苏教版六年级上长方体和正方体的认识和表面积
- 格式:ppt
- 大小:5.23 MB
- 文档页数:31
苏教版六年级数学上册(全册)知识点(一)长方体和正方体长方体和正方体的特征:长方体和正方体的表面积:概念:长方体或正方体 6 个面的总面积,叫做它们的表面积计算公式:长方体表面积=(长×宽+长×高+宽×高)×2正方体表面积=棱长×棱长×6注:不足 6 个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
体积(容积)单位进率换算:1 立方米=1000 立方分米 1 立方分米=1000 立方厘米1m³=1000dm³1dm³=1000cm³1 升=1000 毫升 1 立方分米=1 升 1 立方厘米=1 毫升1L=1000mL 1dm=1L 1cm³=1mL长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。
计算公式:长方体体积公式=长×宽×高正方体体积公式=棱长×棱长×棱长长方体和正方体的体积=底面积×高(二)分数乘法分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是 1 的分数】2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位 1 的量,想单位 1 的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
分数与分数相乘及连乘:1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。
2.分数连乘:通过几个分数的分子与分母直接约分再进行计算3.一个数与比 1 小的数相乘,积小于原数;一个数与比 1 大的数相乘,积大于原数。
倒数的认识:1.乘积是 1 的两个数互为倒数。
长方体和正方体一、长方体和正方体的认识<一个长方体至少可以有两个面是正方形,最多可以有6各面是正方形,但不会存在3个、4个、5个面是正方形!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )~8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
( )11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( )12、长方体和正方体最多可以看到3个面。
( )13、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( )14、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( )15、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)填空:\1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。
3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
4、把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4)正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的,因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
前和后面的彩带长度=高的长度;左和右面的彩带长度=高的长度;上和下面的彩带长度=长的长度。
2017最新苏教版六年级数学上册知识点总结(一)长方体和正方体 长方体和正方体的特征:长方体和正方体的表面积:概念:长方体或正方体6个面的总面积,叫做它们的表面积 计算公式:长方体的棱长总和=(长+宽+高)×4长方体表面积=(长×宽+长×高+宽×高)×2或=)2S a b a c b c ⨯+⨯+⨯⨯表( 正方体的棱长总和=棱长×12正方体表面积=棱长×棱长×6或2=66S a a a ⨯⨯=表注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
体积(容积)单位进率换算:1立方米=1000立方分米 1立方分米=1000立方厘米3311000m dm = 3311000dm cm =1升=1000毫升 1立方分米=1升 1立方厘米=1毫升 1L=1000m L 31dm =1L 31cm =1m L 长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。
计算公式:长方体体积公式=长×宽×高 或 V a b h =⨯⨯ 正方体体积公式=棱长×棱长×棱长 或 3V a a a a =⨯⨯=长方体和正方体的体积=底面积×高 或 ×V S h =底 正方体棱上分割表面涂色:三面涂色有8个,两面涂色有(n-2)×12个一面涂色有(n-2)2×6个 没有涂色有(n-2)3个 (二)分数乘法分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是1的分数】2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位1的量,想单位1的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
长方体和正方体一、长方体和正方体的认识面是正方形!练习:(1)判断并改正:1、长方体的六个面一定是长方形; ( )2、正方体的六个面面积一定相等; ( )3、一个长方体(非正方体) 最多有四个面面积相等; ( )4、相交于一个顶点的三条棱相等的长方体一定是正方体。
( )7、长方体的三条棱分别叫做长、宽、高。
( )8、有两个面是正方形的长方体一定是正方体。
( )9、有三个面是正方形的长方体一定是正方体。
( )11、有两个相对的面是正方形的长方体,另外四个面的面积是相等的。
( )12、长方体和正方体最多可以看到3个面。
( )13、正方体不仅相对的面的面积相等,而且所有相邻的面的面积也都相等。
( )14、长方体(不包括正方体)除了相对的面相等,也可能有两个相邻的面相等。
( )15、一个长方体中最少有4条棱长度相等,最多有8条棱长度相等。
( )(2)填空:1、一个长方体最多有( )个面是正方形,最多有( )条棱长度相等。
2、一个长方体的底面是一个正方形,则它的4个侧面是( )形。
3、正方体不仅相对的面相等,而且所有相邻的面( ),它的六个面都是相等的( )形。
4、把长方体放在桌面上,最多可以看到( )个面。
最少可以看到( )个面。
【知识点2】棱长和公式:长方体棱长和=(长+宽+高)×4 长+宽+高=棱长和÷4正方体棱长和=棱长×12 棱长=棱长和÷12棱长和的变形:例如:有一个礼盒需要用彩带捆扎,捆扎效果如图,打结部分需要10厘米彩带,一共需要多长的彩带?分析:本题虽然并未直接提出求棱长和,但由于彩带的捆扎是和棱相互平行的, 因此,在解决问题时首先确定每部分彩带与那条棱平行,从而间接去求棱长和。
前和后面的彩带长度=高的长度;左和右面的彩带长度=高的长度;上和下面的彩带长度=长的长度。
需要彩带的长度=高×4+长×2+宽×2+打结部分长度20×4+30×2+10=150cm练习:(1)有一个长方体的鱼缸,长50厘米,宽30厘米,高30厘米,需要在用铝合金包裹玻璃连接处,需要( )米的铝合金。
第一单元长方体和正方体第1课时长方体和正方体的认识(1)教学内容:课本第1--2页例1、例2和“练一练”,练习一第1-4题。
教学目标:1、通过看一看、量一量、比一比来了解长方体和正方体的点、线、面的特征,认识长方体的长、宽、高及正方体的棱,理解长方体和正方体的关系。
2、培养学生观察、动手的能力及归纳的能力。
教学重点:…认识长方体、正方体的面、棱、顶点以及长、宽、高(棱长)的含义。
教学难点:长方体和正方体的特征。
课前准备:长方体和正方体的教具和学具。
教学过程:一、认识长方体的特征1、教学例1|(1)我们生活中,哪些物体的形状是长方体学生交流。
(2)教师出示长方体教具长方体有几个面分别是哪几个面每个人在自己的座位上最多能看到几个面学生交流自己所看到的结果。
教师指出:因为我们最多只能看见它的三个面,所以在画长方体的时候一般只画三个面。
教师指导学生画长方体的立体图,并介绍它的棱与顶点,学生和教师一起操作。
;长方体有几条棱和几个顶点它的面和棱各有什么特征每个学生通过看一看、量一量、比一比去认识一下,并在小组里交流,然后全班交流。
教师根据学生的交流情况及时板书。
顶点:8个棱:12条,分三组,每组的长度相等。
面:6个,相对面的形状完全一样。
学生对照自己的教具再说说长方体的点、线、面的特征。
教师进一步介绍学生认识长、宽、高并板在图中板书。
|2、完成相应的练一练3、完成练习三的第1题学生直接在小组里交流。
二、认识正方体的特征1、教学例2(1)出示正方体的教具,问:正方体有几个面、几条棱和几个顶点它们的面和棱各有什么特征让学生模仿例1的学习方法,看一看、量一量、比一比,去研究一下正方体的特征。
(2)交流学习的结果,教师根据学生的汇报板书。
,(3)比较长、正方体的特征的异同学生根据板书,结合立体图形,小组讨论交流。
汇报讨论的结果,教师用集合图表示它们的关系。
2、完成相应的练一练。
三、巩固练习1、完成练习一的第2题指名学生口答,集体评讲。
数学六年级苏教版长方体和正方体的表面积教学设计第1篇:苏教版《长方体和正方体的表面积》六年级数学教学设计一、创设情境,提出问题师:出示一个长方体的礼品盒。
问这个礼品盒是什么形?(长方体),长方体、正方体各有什么特征?师:新年到了,老师想把这个礼品送给我一个长辈,我想要把这个礼品盒包装一下,你们能帮我算一算老师至少要准备多少*纸吗?二、学生小组合作探究。
如果你们小组有困难可以参考合作提示:1、讨论,要求需要多少*纸就是要求什么?2、怎样求,列出算式,想想,还有不同的方法吗?3、结合生活实际想想还需要考虑什么问题?三、交流,汇报四、小结,提升1、师:要求需要多少*纸就是要求什么?每个物体都有表面和表面积,长方体的表面积是指长方体几个面积的总面积?长方体6个面的总面积,叫做它的表面积。
2、师:真能干!把长方体或正方体纸盒的表面展开,看一看得到的是什么图形?把组合图形恢复到原来的长方体和正方体。
(课件演示展开、复原全过程)3、汇总小结长方体表面积计算方法师:计算长方体的表面积必须知道哪些条件?学生回答后逐步小结完整:上面、下面长方形的长和宽相当于长方体的长和宽。
前面、后面长方体的长和宽相当于长方体的长和高。
左面、右面长方体的长和宽相当长长方体的宽和高。
用长宽2+长宽2+宽高2来计算长方体的表面积。
用(长宽+长高+宽高)2来计算长方体的表面积简便些。
4、在实际生活中我们还需要考虑粘贴部分问题五、简单应用一个长方体长5分米,宽4分米,高3分米求这个长方体的表面积六、拓展1、课件演示,将刚才的长方体抽拉成正方体2、学生尝试计算3、小结,师:求正方体表面积都必须知道什么条件?55表示正方体一个面的面积。
而正方体六个面面积都相等,所以求出一个面的面积后,乘6就得到了正方体的表面积。
师:谁来说说计算正方体的表面积的方法?七、应用知识,解决问题1、口答:一个正方体的棱长是2厘米,表面积是多少平方厘米?2、一节*囱长4米,口径是一个边长3分米的正方形,做4节这样的*囱,至少需要多少铁皮?3、一个火柴盒长4厘米,宽2.5厘米,高2厘米,如果材料的厚度不计,做这样的一个火柴盒的外盒和内芯,共需材料多少平方厘米?第2篇:数学六年级苏教版长方体和正方体的表面积教学设计〔教学目标〕1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。
新苏教版六年级数学上册知识点总结(一)长方体和正方体长方体和正方体的特征:长方体和正方体的表面积:概念:长方体或正方体 6 个面的总面积,叫做它们的表面积计算公式:长方体表面积=(长×宽+长×高+宽×高)×2 或 S表 =(a b a c b c)正方体表面积=棱长×棱长×6 或 2 S =a a 6 6a注:不足 6 个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。
体积(容积)单位进率换算:1 立方米 = 1000 立方分米 1 立方分米 = 1000 立方厘米1m ³ =1000dm³ 1dm³ = 1000cm³1 升=1000 毫升 1 立方分米 = 1 升 1 立方厘米=1 毫升1L = 1000m L 1dm³ = 1L 1cm³ = 1m L长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。
计算公式:长方体体积公式=长×宽×高或 V a b h正方体体积公式=棱长×棱长×棱长或 3 V a a a a长方体和正方体的体积=底面积×高或 V S底×h(二)分数乘法分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。
或者先将整数与分数的分母进行约分,再应用前面计算法则。
注:【任何整数都可以看作为分母是 1 的分数】2.求一个数的几分之几是多少,可以用乘法计算。
3.解题时可以根据表示几分之几的条件,确定单位 1 的量,想单位 1 的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。
分数与分数相乘及连乘:1.分数与分数相乘:用分子相乘的积作为分子,用分母相乘的积作为分母,最后约分成最简分数。