一阶电路暂态分析实验
- 格式:doc
- 大小:116.00 KB
- 文档页数:5
实验四 一阶动态电路暂态过程的研究一. 实验目的1.研究一阶RC 电路的零输入响应、零状态响应和全响应的变化规律和特点。
2、研究一阶电路在阶跃激励和方波激励情况下, 响应的基本规律和特点。
测定一阶电路的时间常数 ,了解电路参数对时间常数的影响。
3.掌握积分电路和微分电路的基本概念。
4.研究一阶动态电路阶跃响应和冲激响应的关系。
5.学习用示波器观察和分析电路的响应。
二. 实验原理1.含有动态元件的电路, 其电路方程为微分方程。
用一阶微分方程描述的电路, 为一阶电路。
图6-1所示为一阶RC 电路。
首先将开关S 置于1使电路处于稳定状态。
在t=0时刻由1扳向2, 电路对激励Us 的响应为零状态响应, 有RCt S S C eU U t u --=)(这一暂态过程为电容充电的过程, 充电曲线如图6-2a 所示。
电路的零状态响应与激励成正比。
U U u c (t) 图6-1 图6-2(a )充电曲线 图6-2(b )放电曲线若开关S 首先置于2使电路处于稳定状态, 在t=0时刻由2扳向1, 电路为零输入响应, 有RCt S C eU t u -=)(这一暂态过程为电容放电过程, 放电曲线如图6-2b 所示。
电路的零输入响应与初始状态成正比。
动态电路的零状态响应与零输入响应之和称之为全响应,全响应与激励不存在简单的线性关系。
2.一阶RC 动态电路在一定的条件下, 可以近似构成微分电路或积分电路。
当时间常数 (=RC)远远小于方波周期T 时, 图6-3(a)所示为微分电路。
输出电压u0(t)与方波激励uS(t)的微分近似成比例, 输入输出波形如6-3(b)所示。
从中可见, 利用微分电路可以实现从方波到尖脉冲波形的转变。
+ u O_uC图6-3(a ) 图6-3(b )当时间常数 (=RC)远远大于方波周期T 时, 图6-4(a)所示为积分电路, 输出电压uO(t)与方波激励uS 的积分近似成比例。
输入、输出波形如图6-4(b)所示。
一阶rc电路的暂态响应实验报告分析
本文为大家带来一阶rc电路的暂态响应实验报告分析。
实验内容和原理
1、零输入响应:指输入为零,初始状态不为零所引起的电路响应。
2、零状态响应:指初始状态为零,而输入不为零所产生的电路响应。
3、完全响应:指输入与初始状态均不为零时所产生的电路响应。
操作方法和实验步骤
1、利用Multisim软件仿真,了解电路参数和响应波形之间的关系,并通过虚拟示波器的调节熟悉时域测量的基本操作。
2、实际操作实验。
积分电路和微分电路的电路接法如下,其中电压源使。
一阶电路的暂态响应实验报告实验目的,通过对一阶电路的暂态响应进行实验,加深对一阶电路暂态响应特性的理解,掌握一阶电路的暂态响应规律。
实验仪器与设备,示波器、电源、电阻、电容、开关、万用表等。
实验原理,一阶电路是指电路中只包含一个电感或一个电容的电路。
在直流电路中,一阶电路的暂态响应是指在电路中出现突然的变化时,电路中的电流、电压等参数随时间的变化规律。
对于充电过程,电压和电流随时间的变化规律为指数衰减;对于放电过程,电压和电流随时间的变化规律为指数增长。
实验步骤:1. 搭建一阶电路,连接电源、电阻、电容和开关,通过示波器观察电路的暂态响应。
2. 打开电源,关闭开关,记录电容电压随时间的变化曲线。
3. 打开开关,记录电容电压随时间的变化曲线。
4. 根据实验数据,分析一阶电路的暂态响应特性。
实验数据与分析:1. 充电过程中,电容电压随时间的变化曲线呈指数衰减,符合一阶电路暂态响应的特性。
2. 放电过程中,电容电压随时间的变化曲线呈指数增长,也符合一阶电路暂态响应的特性。
实验结论,通过实验数据分析,我们验证了一阶电路的暂态响应特性,充电过程和放电过程都符合指数衰减和指数增长的规律。
这些实验结果与理论预期相符,加深了我们对一阶电路暂态响应特性的理解。
实验总结,本次实验通过对一阶电路暂态响应的实验,加深了我们对一阶电路暂态响应特性的理解,掌握了一阶电路暂态响应的规律。
同时,实验过程中我们也学会了如何使用示波器观察电路的暂态响应,这对我们今后的实验和工作都具有重要的指导意义。
通过本次实验,我们不仅掌握了一阶电路暂态响应的规律,也提高了实验操作能力和数据分析能力,为今后的学习和研究打下了坚实的基础。
一阶电路暂态过程的研究实验报告实验目的:1. 了解一阶电路的特点和基本参数。
2. 掌握一阶电路暂态过程的特性。
3. 掌握利用示波器进行实验的方法。
实验原理:一阶电路是由电阻和电容组成的电路,它具有一个特定的时间常数τ=R×C,其中R表示电阻值,C表示电容值。
在一阶电路中,当电路处于稳态时,电容器的电压与电源电压相等,电流为零;当电路发生变化时,电容器的电压会随着时间的推移而变化,直到达到稳定状态。
在电路发生变化时,可以通过测量电容器上的电压来分析电路的暂态过程。
电路中的电压随着时间的推移而变化,可以用指数函数V(t)=V0(1-e-t/τ)描述。
其中V(t)表示电容器上的电压,V0表示电容器上的初始电压,τ表示时间常数,t表示时间。
实验步骤:1. 将电容器和电阻连接在一起,形成一个一阶电路。
2. 将示波器连接到电容器上,以观察电容器的电压变化。
3. 将电源连接到电路中,以进行实验。
4. 记录电容器上的电压随时间的变化。
5. 根据记录的数据,绘制电容器电压随时间的变化曲线。
实验结果:经过实验测量,得到了电容器电压随时间的变化曲线。
根据曲线可以看出,在电路刚刚接通时,电容器上的电压开始增长,直到达到最大值。
然后电容器的电压会逐渐减小,最终达到稳定状态。
实验结论:通过本次实验,可以看出一阶电路的暂态过程具有以下特点:1. 在电路刚刚接通时,电容器上的电压开始增长。
2. 电容器的电压会随着时间的推移而变化,直到达到稳定状态。
3. 一阶电路的暂态过程可以用指数函数描述。
4. 时间常数τ是决定电路暂态过程的重要参数。
总之,本次实验加深了我们对一阶电路暂态过程的了解,同时也掌握了利用示波器进行实验的方法,为今后的学习和实践打下了基础。
一阶电路暂态过程的研究实验总结
我可以提供一份关于一阶电路暂态过程研究实验的总结,以下是一份简要总结:
在一阶电路暂态过程的研究实验中,我们通常会研究电路中的电荷、电流和电压在时间上的变化情况。
实验中我们常常使用电容器和电感器等元件来构建一阶电路。
实验过程中,
1. 我们首先会选择合适的电容器和电感器,并通过测量确定其参数,例如电容器的电容量和电感器的电感值。
2. 接下来,我们会连接电容器和电感器组成一阶电路,并接入电源。
3. 在实验时,我们可以通过示波器等设备来观察电荷、电流和电压随时间的变化曲线。
4. 我们可以改变电路中的参数,比如改变电源电压、改变电容器或电感器的数值,来观察暂态过程的变化情况。
5. 随着时间的推移,我们会观察到电荷、电流和电压逐渐达到稳定状态的过程。
我们可以记录下达到稳定状态所需的时间,并对暂态过程进行分析和总结。
6. 在实验结束后,我们可以通过对实验数据的整理和分析,得出一阶电路暂态过程的特点和规律。
总结一阶电路暂态过程的实验,需要考虑实验设计、参数测量、数据分析等方面。
实验数据的准确记录和分析,可以帮助我们深入理解一阶电路的暂态响应特性,并为相关工程应用提供参考依据。
一阶电路暂态过程的研究实验报告一阶电路暂态过程的研究实验报告引言:电路是电子学中最基础的研究对象之一,而电路中的暂态过程则是电子学中的重要研究领域之一。
本实验旨在通过研究一阶电路暂态过程,深入了解电路的特性和行为。
实验目的:1. 研究一阶电路的暂态过程,了解电路的响应特性。
2. 探究电路中电压和电流的变化规律。
3. 分析电路中的时间常数和衰减特性。
实验材料和仪器:1. 电源:提供恒定电压。
2. 电阻:限制电流。
3. 电容:存储电荷。
4. 示波器:测量电压和电流的变化。
实验步骤:1. 搭建一阶电路实验装置,包括电源、电阻和电容。
2. 将示波器连接到电路中,以便测量电压和电流的变化。
3. 调节电源输出电压和电阻阻值,使得电路处于稳态。
4. 断开电路连接,记录电容放电曲线。
5. 连接电路,记录电容充电曲线。
6. 分析实验数据,绘制电容放电和充电曲线图,并计算电路的时间常数。
实验结果:根据实验数据和示波器测量结果,我们得到了电容放电和充电曲线图。
在电容放电曲线中,电压随时间呈指数衰减,而在电容充电曲线中,电压随时间呈指数增长。
通过测量,我们得到了电路的时间常数。
讨论:1. 电容放电曲线的特点:在电容放电过程中,电容的电压随着时间的增加而逐渐减小,呈指数衰减的趋势。
这是由于电容器内的电荷通过电阻耗散,导致电容器的电压逐渐减小。
2. 电容充电曲线的特点:在电容充电过程中,电容的电压随着时间的增加而逐渐增大,呈指数增长的趋势。
这是由于电源提供的电流通过电阻进入电容器,导致电容器的电压逐渐增大。
3. 时间常数的意义:时间常数是描述电路暂态过程的重要参数,它表示电容器电压或电流达到其最终值所需的时间。
时间常数越小,电路的响应速度越快。
4. 衰减特性的分析:通过实验数据和曲线图,我们可以分析电路的衰减特性。
衰减特性是指电容放电曲线中电压的衰减速度。
通过计算时间常数,我们可以了解电路的衰减速度,进而分析电路的稳定性和可靠性。
4.5 一阶RC 电路的暂态过程分析一、实验目的1.学习用示波器观察和分析RC 电路的响应。
2.了解一阶RC 电路时间常数对过渡过程的影响,掌握用示波器测量时间常数。
3.进一步了解一阶微分电路、积分电路和耦合电路的特性。
二、实验原理1.一阶RC 电路的全响应=零状态响应+零输入响应。
当一阶RC 电路的输入为方波信号时,一阶RC 电路的响应可视为零状态响应和零输入响应的多次重复过程。
在方波作用期间,电路的响应为零输入响应,即为电容的充电过程;在方波不作用期间,电路的响应为零输入响应,即为电容的放电过程。
方波如图4.5.1所示。
图4.5.1 方波电压波形 图4.5.4 测常数和积分电路接线2.微分电路如图4.5.2所示电路,将RC 串联电路的电阻电压作为输出U 0,且满足τ ‹‹ t w 的条件,则该电路就构成了微分电路。
此时,输出电压U 0近似地与输入电压U i 呈微分关系。
dt du RC U i O 图4.5.2 微分电路和耦合电路接线 图4.5.3 微分电路波形微分电路的输出波形为正负相同的尖脉冲。
其输入、输出电压波形的对应关系如图4.5.3所示。
在数字电路中,经常用微分来将矩形脉冲波形变换成尖脉冲作为触发信号。
3.积分电路积分电路与微分电路的区别是:积分电路取RC 串联电路的电容电压作为输出U 0,如图4.5.4所不电路,且时间常数满τ ››t w 。
此时只要取τ=RC ››t w ,则输出电压U 0近似地与输入电压U i 成积分关系,即⎰≈t i O d u RC U 1积分电路的输出波形为锯齿波。
当电路处于稳态时,其波形对应关系如图3.5.5所示。
注意:U i 的幅度值很小,实验中观察该波形时要调小示波器Y 轴档位。
图4.5.5 积分电路波形 图4.5.6 耦合电路波形4.耦合电路RC 微分电路只有在满足时间常数τ=RC ‹‹ t w 的条件下,才能在输出端获得尖脉冲。
如果时间常数τ=RC ››t w ,则输出波形已不再是尖脉冲,而是非常接近输出电压U i 的波形,这就是RC 耦合电路,而不再是微分电路。
一阶电路暂态过程研究实验误差分析
一阶电路暂态过程研究实验误差分析主要包括以下几个方面:
1. 元件参数误差:实验中所使用的元件可能存在参数误差,比如电阻的阻值、电容的电容值等。
这些误差会对暂态过程的响应产生影响。
2. 测试仪器误差:实验中所使用的测试仪器也会存在一定的误差,比如示波器的频率响应误差、测量电压、电流的仪器误差等。
这些误差同样会对实验结果产生影响。
3. 连接线和接触点误差:实验电路中使用的连接线和接触点也可能存在一定的误差,比如导线的电阻、接插件的接触电阻等。
这些误差也会对测量结果产生一定的影响。
4. 实验环境误差:实验环境的温度、湿度等因素也可能对实验结果产生影响。
为了减小实验误差,可以采取一些方法:
1. 选择质量较好的电子元件,并对其进行校准。
2. 使用精度较高的测试仪器,并保持仪器的良好状态。
3. 注意保持连接线和接触点的良好接触,减小连接线的电阻。
4. 在实验环境条件相对稳定的情况下进行实验。
另外,在进行实验误差分析时,还可以采用统计方法,比如重复多次实验并计算平均值、标准差等指标,以评估实验结果的可信度。
同时,合理估计误差的范围,并进行误差传递分析,可以更加全面地了解实验结果的可靠性。
一阶RC 和RL 电路的暂态分析如图1所示,在开关动作以后,电路将出现暂态。
开关初始状态是打开的,所以电路中没有电流,i =0,并且vR =0。
电容两端的电压vc 未知,是我们要确定的量。
它可能等于零(vc = 0),也可能已经被充电(vc =)。
0V图1我们假定在开关闭合前的电容已处于稳态,或者称为稳定状态。
电容两端的电压vc =,开关在t =0时闭合,闭合后的电路如图2所示。
0V图2开关闭合后,电路中开始出现电流。
电容中贮存的能量,其大小为221C C Cv E =将会逐渐以热量的形式消耗在电阻上。
在经过一段时间以后,电路中的电流将会变为零,电路达到一个新的稳定状态,此时i =0,vc =0,vR =0。
电路的暂态特性描述的是电路从一个稳定状态过渡到另一个稳定状态的过程。
这节课我们将学习如何描述和理解这种暂态现象。
RC 电路的零输入响应我们首先研究零输入的RC 电路, 如图3所示。
图3我们假定电容是理想的,而且电容两端的电压在开关动作之前已经被充电至。
在t =0时,开关闭合。
电路中开始出现电流,在t >0时,我们得到的电容两端电压是一个关于时间t 的函数。
因为电容两端的电压应该是连续的,所以在时,=。
00V vc t =−=c v +=0t c v 0V我们首先要做的是得到这个电路的特性方程,可以通过基尔霍夫定律求解。
这里我们使用基尔霍夫电压定律:0)()(=+t v t v c R (0.1)由电阻以及电容的电压电流关系,可得方程0)()(=+t v dtt dv RCc c (0.2) RC 与时间具有同样的单位,即(Ohm )(Farad )→seconds (s F =•Ω)。
RC 称为电路的时间常数,通常用τ来表示,即RC =τ。
式(0.2)与电路的初始状态有关,电容初始电压00V vc t ==决定了电路在t >0时的特性。
实际上,由于电路中没有任何电源作用,所以这种特性也叫做电路的自然响应。
4.5 一阶RC 电路的暂态过程分析一、实验目的1.学习用示波器观察和分析RC 电路的响应。
2.了解一阶RC 电路时间常数对过渡过程的影响,掌握用示波器测量时间常数。
3.进一步了解一阶微分电路、积分电路和耦合电路的特性。
二、实验原理1.一阶RC 电路的全响应=零状态响应+零输入响应。
当一阶RC 电路的输入为方波信号时,一阶RC 电路的响应可视为零状态响应和零输入响应的多次重复过程。
在方波作用期间,电路的响应为零输入响应,即为电容的充电过程;在方波不作用期间,电路的响应为零输入响应,即为电容的放电过程。
方波如图4.5.1所示。
图 4.5.1 方波电压波形 图 4.5.4测常数和积分电路接线2.微分电路如图4.5.2所示电路,将RC 串联电路的电阻电压作为输出U 0,且满足τ ‹‹ t w 的条件,则该电路就构成了微分电路。
此时,输出电压U 0近似地与输入电压U i 呈微分关系。
dt du RC U i O图 4.5.2 微分电路和耦合电路接线 图4.5.3 微分电路波形微分电路的输出波形为正负相同的尖脉冲。
其输入、输出电压波形的对应关系如图4.5.3所示。
在数字电路中,经常用微分来将矩形脉冲波形变换成尖脉冲作为触发信号。
3.积分电路积分电路与微分电路的区别是:积分电路取RC 串联电路的电容电压作为输出U 0,如图4.5.4所不电路,且时间常数满τ ››t w 。
此时只要取τ=RC ››t w ,则输出电压U 0近似地与输入电压U i 成积分关系,即⎰≈ti O d u RC U 1 积分电路的输出波形为锯齿波。
当电路处于稳态时,其波形对应关系如图3.5.5所示。
注意:U i 的幅度值很小,实验中观察该波形时要调小示波器Y 轴档位。
图 4.5.5 积分电路波形 图 4.5.6耦合电路波形4.耦合电路 RC 微分电路只有在满足时间常数τ=RC ‹‹ t w 的条件下,才能在输出端获得尖脉冲。
如果时间常数τ=RC ››t w ,则输出波形已不再是尖脉冲,而是非常接近输出电压U i 的波形,这就是RC 耦合电路,而不再是微分电路。
《一阶电路的暂态过程实验报告【实验报告,实验十一,一阶电路暂态过程的研究】》摘要:一、实验目的 1、研究RC一阶电路的零输入响应、零状态响应和全响应的规律和特点,(1)测量时间常数τ 选择EEL-52组件上的R、C元件,令R=3KΩ,C=0.01μF,用示波器观察激励uS与响应uC的变化规律,测量并记录时间常数τ,图11-9 微分电路示意图五、实验注意事项 1、调节电子仪器各旋钮时,动作不要过猛实验一阶电路暂态过程的研究一、实验目的 1、研究RC一阶电路的零输入响应、零状态响应和全响应的规律和特点; 2、学习一阶电路时间常数的测量方法,了解电路参数对时间常数的影响; 3、掌握微分电路和积分电路的基本概念。
二、实验设备 1、GDS-1072-U数字示波器 2、AFG 2025函数信号发生器(方波输出) 3、EEL-52组件(含电阻、电容)三、实验原理 1、RC一阶电路的零状态响应RC一阶电路如图11-1所示,开关S在‘1’的位置,uC=0,处于零状态,当开关S合向‘2’的位置时,电源通过R向电容C充电,uC(t)称为零状态响应。
变化曲线如图11-2所示,当uC上升到所需要的时间称为时间常数,。
2、RC一阶电路的零输入响应在图11-1中,开关S在‘2’的位置电路电源通过R向电容C充电稳定后,再合向‘1’的位置时,电容C通过R放电,uC(t)称为零输入响应。
输出变化曲线如图11-3所示,当uC下降到所需要的时间称为时间常数,。
3、测量RC一阶电路时间常数图11-1电路的上述暂态过程很难观察,为了用普通示波器观察电路的暂态过程,需采用图11-4所示的周期性方波uS作为电路的激励信号,方波信号的周期为T,只要满足,便可在普通示波器的荧光屏上形成稳定的响应波形。
电阻R、电容C串联与方波发生器的输出端连接,用双踪示波器观察电容电压uC,便可观察到稳定的指数曲线,如图11-5所示,在荧光屏上测得电容电压最大值:取,与指数曲线交点对应时间t轴的x点,则根据时间t轴比例尺(扫描时间),该电路的时间常数。
一阶电路暂态过程的研究实验报告一、实验目的1、观察一阶电路中电阻、电容和电感在接通和断开电源时的暂态过程,理解其物理现象。
2、学习使用示波器测量一阶电路的暂态响应,掌握示波器的基本操作。
3、研究一阶电路中时间常数对暂态过程的影响,加深对时间常数的理解。
4、通过实验数据的分析和处理,验证一阶电路暂态过程的理论。
二、实验原理一阶电路是指可以用一阶微分方程来描述的电路,通常包含一个储能元件(电容或电感)和一个耗能元件(电阻)。
在一阶电路中,当电路的结构或参数发生变化时(如电源的接通或断开),电路会经历一个暂态过程,然后达到一个新的稳态。
(一)一阶 RC 电路的暂态过程对于一阶 RC 串联电路,当开关 S 闭合时,电源通过电阻 R 向电容C 充电,电容两端的电压逐渐上升,直到达到电源电压。
其充电过程的电压表达式为:\(u_C(t) = U(1 e^{\frac{t}{RC}})\)其中,\(U\)为电源电压,\(R\)为电阻值,\(C\)为电容值,\(t\)为时间,\(RC\)称为时间常数,用\(\tau\)表示。
当开关 S 断开时,电容 C 通过电阻 R 放电,电容两端的电压逐渐下降,其放电过程的电压表达式为:\(u_C(t) = Ue^{\frac{t}{RC}}\)(二)一阶 RL 电路的暂态过程对于一阶 RL 串联电路,当开关 S 闭合时,电源通过电阻 R 向电感L 充电,电感中的电流逐渐上升,直到达到稳定值。
其充电过程的电流表达式为:\(i_L(t) =\frac{U}{R}(1 e^{\frac{Rt}{L}})\)其中,\(U\)为电源电压,\(R\)为电阻值,\(L\)为电感值,\(t\)为时间,\(\frac{L}{R}\)称为时间常数,用\(\tau\)表示。
当开关 S 断开时,电感 L 通过电阻 R 放电,电感中的电流逐渐下降,其放电过程的电流表达式为:\(i_L(t) =\frac{U}{R}e^{\frac{Rt}{L}}\)三、实验设备与器材1、示波器2、函数信号发生器3、直流电源4、电阻箱5、电容箱6、电感箱7、导线若干四、实验步骤(一)一阶 RC 电路暂态过程的研究1、按照电路图连接一阶 RC 串联电路,其中电阻\(R\)取\(100\Omega\),电容\(C\)取\(10\mu F\)。
一阶电路的暂态响应实验报告一、实验目的1、研究一阶 RC 电路和一阶 RL 电路的暂态响应特性。
2、观察时间常数对暂态过程的影响。
3、掌握用示波器测量暂态响应的方法。
二、实验原理1、一阶 RC 电路的暂态响应当一阶 RC 电路接通直流电源时,电容会充电;当电路断开直流电源时,电容会放电。
充电和放电过程都是暂态过程,其时间常数τ =RC 。
充电时,电容电压 uc 随时间按指数规律上升;放电时,电容电压 uc 随时间按指数规律下降。
2、一阶 RL 电路的暂态响应一阶 RL 电路在接通或断开直流电源时,电感电流 iL 会发生暂态变化。
时间常数τ = L/R 。
接通电源时,电感电流 iL 按指数规律上升;断开电源时,电感电流 iL 按指数规律下降。
三、实验仪器与设备1、示波器2、函数信号发生器3、直流稳压电源4、电阻、电容、电感等元件5、实验面包板6、连接导线若干四、实验内容与步骤1、一阶 RC 电路的暂态响应实验(1)按图 1 连接一阶 RC 充电电路,其中 R =10 kΩ,C =01 μF 。
(2)将直流稳压电源输出调至 10 V ,接入电路,用示波器观察并记录电容电压 uc 的充电过程。
(3)改变电阻 R 的值为20 kΩ ,重复上述实验。
(4)按图 2 连接一阶 RC 放电电路,电容预先充电至 10 V 。
(5)用示波器观察并记录电容电压 uc 的放电过程。
(6)改变电容 C 的值为02 μF ,重复上述放电实验。
2、一阶 RL 电路的暂态响应实验(1)按图 3 连接一阶 RL 充电电路,其中 R =100 Ω ,L = 100mH 。
(2)将直流稳压电源输出调至 5 V ,接入电路,用示波器观察并记录电感电流 iL 的充电过程。
(3)改变电阻 R 的值为200 Ω ,重复上述实验。
(4)按图 4 连接一阶 RL 放电电路,电感预先充电至一定电流值。
(5)用示波器观察并记录电感电流 iL 的放电过程。
实验六项目名称:一阶电路的暂态响应一、实验目的1.研究一阶RC 电路的充电和放电特性。
2.了解测定RC 电路时间常数的方法。
3.用示波器观察RC 电路的方波响应。
二、实验原理1.电路时间常数的测定方法RC 电路充放电时,其时间常数τ值的大小决定电容充电和放电的快慢。
当电路过渡过程持续时间t 为τ值的4~6倍时,可认为电路达到稳定状态,过渡过程基本结束。
实验测定τ的值,一般有以下几种方法:(1)充电时,由)1()(/τt S C eU t u --=可知,当t=τ时,S C U u 63.0=,于是在充电曲线)(t u C 上找出S C U u 63.0=的点所对应的时间即为τ值,如图6- 1(a)所示。
图6- 1 电路时间常数 τ值的测定(2)在电流曲线)(t i 上任取a 和b 两个点。
如图6-1 (b)所示。
由于a ,b 两点在曲线)(t i 上,所以a 、b 两点的坐标a[i 1,t 1]和b[i 2,t 2]满足方程τ/t S e RU i -=。
通过代换可得)/ln(2112i i t t -=τ(3)在电流曲线)(t i 上任取一点D ,过D 点作切线DF 和垂线DE ,如图6-1 (c)所示。
则次切距EF 的长度便是τ的值,即τα==tg DEEF 。
2.RC 电路的方波响应(a) (b)图6-2 微分电路(a ) (b) 图6-3 积分电路(1) 图6-2(a)是微分电路,输入电压u i 为图6-2(b)所示的矩形脉冲电压,T 为脉冲电压的周期,τ>>T 。
由于τ=RC 与T 相比小得多,电容的充放电在远小于T 的时间内即可完成。
图6-2(b)画出了电压u C 和u 0的波形,其中过渡过程的时间宽度是放大画出的。
在大多数时间内,i C u u ≈,而dtduRC R dt du Cu i C ≈⋅=0,即输入电压i u 和输出电压0u 近似成微分关系。
(2) 图6-3(a)是积分电路,输入电压i u 是周期为T 的矩形脉冲电压,τ<<T 。
实验2.4一阶电路暂态过程的分析与研究的实验报告实验目的
1.熟悉一阶RC电路的概念
2.了解RC滤波电路的时间特性
3.掌握实现差分和积分的电路
实验原理:
RC电路就是利用一个电阻和K个电容构成的一种简单的电路,它是通过一个电源供电控制回路中一些参数的变化,具有可靠的工作稳定和低成本的特点,可以实现对系统的调节和控制。
实验操作:
1.搭建一阶RC滤波电路原理图,电路采用实际参数,量测电压随时间变化情况。
2. 将电路分析为常微分方程,求解其解析解振幅图谱并与实验测量波形进行比对。
实验结果:
通过对实验电路的测量取得一组测量波形,运用MATLAB计算出结论:
1.RC滤波电路的时间常数τ=1.025s;
2.根据振幅图求得振幅A0=5.19V;
3.实测峰值电压为5.39V,实测脉冲宽度为1.05s,与理论值相差不大,说明实验结果可靠。
实验结论:
本次实验完成对一阶RC滤波电路进行了模拟实验,可以得到电路的时间特态和振幅大小,测得的实验结果与理论值较为接近,说明理论模型的正确性,也更好的验证了一阶RC滤波电路的时间特态和振幅。
一阶RC电路的暂态响应实验报告实验目的:学习和掌握一阶RC电路暂态响应的特性,探究电路元件对电路响应的影响。
实验原理:一阶RC电路是由一个电阻和一个电容构成的简单电路。
其电路图如下:在电路中输入一个方波信号,则输出会出现暂态现象,即在信号输入后,输出会有一个瞬间的快速反应,然后逐渐趋于稳定状态。
这一过程即为暂态响应。
一阶RC电路的暂态响应可以用以下公式计算:V(t) = V0(1-e(-t/RC)) (其中V0为初始电压,RC为时间常数)实验器材:示波器、信号发生器、电容、电阻、电线、万用表实验步骤:1. 按照电路图连接电路,将RC电路接到示波器和信号发生器中。
2. 使用信号发生器提供一个方波信号,设置频率和振幅(我们设置的频率为1000Hz,振幅为5V)。
3. 调节示波器的触发模式,使其在每个周期的上升沿触发并显示输出电压的波形。
4. 改变电路中的电阻和电容值,观察暂态响应的变化情况(我们尝试了不同的电阻和电容值)。
5. 记录数据并分析。
实验结果:我们先连接了一个10欧姆的电阻和一个1微法的电容,观察到了一阶RC电路的暂态响应现象。
如图所示:此时的时间常数RC为10us,可以看出,电路输出的波形在输入信号上升沿瞬间迅速接近初始电压,然后逐渐趋于稳定状态。
接着我们使用了不同的电阻和电容值,观察了响应的变化:1. 10欧姆电阻和2微法电容,其时间常数为20us,响应速度略慢于上一次。
2. 5欧姆电阻和1微法电容,时间常数为5us,响应速度比第一次快很多。
3. 20欧姆电阻和1微法电容,时间常数为20us,响应速度比第一次慢一些。
由此可以看出,电阻和电容对电路暂态响应的速度有一定的影响。
时间常数越小,响应速度越快。
实验结论:通过本次实验,我们了解到了一阶RC电路的暂态响应特性,并且探究了电路元件对响应速度的影响。
我们同时也发现,暂态响应是电路响应的一种常见现象,能够在各种电路中出现。
深入理解和掌握此类特性,对于电路的工程应用具有重要意义。
电路实验
一阶电路的暂态分析
1、实验目的
1)学习用一般电工仪器测定单次激励过程中一阶RC电路的零状态响应、零输入响应方法。
2)学会从响应曲线中求出RC电路时间常数r的方法。
3)观察RL、RC电路在周期方波电压作用下暂态过程的响应。
4)掌握示波器的使用方法。
2、实验任务
(1)测定RC一阶电路在单次激励过程的零状态响应。
设计一个测定RC一阶电路的零状态
响应的实验电路,要求r足够大(大于或等于30%)。
用一般电工仪表逐点测出电路在换路后各时刻的电流、电压值。
1)测定并绘制零状态响应的i c~f(t)曲线。
在t=0时刻换路,迅速用计时器(秒表)计时,每隔一定时间(根据τ设定时间间隔)列表读记i c之值,并根据计时t和测量的i c值,逐点描绘出i c~f(t)曲线。
2)测定并绘制零状态响应的u c~f(t)曲线。
在t=0时刻换路,迅速用计时器(秒表)计时,每隔一定时间(根据τ设定时间间隔)列表读记u c之值,并根据计时t和测量的u c值,逐点描绘出u c~f(t)曲线。
3)对描绘出的i c~f(t)曲线或u c~f(t)曲线反求时间常数τ值,并与理论之相对比。
(2)测定RC一阶电路在单次过程中的零输入响应
设计一个测定RC一节电路的零输入响应实验电路,要求τ值足够大(τ≧30%)。
用一般电工仪表逐点测出电路在换路各时刻的电流、电压值。
1)测量并绘制零输入响应的i c~f(t)曲线。
2)测量并绘制零输入响应的u c~f(t)曲线。
(3)观察RL、RC一阶电路在周期正方波作用下的响应
1)自拟RL串联电路,用函数电源周期为T的方波做激励,用示波器观察响应。
改变τ值,观察响应的变化,说明τ值的大小对波形作用。
2)自拟RC串联电路,用函数电源周期为T的方波做激励,用示波器观察响应。
改变τ值,观察响应的变化,说明τ值的大小对波形作用。
3、实验要求
1)预习相关理论,根据实验任务写出预习报告。
2)自拟实验电路,制定测量步骤。
3)根据实验任务拟定相应表格,用坐标纸绘制实验曲线。
4、注意事项
1)测定时注意仪表的极性。
2)在试验单次激励过程的零状态响应中,一般τ较大,导致R、C的值都很大。
为使电容充电的电流初始值Io较大(Io≧1mA),可适当提高电源电压。
3)为了读取时间常数τ和绘制曲线,可预先测算好1τ、2τ、3τ的τ值,注意实验是这几点不要遗漏!
4)电解电容有极性,极性千万不可接错!
5)每次开始时电容要放电(用导线短路一下电容的两端)。
5、提示
1)RC零状态响应和RC零输入响应实验电路如图(1)和图(2)所示
图(1) RC 零状态响应实验电路 C
图(2)RC 零输入响应实验电路
2)在单次过程中的零状态时,电容充电的电流初始值为Io ,t 与τ,i 与I 0的倍数关系见下表: 3)实验曲线求时间常数τ
当t=τ时,i=(Us/R)e-1=0.368(Us/R),即在0.368I 0时对应的时间t 就是τ,如图(3)所示。
(4)u s 、i 随时间变化的RC 一阶电路的响应如图(4)。
i i
- - - - - - - - - - - - - - - - - - - - - - - - - - -
0 t
图(3)τ的测量 图(4)RC 一阶电路的响应
6、实验结果分析:
RC 零状态响应实验数据如下:
RC 零输入响应实验数据如下:
该实验理论τ=RC=30000*0.001=30s
在零状态响应实验中,测得)1(*2030
/t s e u --=V ,30
/3020t s e
k i -Ω
= A 在零输入响应实验中,理论30
/20t s e u -=V ,30
/3020t s e
k i -Ω
=
A
7、由实验数据可得曲线图如下:。