(物理) 高考物理稳恒电流专项训练100(附答案)
- 格式:doc
- 大小:534.00 KB
- 文档页数:16
高考物理稳恒电流专项训练及答案一、稳恒电流专项训练1.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.2.如图所示的电路中,R 1=4Ω,R 2=2Ω,滑动变阻器R 3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V 和0~15V 两挡,理想电流表的量程有0~0.6A 和0~3A 两挡.闭合开关S ,将滑片P 从最左端向右移动到某位置时,电压表、电流表示数分别为2V 和0.5A ;继续向右移动滑片P 至另一位置,电压表指针指在满偏的13,电流表指针也指在满偏的13.求电源电动势与内阻的大小.(保留两位有效数字)【答案】7.0V ,2.0Ω. 【解析】 【分析】根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势. 【详解】滑片P 向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表量程选取的是0~0.6 A ,电压表量程选取的是0~15 V ,所以第二次电流表的示数为13×0.6 A=0.2 A ,电压表的示数为13×15 V =5 V 当电流表示数为0.5A 时,R 1两端的电压为U 1=I 1R 1=0.5×4 V =2 V回路的总电流为I 总=I 1+12U R =0.5+22A =1.5 A由闭合电路欧姆定律得E =I 总r+U 1+U 3, 即E =1.5r+2+2①当电流表示数为0.2 A 时,R 1两端的电压为U 1′=I 1′R 1=0.2×4V =0.8 V回路的总电流为I 总′=I 1′+12U R '=0.2+0.82A =0.6A 由闭合电路欧姆定律得E =I 总′r+U 1′+U 3′, 即E =0.6r+0.8+5②联立①②解得E =7.0 V ,r =2.0Ω 【点睛】本题考查闭合电路的欧姆定律,但解题时要注意先会分析电流及电压的变化,从而根据题间明确所选电表的量程.3.在如图所示的电路中,电源电动势E=3V,内阻 r=0.5Ω,定值电阻R 1 =9Ω,R 2=5.5Ω,电键S 断开.①求流过电阻R 1的电流; ②求电阻 R 1消耗的电功率;③将S 闭合时,流过电阻R 1的电流大小如何变化? 【答案】(1)0.2A ;(2)0.36W ;(3)变大 【解析】试题分析:(1)电键S 断开时,根据闭合电路的欧姆定律求出电流;(2)根据211P I R =求出1R 消耗的电功率;(3)将S 闭合时回路中的总电阻减小,根据闭合电路的欧姆定律分析电流的变化.(1)电键S 断开时,根据闭合电路的欧姆定律得:12EI R Rr=++,解得:I=0.2A(2)根据211P I R =,得210.290.36P W =⨯= (3)将S 闭合时,2R 被短接,回路中的总电阻减小,根据闭合电路的欧姆定律:EI R r=+,可知电流变大,即流过电阻1R 的电流变大 【点睛】本题主要考查了闭合电路的欧姆定律,解决本题的关键就是要知道闭合电路的欧姆定律的表达式,并且知道回路中的电阻变化了,根据闭合电路的欧姆定律可以判断电流的变化.4.已知电流表的内阻R g =120 Ω,满偏电流I g =3 mA ,要把它改装成量程是6 V 的电压表,应串联多大的电阻?要把它改装成量程是3 A 的电流表,应并联多大的电阻? 【答案】改装成量程是6 V 的电压表,应串联1 880 Ω的电阻; 要把它改装成量程是3 A 的电流表,应并联0.12 Ω的电阻. 【解析】 【分析】 【详解】根据欧姆定律和串联电路特点可知,需串联的电阻1880g gUR R I =-=Ω; 同理,根据欧姆定律的并联电路的特点可知,改装成3A 电流表需并联的电阻0.12g g gI R R I I ==Ω-.5.在如图所示的电路中,两平行正对金属板A 、B 水平放置,两板间的距离d =4.0cm .电源电动势E =400V ,内电阻r =20Ω,电阻R 1=1980Ω.闭合开关S ,待电路稳定后,将一带正电的小球(可视为质点)从B 板上的小孔以初速度v 0=1.0m/s 竖直向上射入两板间,小球恰好能到达A 板.若小球所带电荷量q =1.0×10-7C ,质量m =2.0×10-4kg ,不考虑空气阻力,忽略射入小球对电路的影响,取g =10m/s 2.求:(1)A 、B 两金属板间的电压的大小U ; (2)滑动变阻器消耗的电功率P ; (3)电源的效率η.【答案】(1)U =200V (2)20W (3)0099.5 【解析】【详解】(1)小球从B 板上的小孔射入恰好到达A 板的过程中,在电场力和重力作用下做匀减速直线运动,设A 、B 两极板间电压为U ,根据动能定理有:20102qU mgd mv --=-,解得:U = 200 V .(2)设此时滑动变阻器接入电路中的电阻值为R ,根据闭合电路欧姆定律可知,电路中的电流1EI R R r=++,而 U = IR ,解得:R = 2×103 Ω滑动变阻器消耗的电功率220U P W R==.(3)电源的效率2121()099.50()P I R R P I R R r η+===++出总. 【点睛】本题电场与电路的综合应用,小球在电场中做匀减速运动,由动能定理求电压.根据电路的结构,由欧姆定律求变阻器接入电路的电阻.6.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。
高考物理稳恒电流题20套(带答案)及解析一、稳恒电流专项训练1.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线. (2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.2.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求:(1)流过灯泡的电流 (2)固定电阻的发热功率 (3)电动机输出的机械功率 【答案】(1)2A (2)7V (3)12W 【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。
高中物理稳恒电流题20套(带答案)及解析一、稳恒电流专项训练1.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化). 【答案】3.8×10-3m 【解析】 【分析】 【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率. 设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222LR Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为12R R R =+⑤,012L L L =+⑥式中0 1.0m L = 联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v . (a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】 (1)(a )电流QI t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ= 柱体体积V Sl = 柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总=设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆ 又压力Ft p =∆由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.3.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线. (2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.4.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】(1)由部分电路的欧姆定律,可得电阻为:5UR I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.5.(18分) 如图所示,金属导轨MNC 和PQD ,MN 与PQ 平行且间距为L ,所在平面与水平面夹角为α,N 、Q 连线与MN 垂直,M 、P 间接有阻值为R 的电阻;光滑直导轨NC 和QD 在同一水平面内,与NQ 的夹角都为锐角θ。
高考物理稳恒电流试题(有答案和解析)含解析一、稳恒电流专项训练1.材料的电阻随磁场的增强而增大的现象称为磁阻效应,利用这种效应可以测量磁感应强度.如图所示为某磁敏电阻在室温下的电阻—磁感应强度特性曲线,其中R B、R0分别表示有、无磁场时磁敏电阻的阻值.为了测量磁感应强度B,需先测量磁敏电阻处于磁场中的电阻值R B.请按要求完成下列实验.(1)设计一个可以测量磁场中该磁敏电阻阻值的电路,并在图中的虚线框内画出实验电路原理图(磁敏电阻及所处磁场已给出,待测磁场磁感应强度大小约为0.6~1.0 T,不考虑磁场对电路其他部分的影响).要求误差较小.提供的器材如下:A.磁敏电阻,无磁场时阻值R0=150 ΩB.滑动变阻器R,总电阻约为20 ΩC.电流表A,量程2.5 mA,内阻约30 ΩD.电压表V,量程3 V,内阻约3 kΩE.直流电源E,电动势3 V,内阻不计F.开关S,导线若干(2)正确接线后,将磁敏电阻置入待测磁场中,测量数据如下表:123456U(V)0.000.450.91 1.50 1.79 2.71I(mA)0.000.300.60 1.00 1.20 1.80根据上表可求出磁敏电阻的测量值R B=______Ω.结合题图可知待测磁场的磁感应强度B=______T.(3)试结合题图简要回答,磁感应强度B在0~0.2 T和0.4~1.0 T范围内磁敏电阻阻值的变化规律有何不同?________________________________________________________________________.(4)某同学在查阅相关资料时看到了图所示的磁敏电阻在一定温度下的电阻—磁感应强度特性曲线(关于纵轴对称),由图线可以得到什么结论?___________________________________________________________________________.【答案】(1)见解析图(2)1500;0.90(3)在0~0.2T范围内,磁敏电阻的阻值随磁感应强度非线性变化(或不均匀变化);在2.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。
高考物理稳恒电流题20套(带答案)含解析一、稳恒电流专项训练1.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻)E=I 2(r+R 1+R 2+R )由以上两式可解得R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.2.材料的电阻率ρ随温度变化的规律为ρ=ρ0(1+αt ),其中α称为电阻温度系数,ρ0是材料在t =0℃时的电阻率.在一定的温度范围内α是与温度无关的常量.金属的电阻一般随温度的增加而增加,具有正温度系数;而某些非金属如碳等则相反,具有负温度系数.利用具有正负温度系数的两种材料的互补特性,可制成阻值在一定温度范围内不随温度变化的电阻.已知:在0℃时,铜的电阻率为1.7×10-8Ω·m ,碳的电阻率为3.5×10-5Ω·m ;在0℃附近,铜的电阻温度系数为3.9×10-3℃-1,碳的电阻温度系数为-5.0×10-4℃-1.将横截面积相同的碳棒与铜棒串接成长1.0m 的导体,要求其电阻在0℃附近不随温度变化,求所需碳棒的长度(忽略碳棒和铜棒的尺寸随温度的变化).【答案】3.8×10-3m【解析】【分析】【详解】设所需碳棒的长度为L 1,电阻率为1ρ,电阻恒温系数为1α;铜棒的长度为2L ,电阻率为2ρ,电阻恒温系数为2α.根据题意有1101)l t ρρα=+(①2202)l t ρρα=+(②式中1020ρρ、分别为碳和铜在0℃时的电阻率.设碳棒的电阻为1R ,铜棒的电阻为2R ,有111L R S ρ=③,222L R Sρ=④ 式中S 为碳棒与铜棒的横截面积.碳棒和铜棒连接成的导体的总电阻和总长度分别为 12R R R =+⑤,012L L L =+⑥式中0 1.0m L =联立以上各式得:10112022121020L L L L R t S S Sραραρρ+=++⑦ 要使电阻R 不随温度t 变化,⑦式中t 的系数必须为零.即101120220L L ραρα+=⑧ 联立⑥⑧得:20210202101L L ραραρα=-⑨ 代入数据解得:313810m L -=⨯.⑩ 【点睛】考点:考查了电阻定律的综合应用本题分析过程非常复杂,难度较大,关键是对题中的信息能够吃投,比如哦要使电阻R 不随温度t 变化,需要满足的条件3.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求:①电阻R ;②电源电动势E ;③电源的输出功率P .【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w =【解析】【分析】【详解】(1)由部分电路的欧姆定律,可得电阻为:5U R I==Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V(3)电源的输出功率为P =UI =20W【点睛】部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握.4.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求:(1)流过灯泡的电流(2)固定电阻的发热功率(3)电动机输出的机械功率 【答案】(1)2A (2)7V (3)12W【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为:=2A (2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W 【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。
高中物理稳恒电流专项训练100(附答案)含解析一、稳恒电流专项训练1.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。
(1)实验时有两个滑动变阻器可供选择:a、阻值0到200Ω,额定电流b、阻值0到20Ω,额定电流本实验应选的滑动变阻器是(填“a”或“b”)(2)正确接线后,测得数据如下表12345678910U(V)0.00 3.00 6.00 6.16 6.28 6.32 6.36 6.38 6.39 6.400.000.000.000.060.50 1.00 2.00 3.00 4.00 5.50I(mA)a)根据以上数据,电压表是并联在M与之间的(填“O”或“P”)b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值)【答案】(1) a(2) a) Pb)【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,但要保证仪器的安全。
B 电阻的额定电流为,加在它上面的最大电压为10V ,所以仪器不能正常使用,而选择a 。
(2)电压表并联在M 与P 之间。
因为电压表加电压后一定有电流通过,但这时没有电流流过电流表,所以电流表不测量电压表的电流,这样电压表应该接在P 点。
视频2.能量守恒是自然界基本规律,能量转化通过做功实现。
研究发现,电容器存储的能最表达式为c E =21CU 2,其中U 为电容器两极板间的电势差.C 为电容器的电容。
现将一电容器、电源和某定值电阻按照如图所示电路进行连接。
已知电源电动势为0E ,电容器电容为0C ,定值电阻阻值为R ,其他电阻均不计,电容器原来不带电。
现将开关S 闭合,一段时间后,电路达到稳定状态。
求:在闭合开关到电路稳定的过程中,该电路因电磁辐射、电流的热效应等原因而损失的能量。
高考物理稳恒电流专项训练100(附答案)含解析一、稳恒电流专项训练1.为了测量一个阻值较大的末知电阻,某同学使用了干电池(1.5V ),毫安表(1mA ),电阻箱(0~9999W ),电键,导线等器材.该同学设计的实验电路如图甲所示,实验时,将电阻箱阻值置于最大,断开2K ,闭合1K ,减小电阻箱的阻值,使电流表的示数为1I =1.00mA ,记录电流强度值;然后保持电阻箱阻值不变,断开1K ,闭合2K ,此时电流表示数为1I =0.80mA ,记录电流强度值.由此可得被测电阻的阻值为____W .经分析,该同学认为上述方案中电源电动势的值可能与标称值不一致,因此会造成误差.为避免电源对实验结果的影响,又设计了如图乙所示的实验电路,实验过程如下: 断开1K ,闭合2K ,此时电流表指针处于某一位置,记录相应的电流值,其大小为I ;断开2K ,闭合1K ,调节电阻箱的阻值,使电流表的示数为___ ,记录此时电阻箱的阻值,其大小为0R .由此可测出x R = .【答案】0375,,I R 【解析】解:方案一中根据闭合电路欧姆定律,有E=I 1(r+R 1+R 2) (其中r 为电源内阻,R 1为电阻箱电阻,R 2为电流表内阻) E=I 2(r+R 1+R 2+R ) 由以上两式可解得 R=375Ω方案二是利用电阻箱等效替代电阻R 0,故电流表读数不变,为I ,电阻箱的阻值为R 0. 故答案为375,I ,R 0.【点评】本题关键是根据闭合电路欧姆定律列方程,然后联立求解;第二方案是用等效替代法,要保证电流相等.2.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线. (2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.3.如下左图所示,R1=14Ω,R2=9Ω,当S 扳到位置1时,电压表示数为2.8V ,当开关S 扳到位置2时,电压表示数为2.7V ,求电源的电动势和内阻?(电压表为理想电表)【答案】E=3V, r=1Ω【解析】试题分析:根据开关S 扳到位置1和2时,分别由闭合电路欧姆定律列出含有电动势和内阻的方程,联立组成方程组求解. 解:根据闭合电路欧姆定律,可列出方程组: 当开关S 扳到位置1时,E=U 1+I 1r=U 1+当开关S 扳到位置2时,E=U 2+I 2r=U 2+代入解得:E=3V ,r=1Ω答:电源的电动势和内阻分别为3V 和1Ω.【点评】本题提供了一种测量电源的电动势和内阻的方法,可以用电阻箱代替两个定值电阻,即由电压表和电阻箱并连接在电源上,测量电源的电动势和内阻,此法简称伏阻法.4.一小型发电机内的矩形线圈在匀强磁场中以恒定的角速度ω绕垂直于磁场方向的固定轴转动,线圈匝数100n =,穿过每匝线圈的磁通量ϕ随时间按正弦规律变化,如图所示,发电机内阻 5.0r =Ω,外电路电阻95R =Ω,已知感应电动势的最大值m m E n ω=Φ,其中m Φ为穿过每匝线圈磁通量的最大值,求串联在外电路的交流电流表(内阻不计)的读数。
高中物理稳恒电流专项训练100(附答案)一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e.该导线通有电流时,假设自由电子定向移动的速率均为v.(a)求导线中的电流I;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F,推导 F 安=F.(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F与m、n和v的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)【答案】(1)InvSe证明见答案F 1 2( 2) P nm 2S3【解析】(1)(a)电流I Q,又因为Q tne[v(St)] ,代入则I nvSe(b)F安=BIL,I nvSe,代入则:F 安=BnvSeL;因为总的自由电子个数N=nSL,每个自由电子受到洛伦兹力大小f=Bve,所以F=Nf=BnvSeL=F安,即 F 安=F.(2)气体压强公式的推导:设分子质量为m,平均速率为v,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S,长为l ,则l t柱体体积V Sl 柱体内分子总数N 总nV 因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为'1N总=N总总6总设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为p 2m N总,依据动量定理有 Ft p 又压力 Ft p 由以上各式得单位面积上的压力F 0 F 1 nm 2 0S3【点评】本题的第 1 题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修 3-1P.42 ,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很 容易的.第 2 问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进 行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导 过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运 动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的1.6【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为 mm .(2)用下列器材装成描绘电阻 R 0 伏安特性曲线的电路,请将实物图连线成为实验电路. 微安表 μA (量程 200 μA ,内阻约 200Ω); 电压表 V (量程 3V ,内阻约 10Ω); 电阻 R 0 (阻值约 20 k Ω);滑动变阻器 R (最大阻值 50Ω,额定电流 1 A ); 电池组 E (电动势 3V ,内阻不计);答案】( 1)1.880(1.878~ 1.882 均正确)2)开关 S 及导线若干.解析】1)首先读出固定刻度 1.5 mm再读出可动刻度38. 0 ×0. 01 mm="0.380" mm金属丝直径为( 1.5+0.380) mm="1.880" mm .2)描绘一个电阻的伏安特性曲线一般要求电压要从0 开始调节,因此要采用分压电路.由于R0 100, R V 0.5 ,因此μA 表要采用内接法,其电路原理图为R A R0连线时按照上图中所标序号顺序连接即可.3.如图所示,已知电源电动势E=20V,内阻r=l Ω,当接入固定电阻R=3Ω 时,电路中标有3V,6W的”灯泡L和内阻R D=1Ω的小型直流电动机 D 都恰能正常工作.试求:1)流过灯泡的电流2)固定电阻的发热功率3)电动机输出的机械功率答案】(1)2A(2)7V(3)12W解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P的数值可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率: =18W 一部分是线圈内阻的发热功率: =4W 另一部分转换为机械功率输出,则 =14W 【点睛】( 1)由灯泡正常发光,可以求出灯泡中的电流;( 2)知道电阻中流过的电流,就可利用热功率方程 ,求出热功率;( 3)电动机消耗的电功率有两个去向:一部 分是线圈内阻的发热功率;另一部分转化为机械功率输出。
高考物理稳恒电流题20套(带答案)及解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v . (a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】 (1)(a )电流QI t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ= 柱体体积V Sl = 柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总=设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆ 又压力Ft p =∆由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线. (2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.3.四川省“十二五”水利发展规划指出,若按现有供水能力测算,我省供水缺口极大,蓄引提水是目前解决供水问题的重要手段之一。
高中物理稳恒电流试题(有答案和解析)一、稳恒电流专项训练1.能量守恒是自然界基本规律,能量转化通过做功实现。
研究发现,电容器存储的能最表达式为c E =21CU 2,其中U 为电容器两极板间的电势差.C 为电容器的电容。
现将一电容器、电源和某定值电阻按照如图所示电路进行连接。
已知电源电动势为0E ,电容器电容为0C ,定值电阻阻值为R ,其他电阻均不计,电容器原来不带电。
现将开关S 闭合,一段时间后,电路达到稳定状态。
求:在闭合开关到电路稳定的过程中,该电路因电磁辐射、电流的热效应等原因而损失的能量。
【答案】2012CE 【解析】【详解】 根据电容定义,有C=Q U,其中Q 为电容器储存的电荷量,得:Q=CU 根据题意,电容器储存能量:E C =12CU 2 利用电动势为E 0的电源给电容器充电,电容器两极间电压最终为E 0, 所以电容器最终储存的能量为:E 充=2012CE , 则电容器最终储存的电荷量为:Q=CE 0, 整个过程中消耗消耗能量为:E 放=W 电源=E 0It=E 0Q=C 20E根据能量守恒得:E 损=E 放-E 充=C 20E -2012CE =2012CE2.如下左图所示,R1=14Ω,R2=9Ω,当S 扳到位置1时,电压表示数为2.8V ,当开关S 扳到位置2时,电压表示数为2.7V ,求电源的电动势和内阻?(电压表为理想电表)【答案】E=3V, r=1Ω【解析】试题分析:根据开关S 扳到位置1和2时,分别由闭合电路欧姆定律列出含有电动势和内阻的方程,联立组成方程组求解.解:根据闭合电路欧姆定律,可列出方程组:当开关S 扳到位置1时,E=U 1+I 1r=U 1+当开关S 扳到位置2时,E=U 2+I 2r=U 2+代入解得:E=3V ,r=1Ω答:电源的电动势和内阻分别为3V 和1Ω.【点评】本题提供了一种测量电源的电动势和内阻的方法,可以用电阻箱代替两个定值电阻,即由电压表和电阻箱并连接在电源上,测量电源的电动势和内阻,此法简称伏阻法.3.一小型发电机内的矩形线圈在匀强磁场中以恒定的角速度ω绕垂直于磁场方向的固定轴转动,线圈匝数100n =,穿过每匝线圈的磁通量ϕ随时间按正弦规律变化,如图所示,发电机内阻 5.0r =Ω,外电路电阻95R =Ω,已知感应电动势的最大值m m E n ω=Φ,其中m Φ为穿过每匝线圈磁通量的最大值,求串联在外电路的交流电流表(内阻不计)的读数。
(物理) 高考物理稳恒电流专项训练100(附答案)一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v . (a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】 (1)(a )电流QI t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ= 柱体体积V Sl = 柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总=设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆ 又压力Ft p =∆由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.在“探究导体电阻与其影响因素的定量关系”试验中,为了探究3根材料未知,横截面积均为S =0.20mm 2的金属丝a 、b 、c 的电阻率,采用如图所示的实验电路.M 为金属丝c 的左端点,O 为金属丝a 的右端点,P 是金属丝上可移动的接触点.在实验过程中,电流表读数始终为I =1.25A ,电压表读数U 随OP 间距离x 的变化如下表:x /mm600 700 800 900 1000 120014001600180020002100220023002400U/V3.954.505.105.906.506.656.826.937.027.157.858.509.059.75⑴绘出电压表读数U 随OP 间距离x 变化的图线; ⑵求出金属丝的电阻率ρ,并进行比较.【答案】(1)如图所示; (2)电阻率的允许范围:a ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅b ρ:68.510m -⨯Ω⋅~71.1010m -⨯Ω⋅c ρ:60.9610m -⨯Ω⋅~61.1010m -⨯Ω⋅通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率. 【解析】(1)以OP 间距离x 为横轴,以电压表读数U 为纵轴,描点、连线绘出电压表读数U 随OP 间距离x 变化的图线. (2)根据电阻定律l R S ρ=可得S U S R l I lρ=⋅=⋅. 663(6.5 3.9)0.2010 1.04101.25(1000600)10a m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 673(7.1 6.5)0.20109.6101.25(20001000)10b m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 663(9.77.1)0.2010 1.04101.25(24002000)10c m m ρ----⨯⨯=Ω⋅=⨯Ω⋅⨯-⨯ 通过计算可知,金属丝a 与c 电阻率相同,远大于金属丝b 的电阻率.3.(18分) 如图所示,金属导轨MNC 和PQD ,MN 与PQ 平行且间距为L ,所在平面与水平面夹角为α,N 、Q 连线与MN 垂直,M 、P 间接有阻值为R 的电阻;光滑直导轨NC 和QD 在同一水平面内,与NQ 的夹角都为锐角θ。
均匀金属棒ab 和ef 质量均为m ,长均为L ,ab 棒初始位置在水平导轨上与NQ 重合;ef 棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止。
空间有方向竖直的匀强磁场(图中未画出)。
两金属棒与导轨保持良好接触。
不计所有导轨和ab 棒的电阻,ef 棒的阻值为R ,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g 。
(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电荷量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止。
求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离。
【答案】(1)Q ef=;(2)q=;(3)B m=,方向竖直向上或竖直向下均可,x m=【解析】解:(1)设ab棒的初动能为E k,ef棒和电阻R在此过程产生热量分别为Q和Q1,有Q+Q1=E k①且Q=Q1 ②由题意 E k=③得 Q=④(2)设在题设的过程中,ab棒滑行的时间为△t,扫过的导轨间的面积为△S,通过△S的磁通量为△Φ,ab棒产生的电动势为E,ab棒中的电流为I,通过ab棒某截面的电荷量为q,则E=⑤且△Φ=B△S ⑥电流 I=⑦又有 I=⑧由图所示,△S=d(L﹣dcotθ)⑨联立⑤~⑨,解得:q=(10)(3)ab棒滑行距离为x时,ab棒在导轨间的棒长L x为:L x=L﹣2xcotθ (11)此时,ab棒产生的电动势E x为:E=Bv2L x (12)流过ef棒的电流I x为 I x=(13)ef棒所受安培力F x为 F x=BI x L (14)联立(11)~(14),解得:F x=(15)有(15)式可得,F x在x=0和B为最大值B m时有最大值F1.由题意知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图所示,图中f m为最大静摩擦力,有:F1cosα=mgsinα+μ(mgcosα+F1sinα)(16)联立(15)(16),得:B m=(17)B m就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下.有(15)式可知,B为B m时,F x随x增大而减小,x为最大x m时,F x为最小值,如图可知F2cosα++μ(mgcosα+F2sinα)=mgsinα (18)联立(15)(17)(18),得x m=答:(1)ef棒上产生的热量为;(2)通过ab棒某横截面的电量为.(3)此状态下最强磁场的磁感应强度是,磁场下ab棒运动的最大距离是.【点评】本题是对法拉第电磁感应定律的考查,解决本题的关键是分析清楚棒的受力的情况,找出磁感应强度的关系式是本题的重点.4.如图所示的电路中,R 1=4Ω,R 2=2Ω,滑动变阻器R 3上标有“10Ω,2A”的字样,理想电压表的量程有0~3V 和0~15V 两挡,理想电流表的量程有0~0.6A 和0~3A 两挡.闭合开关S ,将滑片P 从最左端向右移动到某位置时,电压表、电流表示数分别为2V 和0.5A ;继续向右移动滑片P 至另一位置,电压表指针指在满偏的13,电流表指针也指在满偏的13.求电源电动势与内阻的大小.(保留两位有效数字)【答案】7.0V ,2.0Ω. 【解析】 【分析】根据滑动变阻器的移动可知电流及电压的变化,是可判断所选量程,从而求出电流表的示数;由闭合电路欧姆定律可得出电动势与内阻的两个表达式,联立即可求得电源的电动势. 【详解】滑片P 向右移动的过程中,电流表示数在减小,电压表示数在增大,由此可以确定电流表量程选取的是0~0.6 A ,电压表量程选取的是0~15 V ,所以第二次电流表的示数为13×0.6 A =0.2 A ,电压表的示数为13×15 V =5 V 当电流表示数为0.5A 时,R 1两端的电压为U 1=I 1R 1=0.5×4 V =2 V回路的总电流为I 总=I 1+12U R =0.5+22A =1.5 A由闭合电路欧姆定律得E =I 总r+U 1+U 3, 即E =1.5r+2+2①当电流表示数为0.2 A时,R1两端的电压为U1′=I1′R1=0.2×4V=0.8 V 回路的总电流为I总′=I1′+12UR'=0.2+0.82A=0.6A由闭合电路欧姆定律得E=I总′r+U1′+U3′,即E=0.6r+0.8+5②联立①②解得E=7.0 V,r=2.0Ω【点睛】本题考查闭合电路的欧姆定律,但解题时要注意先会分析电流及电压的变化,从而根据题间明确所选电表的量程.5.如图所示的电路中,电炉电阻R=10Ω,电动机线圈的电阻r=1Ω,电路两端电压U=100V,电流表的示数为30A,问:(1)通过电动机的电流为多少?(2)通电一分钟,电动机做的有用功为多少?【答案】(1)I2=20A (2)W=9.6×104J【解析】【详解】根据欧姆定律,通过电炉的电流强度为:11001010UI A AR===根据并联电路中的干路电流和支路电流的关系,则通过电动机的电流强度为:I2=I-I1=20 A.电动机的总功率为P=UI2=100×20 W=2×103W.因发热而损耗的功率为P′=I22r=400 W.电动机的有用功率(机械功率)为P″=P-P′=1.6×103W,电动机通电1 min做的有用功为W=P″t=1.6×103×60 J=9.6×104J.【点睛】题图中的两个支路分别为纯电阻电路(电炉)和非纯电阻电路(电动机).在纯电阻电路中可运用欧姆定律I=U/R直接求出电流强度,而非纯电阻电路中的电流强度只能运用干路和支路中电流强度的关系求出.在非纯电阻电路中,电功大于电热,两者的差值才是有用功.6.如图所示的电路中,电阻R1=6 Ω,R2=3 Ω.S断开时,电流表示数为0.9 A;S闭合时,电流表示数为0.8 A,设电流表为理想电表,则电源电动势E=________V,内电阻r=________Ω.【答案】E=5.76V r=0.4Ω【解析】根据闭合电路欧姆定律,两种状态,列两个方程,组成方程组,就可求解.当S断开时(1)当S闭合时(2)由(1)、(2)式联立,解得E=5.76Vr=0.4Ω7.如图所示,已知R3=3Ω,理想电压表读数为3v,理想电流表读数为2A,某时刻由于电路中R3发生断路,电流表的读数2.5A,R1上的电压为5v,求:(1)R1大小、R3发生断路前R2上的电压、及R2阻值各是多少?(R3发生断路时R2上没有电流)(2)电源电动势E和内电阻r各是多少?【答案】(1)1V 1Ω(2)10 V ;2Ω【解析】试题分析:(1)R3断开时电表读数分别变为5v和2.5A 可知R1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U2 + I2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】8.如图所示,一矩形线圈在匀强磁场中绕OO′轴匀速转动,磁场方向与转轴垂直.线圈匝数n=100匝,电阻r=1Ω,长l1=0.5m,宽l2=0.4m,角速度ω=10rad/s.磁场的磁感强度B=0.2T.线圈两端外接电阻R=9Ω的用电器,和一个理想交流电流表.试分析求解:(1)线圈中产生感应电动势的最大值;(2)电流表的读数;(3)电阻R上消耗的电功率.【答案】(1)40V;(2)2.82A;(3)72W.【解析】试题分析:(1)线圈中产生感应电动势的最大值E=NBSω=40V;(2)线圈中产生感应拘泥于的最大值I=ER r=4A2=2.82A;(3)电阻R上消耗的电功率P=(2.82A)2×9Ω=72W.考点:感应电动势,欧姆定律,电功率的计算.9.电动自行车是目前一种较为时尚的代步工具,某厂生产的一种电动自行车,设计质量(包括人)为m=90kg,动力电源选用能量存储量为“36V、15Ah”(即输出电压恒为36V,工作电流与工作时间的乘积为15Ah)的蓄电池(不计内阻),所用电源的额定输出功率P 电=180W,由于电动机发热造成的损耗(其他损耗不计),自行车的效率为η=80%,如果自行车在平直公路上行驶时所受阻力跟行驶速率和自行车对地面的压力的乘积成正比,即F f=kmgv,其中g取10m/s2,k=5.0×10﹣3s•m﹣1.求:(1)该自行车保持额定功率行驶的最长时间和自行车电动机的内阻;(2)自行车在平直的公路上能达到的最大速度;(3)有人设想改用太阳能电池给该车供电,其他条件不变,已知太阳辐射的总功率P0=4×1026W,太阳到地球的距离r=1.5×1011m,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.则此设想所需的太阳能电池板的最小面积。