方程求得22x a =-<>,再根据方程的解是正整数解,即可求出非负实数a 的取值范围.【详解】(1) 1.87<>=2;=3;(2)①∵12x <->= ∴1121222x --<+≤ 解得5722x ≤<;②∵43x x <>= ∴41413232x x x -<+≤ 解得3322x -<≤ ∵43x 为整数 ∴333,0,,442x =- 故所有非负实数x 的值有330,,42; (3)21122a x x -<>+-=- 1241a x x -<>+-=-22x a =-<>∵方程的解为正整数∴21a -<>=或2①当21a -<>=时,2x =是方程的增根,舍去②当22a -<>=时,00.5a ≤<.【点睛】本题考查了新定义下的运算问题,掌握新定义下的运算规则是解题的关键.25.(1)12;(2)-4;(3)2--或14-【分析】(1)根据平方与绝对值的和为0,可得平方与绝对值同时为0,可得a 、b 的值,根据两点间的距离,可得答案;(2)根据A 和B 所对应的数,可得AB 中点所表示的数,即为点P 所表示的数; (3)根据题意可以得到c 的值,然后利用分类讨论的方法即可求得点P 对应的数.【详解】解:(1)∵2110|2|02ab a ⎛⎫++-= ⎪⎝⎭, ∴11002ab +=,20a -=, 解得:a=2,b=-10,∴A 、B 之间的距离为:2-(-10)=12;(2)∵P 到A 和B 的距离相等,∴此时点P 所对应的数为:()21042+-=-;(3)∵|ac|=-ac ,a=2>0,∴c <0,又|AC|=∴c=2-BC=12-∵2PB PC =,①P 在BC 之间时,点P 表示(2101223-+⨯-=--②P 在C 点右边时,点P 表示(1021214-+⨯-=-∴点P 表示的数为:2--或14-【点睛】本题主要考查数轴上的点与绝对值的关系和平方与绝对值的非负性,另外此题有一个易错点,第(3)题中,要注意距离与数轴上的点的区别. 26.(1)1021-;(2)21332-;(3)111n a a +-- 【分析】 (1)设式子等于s ,将方程两边都乘以2后进行计算即可;(2)设式子等于s ,将方程两边都乘以3,再将两个方程相减化简后得到答案; (3)设式子等于s ,将方程两边都乘以a 后进行计算即可.【详解】(1)设s=291222++++①, ∴2s=29102222++++②, ②-①得:s=1021-,故答案为:1021-;(2)设s=220333+++①, ∴3s=22021333+++②,②-①得:2s=2133-, ∴21332s -=, 故答案为: 21332-; (3)设s=231n a a a a ++++①, ∴as=231n n a a a a a +++++②,②-①得:(a-1)s=11n a +-,∴s=111n a a +--. 【点睛】此题考查代数式的规律计算,能正确理解已知的代数式的运算规律是难点,依据规律对于每个式子变形计算是关键.。
七年级初一数学下学期第六章 实数单元 易错题难题自检题学能测试一、选择题1.下列各数中,不是无理数的是( ) A .30.8B .﹣3π C .14 D .0.121 121 112…2.25的算术平方根是( ) A .5±B .5C .52±D .53.定义(),2f a b ab =,()22(1)g m m m =-+,例如:()1,22124f =⨯⨯=,()()2112111g -=---+=,则()1,2g f ⎡⎤-⎣⎦的值是( )A .-4B .14C .-14D .14.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或1;③任何实数都有立方根;④16的平方根是4±,其中正确的个数有( ) A .0个B .1个C .2个D .3个5.按照下图所示的操作步骤,若输出y 的值为22,则输入的值x 为( )A .3B .-3C .±3D .±96.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭ B .()239-=C .42=±D .()515-=-7.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,E F EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒8.已知,x y 为实数且|1|10x y ++-=,则2012x y ⎛⎫⎪⎝⎭的值为( )A .0B .1C .-1D .20129.若320,a b -+=则+a b 的值是( ) A .2 B 、1 C 、0 D 、1- 10.在下列实数中,无理数是( )A .337B .πC .25D .13二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.若已知()21230a b c -+++-=,则a b c -+=_____. 13.写出一个3到4之间的无理数____.14.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.15.m 的平方根是n +1和n ﹣5;那么m +n =_____.16.313312+333123++33331234+++333312326++++=__________.17.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____.18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.若x <0323x x ____________.20.202044.9444≈⋯20214.21267≈⋯20.2(精确到0.01)≈__________.三、解答题21.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=.①根据题意,3⊕(7)-⊕113的值为__________;②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a,b,c的值,进行“a⊕b⊕c”运算,在所有计算结果中的最大值为__________;最小值为__________.22.探究与应用:观察下列各式:1+3=21+3+5=21+3+5+7=21+3+5+7+9=2……问题:(1)在横线上填上适当的数;(2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示)23.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n个a(a≠0)记作aⓝ,读作“a的圈n次方”.(初步探究)(1)直接写出计算结果:2③=,(﹣12)⑤=;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.(﹣3)④=;5⑥=;(﹣12)⑩=.(2)想一想:将一个非零有理数a的圈n次方写成乘方的形式等于;24.我们在学习“实数”时画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O为圆心,正方形的对角线长为半径画弧交数轴于点A”,请根据图形回答下列问题:(1)线段OA的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式体现了的数学思想方法.(将下列符合的选项序号填在横线上)A.数形结合 B.代入 C.换元 D.归纳25.你会求(a﹣1)(a2012+a2011+a2010+…+a2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a-+=-,()()23111a a a a-++=-,()()324111a a a a a-+++=-,(1)由上面的规律我们可以大胆猜想,得到(a﹣1)(a2014+a2013+a2012+…+a2+a+1)=利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是.(3)求52014+52013+52012+…+52+5+1的值.26.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences).这个常数叫做等比数列的公比,通常用字母q表示(q≠0).(1)观察一个等比列数1,1111,,,24816,…,它的公比q=;如果a n(n为正整数)表示这个等比数列的第n项,那么a18=,a n=;(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:令S=1+2+4+8+16+…+230…①等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②由② ﹣①式,得2S﹣S=231﹣1即(2﹣1)S=231﹣1所以3131212121S-==--请根据以上的解答过程,求3+32+33+…+323的值;(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,a n,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示a n;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+a n.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】B.3π-是无理数;12=,是有理数; D.0.121 121 112…是无理数; 故选:C . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.B解析:B 【分析】直接根据算术平方根的定义计算即可. 【详解】,∴5故选B . 【点睛】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.3.C解析:C 【分析】根据(),2f a b ab =,()22(1)g m m m =-+,代入求解即可.【详解】 解(),2f a b ab =,()22(1)g m m m =-+∴()1,2g f ⎡⎤-⎣⎦=()()244241-14g -=---+= 故选C. 【点睛】本题考查了新定义的有理数运算,利用(),2f a b ab =,()22(1)g m m m =-+,代入求值是解答本题的关键.4.C解析:C 【分析】分别根据相关的知识点对四个选项进行判断即可. 【详解】解:①所有无理数都能用数轴上的点表示,故①正确; ②若一个数的平方根等于它本身,则这个数是0,故②错误; ③任何实数都有立方根,③说法正确;2±,故④说法错误; 故其中正确的个数有:2个. 故选:C . 【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.5.C解析:C 【分析】根据操作步骤列出方程,然后根据平方根的定义计算即可得解. 【详解】由题意得:23522x -=, ∴29x =, ∵2(39)±=, ∴3x =±, 故选:C . 【点睛】此题考查平方根的定义,求一个数的平方根,利用平方根的定义解方程,正确理解计算的操作步骤得到方程是解题的关键.6.B解析:B 【分析】根据有理数的乘方以及算术平方根的意义即可求出答案. 【详解】解:A.211525⎛⎫-= ⎪⎝⎭,所以,选项A 运算错误,不符合题意; B.()239-=,正确,符合题意;2=,所以,选项C 运算错误,不符合题意; D.()511-=-,所以,选项D 运算错误,不符合题意; 故选:B .【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.7.B解析:B【分析】根据平行线的性质和角平分线性质可求.【详解】解:∵AB∥CD,∴∠1+∠BEF=180°,∠2=∠BEG,∴∠BEF=180°-50°=130°,又∵EG平分∠BEF,∴∠BEG=12∠BEF=65°,∴∠2=65°.故选:B.【点睛】此题考查平行线的性质,角平分线的性质,解题关键在于掌握两直线平行,内错角相等和同旁内角互补这两个性质.8.B解析:B【分析】利用非负数的性质求出x、y,然后代入所求式子进行计算即可.【详解】由题意,得x+1=0,y-1=0,解得:x=-1,y=1,所以2012xy⎛⎫⎪⎝⎭=(-1)2012=1,故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.9.B解析:B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B.考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.10.B解析:B 【分析】分别根据无理数、有理数的定义即可判定选择项. 【详解】解:337,13是有理数, π是无理数, 故选B . 【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.二、填空题11.、、、. 【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53; 如果两次才输出结果:则x=(53-2)÷3=17; 如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1. 【解析】解:∵y =3x +2,如果直接输出结果,则3x +2=161,解得:x =53; 如果两次才输出结果:则x =(53-2)÷3=17; 如果三次才输出结果:则x =(17-2)÷3=5; 如果四次才输出结果:则x =(5-2)÷3=1; 则满足条件的整数值是:53、17、5、1. 故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12.6 【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可. 【详解】 解:因为, 所以, 解得, 故,故答案为:6.本题考查非负数的性质,主要考查绝对值、平方解析:6 【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可. 【详解】解:因为()2120a b -+++=, 所以10,20,30a b c -=+=-=, 解得1,2,3a b c ==-=, 故1(2)36a b c -+=--+=, 故答案为:6. 【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键.13.π(答案不唯一). 【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解. 解:3到4之间的无理数π. 答案不唯一.解析:π(答案不唯一). 【解析】考点:估算无理数的大小.分析:按要求找到3到4之间的无理数须使被开方数大于9小于16即可求解. 解:3到4之间的无理数π. 答案不唯一.14.【分析】设点C 表示的数是x ,再根据中点坐标公式即可得出x 的值. 【详解】解:设点C 表示的数是x ,∵数轴上1、的点分别表示A 、B ,且点A 是BC 的中点, 根据中点坐标公式可得:,解得:, 故答案解析:2-【分析】设点C 表示的数是x ,再根据中点坐标公式即可得出x 的值.解:设点C表示的数是x,∵数轴上1的点分别表示A、B,且点A是BC的中点,,解得:,故答案为:【点睛】本题考查的是实数与数轴,熟知数轴上的点与实数是一一对应关系是解答此题的关键.15.11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答解析:11【分析】直接利用平方根的定义得出n的值,进而求出m的值,即可得出答案.【详解】解:由题意得,n+1+n﹣5=0,解得n=2,∴m=(2+1)2=9,∴m+n=9+2=11.故答案为11.【点睛】此题主要考查了平方根,正确利用平方根的定义得出n的值是解题关键.16.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=10+=1+2+3+n+=351=1+2+326故答案为:351【点睛】本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.17.-3【分析】先确定的范围,再确定的范围,然后根据题意解答即可.【详解】解:∵3<<4∴-3<<-2∴-3故答案为-3.【点睛】本题考查了无理数整数部分的有关计算,确定的范围是解答本解析:-3【分析】1⎡⎣的范围,然后根据题意解答即可.【详解】解:∵34 ∴-3<1--2∴1⎡=⎣-3故答案为-3. 【点睛】18.【分析】设,代入原式化简即可得出结果. 【详解】 原式故答案为:. 【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】设1120182019m =+,代入原式化简即可得出结果. 【详解】原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭221202*********m m m m mm =-+--++ 12020= 故答案为:12020. 【点睛】本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 19.0 【分析】分别利用平方根和立方根直接计算即可得到答案. 【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,=-+=,x x故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.20.50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,∴应是的小数点向左移动一位得到的,∴,故答案为:4.50.【点睛】此题考查算术平解析:50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,的小数点向左移动一位得到的,≈,4.5故答案为:4.50.【点睛】此题考查算术平方根小数点的移动规律,熟记规律是解题的关键.三、解答题21.(1)3 (2)53(3)117-【分析】(1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论. 【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可,此时最大值为89,最小值为67-;当a-b-c≤0时,原式()12a b c a b c b c =-+++++=+,此时最大值为785993b c +=+=,最小值为6511777b c ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭,∵586113977>>->- ∴综上所述最大值为53,最小值为117-.【点睛】本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键. 22.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2; (3)﹣1.008016×106. 【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到. (2) 根据规律写出即可. (3) 先提取符号,再用规律解题.【详解】 解:(1)1+3=22 1+3+5=32 1+3+5+7=42 1+3+5+7+9=52 ……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+…+2019) =﹣10102 =﹣1.0201×106. 【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.23.初步探究:(1)12,-8;深入思考:(1)(−13)2,(15)4,82;(2)21n a -⎛⎫ ⎪⎝⎭【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为1a ,则11n a a a -⎛⎫=⨯ ⎪⎝⎭ⓝ;【详解】解:初步探究:(1)2③=2÷2÷2=12, 111111-=-----222222⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫÷÷÷÷ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑤111=1---222⎛⎫⎛⎫⎛⎫÷÷÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()11-2--22⎛⎫⎛⎫÷÷ ⎪ ⎪⎝⎭⎝⎭=-8;深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−13)2=(−13)2; 5⑥=5÷5÷5÷5÷5÷5=(15)4; 同理可得:(﹣12)⑩=82;(2)21n aa-⎛⎫= ⎪⎝⎭ⓝ【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.24.;(2)数轴上的点和实数是一一对应关系;(3)A.【分析】(1)首先根据勾股定理求出线段OB的长度,然后结合数轴的知识即可求解;(2)根据数轴上的点与实数的对应关系即可求解;(3)本题利用实数与数轴的对应关系即可解答.【详解】解:(1)OB2=12+12=2,∴OB,∴OA=(2)数轴上的点和实数是一一对应关系(3) 这种研究和解决问题的方式,体现的数学思想方法是数形结合.故选A.【点睛】本题主要考查了实数与数轴之间的关系,此题综合性较强,不仅要结合图形,还需要熟悉平方根的定义.也要求学生了解数形结合的数学思想.25.(1)a2015﹣1;(2)22015﹣1;(3)2015514-.【分析】(1)根据已知算式得出规律,即可得出答案.(2)先变形,再根据规律得出答案即可.(3)先变形,再根据规律得出答案即可.【详解】(1)由上面的规律我们可以大胆猜想,(a﹣1)(a2012+a2011+a2010+…+a2+a+1)=a2015﹣1,故答案为:a2015﹣1;(2)22014+22013+22012+…+22+2+1=(2﹣1)×(22014+22013+22012+…+22+2+1)=22015﹣1,故答案为:22015﹣1;(3)52014+52013+52012+…+52+5+1=14×(5﹣1)×(52014+52013+52012+…+52+5+1)=2015514-.【点睛】本题考查了实数运算的规律题,掌握算式的规律是解题的关键.26.(1)12,1712,n-112;(2)24332-;(3)()11111na aa--【分析】(1)12÷1即可求出q,根据已知数的特点求出a18和a n即可;(2)根据已知先求出3S,再相减,即可得出答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)12÷1=12,a18=1×(12)17=1712,a n=1×(12)n﹣1=112n-,故答案为:12,1712,112n-;(2)设S=3+32+33+ (323)则3S=32+33+…+323+324,∴2S=324﹣3,∴S=2433 2-(3)a n=a1•q n﹣1,a1+a2+a3+…+a n=() 11111na aa--.【点睛】本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.。