初中数学矩形的性质与判定
- 格式:docx
- 大小:36.43 KB
- 文档页数:1
矩形中考要求知识点睛矩形的性质及判定1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:①边的性质:对边平行且相等.②角的性质:四个角都是直角.③对角线性质:对角线互相平分且相等.④对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半.直角三角形中,30 角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得.3.矩形的判定判定①:有一个角是直角的平行四边形是矩形.判定②:对角线相等的平行四边形是矩形.判定③:有三个角是直角的四边形是矩形.例题精讲模块一矩形的概念【例1】矩形的定义:__________________的平行四边形叫做矩形.【答案】有一个角是直角;【例2】矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.【答案】都是直角,相等,经过对边中点的直线;【例3】矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.【答案】平行四边形;对角线相等;三个角【例4】矩形具有而平行四边形不具有的性质为( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等【解析】省略 【答案】A【巩固】矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH ⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形 【解析】省略 【答案】2BC AB =模块二 矩形的性质【例5】如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠=FED CBA【解析】省略 【答案】15︒【例6】矩形ABCD 中,对角线AC 、BD 相交于O ,∠AOB =60°,AC =10cm ,则BC =______cm ,周长为 .【答案】,【例7】如图,在矩形ABCD 中,,E F 分别是,BC AD 上的点,且BE DF =. 求证:ABE ∆≌CDF ∆.D EFCAB【解析】省略【答案】∵四边形ABCD 是矩形∴90AB AD B D =∠=∠=,. 在ABE ∆和CDF ∆中, 又∵BE DF =, ∴ABE ∆≌CDF ∆.【例8】如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。
知识点 A 要求 B 要求C要求矩形 会识别矩形掌握矩形的概念、判定和性质,会用矩形的性质和判定解决简单问题 会运用矩形的知识解决有关问题1.矩形的定义:有一个角是直角的平行四边形叫做矩形. 2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且相等. ② 角的性质:四个角都是直角.③ 对角线性质:对角线互相平分且相等.④ 对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半.直角三角形中,30︒角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得. 3.矩形的判定判定①:有一个角是直角的平行四边形是矩形. 判定②:对角线相等的平行四边形是矩形. 判定③:有三个角是直角的四边形是矩形.重点:掌握矩形的性质,并学会应用. 难点:理解矩形的特殊性.关键:把握平行四边形的演变过程,迁移到矩形概念与性质上来,明确矩形是特殊的平行四边形.一、矩形的判定【例1】 在矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形例题精讲重、难点中考要求中考要求矩形的性质 及判定CDB A【巩固】 矩形具有而平行四边形不具有的性质为( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等【例3】 如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点,求证四边形EFGH 是矩形.HG OFEDCB A【巩固】 如图,在平行四边形ABCD 中,M 是AD 的中点,且MB MC =,求证:四边形ABCD 是矩形.MCDB A【例4】 如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.NMQPDCBA【例5】 如图,在ABC ∆中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连结BF . ⑴ 求证:BD CD =.⑵ 如果AB AC =,试判断四边形AFBD 的形状,并证明你的结论.FED CBA【巩固】 如图,在ABC ∆中,点D 是AC 边上的一个动点,过点D 作直线MN BC ∥,若MN 交BCA ∠的平分线于点E ,交BCA ∠的外角平分线于点F (1)求证:DE DF =(2)当点D 运动到何处时,四边形AECF 为矩形?请说明理由!NMFEDCBA【例6】 如图所示,在Rt ABC ∆中,90ABC ∠=︒,将Rt ABC ∆绕点C 顺时针方向旋转60︒得到DEC ∆点E在AC 上,再将Rt ABC ∆沿着AB 所在直线翻转180︒得到ABF ∆连接AD . ⑴ 求证:四边形AFCD 是菱形;⑵ 连接BE 并延长交AD 于G 连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?AB CDGEF【巩固】 如图,在ABCD 中,AE BC ⊥于E ,AF CD ⊥于F ,AEF ∆的两条高相交于M ,20AC =,16EF =,求AM 的长.MF E DC BA【例7】 已知,如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点.求证:BF DF ⊥.ABCE FD【例8】 如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。
第04讲矩形的判定、判定与性质综合1.掌握矩形的判定定理.2.学会用矩形的性质与判定综合解题.矩形的判定矩形的判定有三种方法:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.要点:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.考点一:矩形的判定例1.下列条件不能判定一个四边形是矩形的是()A .四个内角都相等B .四条边都相等C .对角线相等且互相平分D .对角线相等的平行四边形例2.下列说法不正确的是()A .有一个角为直角的平行四边形是矩形B .有三个角为直角的四边形是矩形C .对角线相等的平行四边形是矩形D .对角线互相垂直的平行四边形是矩形例3.在平行四边形ABCD 中,对角线AC ,BD 相交于点O .下列条件不能..判定平行四边形ABCD 为矩形的是()A .∠ABC =90°B .AC =BD C .AC ⊥BD D .∠BAD =∠ADC例4.能判断一个平行四边形是矩形的条件是()A .两条对角线互相平分B .一组邻边相等C .两条对角线互相垂直D .两条对角线相等考点二:添加一个条件成为矩形例5.如图,要使平行四边形ABCD 为矩形,则可添加下列哪个条件()A .BO DO =B .AC BD ⊥C .AB BC =D .AO DO =例6.如图,在平行四边形ABCD 中,在不添加任何辅助线的情况下,添加以下哪个条件,能使平行四边形ABCD 是矩形()A .AD AB ⊥B .AB BC =C .AB CD D .A C∠=∠例7.如图,在四边形ABCD 中,AD BC ∥,AC 交BD 于点O ,再添加什么条件可以判定四边形ABCD 为矩形()A .,AB CD AB AD =∥B .,OA OC BC CD==C .,AB CD AC BD ==D .,AD BC AC BD==例8.如图,AD 是ABC 的中线,四边形ADCE 是平行四边形,下列条件中,能判定四边形ADCE 是矩形的是()A .90BAC ∠=︒B .AC 平分DAE ∠C .AB AC =D .AB AE =考点三:矩形的判定的证明例9.如图,BD 是平行四边形ABCD 的一条对角线,E 是CD 的中点,连接AE 并延长交BC 的延长线于F .(1)求证:BC CF =.(2)当DB DF =时,求证:四边形ABCD 是矩形.例10.如图,在平行四边形ABCD 中,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,BD ,90BDF ∠=︒.(1)求证:四边形ABDF 是矩形;(2)若4BC =,3DF =,求四边形ABCF 的面积S .例11.如图,四边形ABCD 的对角线AC BD 、交于点O ,BE AC ⊥于E ,DF AC ⊥于F ,点O 既是AC 的中点,又是EF 的中点.(1)求证:BOE DOF ≌;(2)若12OA BD =,求证:四边形ABCD 是矩形.例12.如图,平行四边形ABCD 的对角线AC BD ,交于点O ,E 为OC 中点,过点C 作CF BD ∥交BE 的延长线于F ,连接DF .(1)求证:FCE BOE ≅ (2)当ADC △满足什么条件时,四边形OCFD 为矩形?请说明理由.考点四:根据矩形的判定与性质求长度例13.如图,在矩形ABCD 中,EG 垂直平分BD 于点G ,若4AB =,3BC =,则线段EG 的长度是______.例14.四边形ABCD 的对角线相交于点O ,且OA OB OC OD ===,60AOB ∠=︒,则:AB AC =_______.例15.如图,在平行四边形ABCD 中,∠ACB =90°,过点D 作DE ⊥BC 交BC 的延长线于点E ,连接AE 交CD 于点F ,连接BF .若∠ABC =60°,CE =2,则BF =_____.例16.如图,在矩形ABCD 中,AB =4,AD =6,O 为对角线AC 的中点,点P 在AD 边上,且AP =2,点Q 在BC 边上,连接PQ 与OQ ,则PQ −OQ 的最大值为______.考点五:根据矩形的判定与性质求角度例17.如图,矩形ABCD 中,BE ⊥AC 于点E ,若∠ACB =23°,则∠DBE =_______度.例18.如图,在矩形ABCD 中,2=AD AB ,点E 在AD 上,且BE AD =,则ECD ∠=________.例19.如图,在ABCD Y 中,E 为边BC 上一点,以AE 为边作矩形AEFG .若40BAE ∠=︒,10CEF ∠=︒,则D ∠的大小为______度.例20.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,DE 平分∠ADC .若∠AOB =60°,则∠COE 的大小为____.例21.在矩形ABCD 中,AB =4,BC =3,过点A 作∠DAC 的角平分线交BC 的延长线于点H ,取AH 的中点P ,连接BP ,则S △ABP =___.考点六:根据矩形的判定与性质求面积例22.已知矩形ABCD ,点E 在AD 边上,DE AE <,连接BE ,点G 在BC 边上,连接EG ,BE 平分AEG ∠,若5BG GC =,2DE CG =,10BE =ABE 的面积是___________.例23.如图,在矩形ABCD 中,AE 平分BAD ∠交BC 于点E ,15CAE ∠=︒.有下面的结论:①ODC ∆是等边三角形;②135AOE ∠=︒;③AOE COE S S ∆∆=.其中,正确结论的个数为_________.例24.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,取EF 的中点G ,连接CG ,BG ,BD ,DG ,下列结论:①BE =CD ;②∠DGF =135°;③△BEG ≌△DCG ;④∠ABG +∠ADG =180°;⑤若23AB AD =,则3S △BDG =13S △DGF .其中正确的结论是_____.(请填写所有正确结论的序号)一、单选题1.(2020·湖北·中考真题)已知ABCD Y 中,下列条件:①AB BC =;②AC BD =;③AC BD ⊥;④AC 平分BAD ∠,其中能说明ABCD Y 是矩形的是()A .①B .②C .③D .④2.(2020·山东菏泽·统考中考真题)如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是()A .互相平分B .相等C .互相垂直D .互相垂直平分3.(2013·河北·中考真题)如已知:线段AB ,BC ,∠ABC ="90°."求作:矩形ABCD .以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A .两人都对B .两人都不对C .甲对,乙不对D .甲不对,乙对二、填空题4.(2021·黑龙江·统考中考真题)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,在不添加任何辅助线的情况下,请你添加一个条件______________,使平行四边形ABCD 是矩形..交DC 的延长线于点F ,延长(1)求证:△ABE ≌△FCE 别是OA ,OC 的中点.(1)求证:BE DF =;BD一、单选题1.如图,在四边形ABCD 中,对角线条件,不能判定四边形ABCD A .AB AD =2.连接菱形各边中点,可得到的A .菱形的四条边都相等C .菱形的对角线互相平分3.如图,平行四边形89EF AE ==,,AB 的长为(A .10B .73O ,若AO =BO ,AD A .42AB =,则四边形AECF 的面积为(A .3B .17.已知如图,AD BC ∥,面积为()A .2B .38.如图,在平行四边形ABCD 的延长线于点E ,连接AE ,交BC 于点F A .5B .259.如图,矩形1111D C B A 在矩形ABCD 结1BB ,1DB ,1BD ,1DD ,若矩形知道下列哪个值就一定可以求得四边形A .矩形ABCD 的面积2A .①②④B .②③④二、填空题11.矩形的判定定理包括:(1)___________的平行四边形是矩形;(2)____________的平行四边形是矩形;(3)____________的四边形是矩形.12.四边形ABCD 中,AC BD 、交于O ,给出条件①,OA OC OB OD ==;②,AB CD AC BD ==;③OA OB OC OD ===;④,AB BC AC BD ⊥=.其中能推得四边形ABCD 是矩形的是(填序号)___________.13.如图,AB ∥CD ,∠A =∠B =90°,AB =4cm ,BC =3cm ,则AB 与CD 之间的距离为________.14.如图,在ABC 中,AC BC =,D ,E 分别是边AB ,AC 的中点,将ADE V 绕点E 旋转180︒得CFE ,则四边形ADCF 的形状为______.15.如图,△ABC 的边BC 长为4cm .将△ABC 平移2cm 得到△A ′B ′C ′,且BB ′⊥BC ,则阴影部分的面积为______2cm .16.如图,在ABC 中,=AB AC ,120A ∠=︒,D 是BC 上任意一点,分别作DE AB ⊥于E ,DF AC ⊥于F .如果12BC =,那么+=DE DF ________.17.如图,ABC 是等腰直角三角形,90C = ∠,4AC BC ==,点P 是AB 上的一个动点(点P 与点A 、B 不重合),过点P 分别作PE BC ⊥于点E ,PF AC ⊥于点F ,连接EF .(1)四边形PECF 的形状是______;(2)线段EF 的最小值为______.18.如图,在矩形ABCD 中,8AB =,10AD =,点E F 、分别是AB BC 、上的动点,点E 不与AB 、重合,且EF AB =,点G 是五边形AEFCD 内点,GE GF =,且90EGF ∠=︒.①当点E 为AB 的中点时,AEG ∠=_____________.②点G 到AB 边距离为m ,则m 的取值范围为_____________.三、解答题19.如图,在平行四边形ABCD 中,点P 是AB 边上一点(不与A ,B 重合),过点P 作PQ ⊥CP ,交AD 边于点Q ,且∠QPA =∠PCB .求证:四边形ABCD 是矩形.20.如图,在平行四边形ABCD 中,过点D 作DE AB ⊥于点,E 点F 在CD 边上,,CF AE =连接,.AF BF (1)求证:四边形BFDE 是矩形;(2)若AF 平分,DAB ∠3,5,CF DF ==求四边形BFDE 的面积.21.如图,ABCD Y 四个内角的平分线围成四边形EFGH ,猜想四边形EFGH 的形状,并说明理由.22.如图,在平行四边形ABCD 中,点O 是边BC 的中点,连接DO 并延长,交AB 延长线于点E ,连接,BD EC .(1)求证:四边形BECD 是平行四边形;(2)若55A ∠=︒,则当BOD ∠=__________时,四边形BECD 是矩形(不用证明)23.如图,在菱形ABCD 中,对角线AC 和BD 交于点O ,分别过点B 、C 作BE AC ∥,CE BD ∥,BE 与CE 交于点E .(1)求证:四边形OBEC 是矩形;(2)当60ABD ∠=︒,4=AD 时,求ED 的长.24.如图,菱形ABCD 的对角线AC 和BD 交于点O ,分别过点C 、D 作CE BD ∥,∥DE AC ,CE 和DE 交于点E .(1)判断四边形ODEC 的形状并说明理由;(2)连接AE ,交CD 于点F ,当602ADB AD ∠=︒=,时,求AE 的长.25.如图,平行四边形ABCD 的对角线交于点O ,以OD ,CD 为邻边作平行四边形DOEC ,OE 交BC 于点F ,连接BE .(1)求证:F 为BC 中点.(2)若OB ⊥AC ,OF =1,求平行四边形ABCD 的周长.26.如图,已知:如图,在四边形ABCD 中,点G 在边BC 的延长线上,CE 平分BCD ∠,CF 平分GCD ∠,EF BC ∥交CD 于点O .(1)求证:OE OF =;(2)若点O 为CD 的中点,求证:四边形DECF 是矩形.27.如图1,在DBF 中,DB DF =,DC BF ⊥于点C ,点E 是BD 的中点,连接CE 并延长,使AE CE =,连接AD AB 、.(1)求证:四边形ABCD 是矩形.(2)如图2,点H 为DF 的中点,连接CH ,若4AB =,2BC =,求四边形ECHD 的面积.28.如图,四边形ABCD 的对角线AC ,BD 交于点O ,其中AD ∥BC ,AD =BC ,AC =2OB ,AE 平分∠BAD 交CD 于点E ,连接(1)求证:四边形ABCD 是矩形;(2)若∠OAE =15°,①求证:DA =DO =DE ;②直接写出∠DOE 的度数.29.如图1,在平行四边形ABCD F .(1)当90ABC ∠=︒时,G 是EF 的中点,联结,DB DG (如图2),请直接写出BDG ∠的度数中点.(1)求证:C ABE DF ≌△△;(2)延长AE 至G ,使EG AE =,连接CG ,延长①当AB 与AC 满足什么数量关系时,四边形②若210AP DP ==,25CP =,5CD =,求四边形31.如图所示,在菱形ABCD 中,P 为边过点E 作EF AC ⊥于点F ,延长EF 交AD 点N .(1)当点E 与点P 重合时,求证:AFE BNE △≌△(2)如图①,若点E 在线段AP 上,且5AD =,△是什么特殊三角形?并证明你(3)如图②,若点E在线段BP上,连接NP、FP,则NFP的结论.。
自学资料一、矩形及其性质【知识探索】1.有一个角是直角的平行四边形叫做矩形,也是长方形.2.矩形的性质:(1)矩形的四个角都是直角;(2)矩形的两条对角线相等.【说明】(1)矩形具有平行四边形的所有性质;(2)矩形既是中心对称图形,又是轴对称图形.对称中心是其对角线的交点,对称轴是每组对边的垂直平分线.【错题精练】例1.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.第1页共7页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. 20;B. ;C. ;D. 25.例2.已知:如图,矩形ABCD中,AC与BD交于O点,若点E是AO的中点,点F是OD的中点.求证:BE=CF.例3.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积例4.如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为__________ .第2页共7页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【举一反三】1.如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC2.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.3.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.4.如图,矩形ABCD的对角线AC的中点为O,过点O作OE⊥BC于点E,连接OD,已知AB=6,BC=8,则四边形OECD的周长为__________ .第3页共7页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训5.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________ 度二、矩形的判定【知识探索】1.矩形的判定:(1)对角线相等的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.【错题精练】例1.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线与点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50∘,则当∠BOD=°时,四边形BECD是矩形.例2.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.第4页共7页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【举一反三】1.已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.2.已知:如图,AB=AC,AE=AF,且∠EAB=∠FAC,EF=BC.求证:四边形EBCF是矩形.1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.2.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()第5页共7页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训A. △AFD≌△DCEB. AF=ADC. AB=AFD. BE=AD﹣DF3.如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)4.如图,在直线MN上和直线MN外分别取点A、B,过线段AB的中点作CD平行于MN,分别与∠MAB与∠NAB的平分线相交于点C、D.求证:四边形ACBD是矩形.5.如图,在▱ABCD中,E是DC边的中点,且EA=EB.求证:▱ABCD是矩形.6.下列说法中,错误的是()第6页共7页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训A. 平行四边形的对角线互相平分B. 对角线互相平分的四边形是平行四边形C. 菱形的对角线互相垂直D. 对角线互相垂直的四边形是菱形第7页共7页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训。
第17讲矩形的判定和性质知识定位讲解用时:3分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习矩形的判定和性质。
矩形是初中四边形中的一节重要内容,是中考几何证明题考查的重点,涉及到后面菱形与正方形的学习,关系密切,因此本节课要重点掌握。
知识梳理讲解用时:20分钟矩形的性质和判定1.矩形的定义:有一个角是直角的平行四边形是矩形.2.矩形的性质:(1)矩形具有平行四边形的一切性质;(2)矩形的对角线相等且互相平分;(3)矩形的四个角都是90°;(4)矩形是轴对称图形.性质边角对角线对称性矩形对边平行且相等四个角都是直角互相平分且相等轴对称,中心对称1.矩形的判定:(1)有一个角是直角的平行四边形叫做矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形;(4)对角线相等且互相平分的四边形是矩形.课堂精讲精练【例题1】如图,在矩形ABCD 中,点O 为对角线AC 、BD 的交点,点E 为BC 上一点,连接EO ,并延长交AD 于点F ,则图中全等三角形共有()A .5对B .6对C .8对D .10对【答案】D【解析】根据已知及全等三角形的判定方法进行分析,从而得到答案.解:∵四边形ABCD 为矩形,其矩形的对角线相等且相互平分,∴AB=CD ,AD=BC ,AO=CO ,BO=DO ,EO=FO ,∠DAO=∠BCO ,又∠AOB=∠COD ,∠AOD=∠COB ,∠AOE=∠COF ,易证△ABC ≌△DCB ,△ABC ≌△CDA ,△ABC ≌△BAD ,△BCD ≌△ADC ,△BCD ≌△DAB ,△ADC ≌△DAB ,△AOF ≌△COE ,△DOF ≌△BOE ,△DOC ≌△AOB ,△AOD ≌△BOC 故图中的全等三角形共有10对.直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.如图:OA=OB=OC=12AC你知道怎么证明吗?讲解用时:3分钟解题思路:本题考查矩形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.教学建议:熟练掌握矩形的性质以及全等三角形的判定和性质.难度: 3 适应场景:当堂例题例题来源:杭州模拟年份:2017【练习1.1】如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE;(2)若∠DBC=30°,BO=4,求四边形ABED的面积.【答案】(1)BD=BE;(2)24【解析】(1)根据矩形的对角线相等可得AC=BD,然后证明四边形ABEC是平行四边形,再根据平行四边形的对边相等可得AC=BE,从而得证;(2)根据矩形的对角线互相平分求出BD的长度,再根据30°角所对的直角边等于斜边的一半求出CD的长度,然后利用勾股定理求出BC的长度,再利用梯形的面积公式列式计算即可得解.(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,(2)解:∵在矩形ABCD中,BO=4,∴BD=2BO=2×4=8,∵∠DBC=30°,∴CD=BD=×8=4,,∴AB=CD=4,DE=CD+CE=CD+AB=4+4=8在Rt△BCD中,BC===4,∴四边形ABED的面积=(4+8)×4=24.讲解用时:4分钟解题思路:本题考查了矩形的对角线互相平分且相等的性质,平行四边形的判定与性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.教学建议:熟练掌握矩形的性质以及平行四边形的性质和判定.难度: 3 适应场景:当堂练习例题来源:肇庆年份:2012【例题2】如图,若要使?ABCD成为矩形,需添加的条件是()A.AB=BC B.∠ABD=∠DBC C.AO=BO D.AC⊥BD【答案】C【解析】根据矩形的判定定理(①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形)逐一判断即可.解:A、根据AB=BC和平行四边形ABCD不能得出四边形ABCD是矩形,故本选项错误;B、∵四边形ABCD是平行四边形,∠ABD=∠DBC,得出四边形ABCD是菱形,不是矩形;故本选项错误;C、∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AO=BO,,∴OA=OC=OB=OD即AC=BD,∴平行四边形ABCD是矩形,故本选项正确;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项错误;故选:C.讲解用时:3分钟解题思路:本题考查了对矩形的判定定理的应用,注意:矩形的判定定理有:①有一个角是直角的平行四边形是矩形,②有三个角是直角的四边形是矩形,③对角线相等的平行四边形是矩形.教学建议:熟记矩形的判定定理并灵活应用.难度: 3 适应场景:当堂例题例题来源:上城区期末年份:2017【练习2.1】如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CD B.AD=BC C.AC=BD D.AB=BC【答案】C【解析】四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:C.讲解用时:3分钟解题思路:此题主要考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.教学建议:熟记矩形的判定定理并灵活应用.难度: 3 适应场景:当堂练习例题来源:黔南州年份:2012【例题3】如图,△ABC中,∠ACB=90°,AD=BD,且CD=4,求AB的长.【答案】8【解析】根据直角三角形斜边上中线性质求出AB=2CD,代入求出即可.解:∵△ABC中,∠ACB=90°,AD=BD,CD=4,∴AB=2CD=8.讲解用时:2分钟解题思路:本题考查了直角三角形斜边上中线性质的应用,解此题的关键是能根据直角三角形的性质得出AB=2CD,是一道简单的题目.教学建议:熟练运用直角三角形斜边上的中线是斜边的一半.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图,△ABC中,∠C=90°,D在CB上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,求∠DFE的度数.【答案】60°【解析】在直角△ABC中,由AE=BE=EC,AD=DB可以推出∠BAD=20°,∠ADC=40°然后利用三角形的外角和内角的关系即可求出∠DFE=60°.解:∵∠C=90°,AE=BE=EC,AD=DB,∴∠BAD=20°,∠ADC=40°,∠DAC=∠ECA=50°.∴∠ECD=20°,∠FDC=40°.∴∠DFE=60°.讲解用时:3分钟解题思路:此题主要考查了直角三角形的中线等于斜边的一半和三角形的内角和与外角和的运用.教学建议:熟练运用直角三角形斜边上的中线是斜边的一半.难度:4 适应场景:当堂练习例题来源:台湾年份:2007【例题4】在△ABC中,∠A、∠B、∠C的度数的比是1:5:6,AB边上的中线长是2,求△ABC的面积.【答案】2【解析】根据度数比可求出此三角形为直角三角形,然后根据斜边中线的长可得出三角形的面积.解:设∠A=x°,则x+5x+6x=180,x=15.∴∠A=15°,∠B=75°,∠C=90°.如图:CD是Rt△ABC斜边AB上的中线,则DA=DC,作斜边上的高CE,在Rt△CED中,∠CDE=2∠A=30°,CD=2,易求得CE=1,又AB=2DC=4.故所求△ABC的面积是2.讲解用时:3分钟解题思路:本题考查直角三角形的斜边中线等于斜边一半这个知识点,解答此题的关键是很据题意确定△ABC是直角三角形.教学建议:熟练运用直角三角形斜边上的中线是斜边的一半.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】如图,在△ABC中,∠A=90°,AC=8,AB=6,点D是BC边上的动点(不与B,C 重合)过点D作DE⊥AB于点E,作DF⊥AC于点F,求EF的最小值.【答案】【解析】连接AD,根据矩形的性质可知:EF=AD,当AD最小时,则EF最小,根据垂线段最短可知当EF⊥AD时,则EF最小,再根据三角形的面积为定值即可求出EF的长.解:∵Rt△ABC中,∠A=90°,AC=8,BA=6,∴BC=10,连接AD,∵DE⊥AB,DF⊥AC,∴四边形EAFD是矩形,∴EF=AD,当AD最小时,则EF最小,根据垂线段最短可知当AD⊥BC时,则AD最小,∴EF=AD==.讲解用时:4分钟解题思路:本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求FE的最小值转化为其相等线段AD的最小值.教学建议:熟练掌握矩形的性质和判定并灵活应用.难度:3 适应场景:当堂练习例题来源:萧山区月考年份:2016【例题5】如图,△ABC中,∠ACB=90°,D在BC上,E为AB之中点,AD、CE相交于F,且AD=DB.若∠B=20°,则∠DFE等于°.【答案】60【解析】由直角三角形的性质知,中线CE=AE=BE,所以∠EAC=∠ECA,∠B=∠BCE,由三角形内角和即可求得.解:由直角三角形性质知,∵E为AB之中点,∴CE=AE=BE,(直角三角形斜边上的中线等于斜边的一半)∴∠B=∠BCE=20°,∠EAC=∠ECA=70°,∴∠ACF=70°,又∵AD=DB,∴∠B=∠BAD=20°,∴∠FAC=50°,∴在△ACF中,∠AFC=180°﹣70°﹣50°=60°,∴∠DFE=∠AFC=60°.故答案为60讲解用时:3分钟解题思路:本题考查了直角三角形的性质,是基础题.教学建议:熟练掌握直角三角形的性质并灵活应用.难度:3 适应场景:当堂例题例题来源:鼓楼区一模年份:2013【练习5.1】如图,在△ABC中,AB=AC=8,AD是底边上的高,E为AC中点,则DE= .【答案】4【解析】由题意知,△ABC是等腰三角形,所以,D是BC边上的高和中线,即D是边BC的中点;由于△ADC是直角三角形,E为AC中点,所以DE=.解:在△ABC中,AB=AC=8,∴△ABC中是等腰三角形,又∵AD是底边上的高,∴AD⊥BC,∴在△ADC中,∠ADC=90°,∵E为AC中点,∴DE===4,∴DE=4.讲解用时:3分钟解题思路:本题综合考查了直角三角形的性质与判定,以及等腰三角形的性质.在直角三角形中,斜边上的中线等于斜边的一半;在一个三角形中,只要有两个边相等,那么这个三角形就是等腰三角形.教学建议:熟练掌握直角三角形的性质以及等腰三角形的性质.难度: 3 适应场景:当堂练习例题来源:益阳年份:2012【例题6】如图,△ABC中,BC=18,若BD⊥AC于D,CE⊥AB于E,F、G分别为BC、DE的中点,若ED=10,则FG的长为.【答案】2【解析】先利用直角三角形中,斜边上的中线等于斜边的一半,求得△EFD为等腰三角形,再利用等腰三角形边上的三线合一,即可求证FG⊥DE,再利用勾股定理可求出FG的长度.解:连接EF,DF,∵BD、CE是△ABC的高,F是BC的中点,∴在Rt△CEB中,EF=,在Rt△BDC中,FD=,∴FE=FD=9,即△EFD为等腰三角形,又∵G是ED的中点,∴FG是等腰三角形EFD的中线,EG=DG=5,∴FG⊥DE(等腰三角形边上的三线合一),在Rt△GDF中,FG===2.故答案为:2.讲解用时:3分钟解题思路:此题主要考查了直角三角形的性质:斜边上的中线等于斜边的一半,求得△EFD为等腰三角形,再根据等腰三角形边上的三线合一的性质来证明此题的△EFD为等腰三角形,这是证明此题的关键.教学建议:熟练掌握直角三角形的性质以及等腰三角形三线合一的性质.难度: 4 适应场景:当堂例题例题来源:海淀区校级期中年份:2010【练习6.1】已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.【答案】(1)四边形ADCF是平行四边形;(2)AB=AC【解析】(1)根据平行四边形的判定定理得出即可;(2)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.(1)证明:∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形;(2)解:当AB=AC时,四边形ADCF为矩形,理由是:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.在△AFE和△DBE中,,∴△AFE≌△DBE(AAS).∴AF=BD.∵AF=DC,∴BD=DC.∵AB=AC,∴AD⊥BC即∠ADC=90°.∴平行四边形ADCF是矩形,即当AB=AC时,四边形ADCF为矩形.讲解用时:3分钟解题思路:此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用,熟记特殊平行四边形的判定方法是解题的关键.教学建议:全面掌握矩形的判定、等腰三角形的性质以及全等三角形的判定和性质.难度: 4 适应场景:当堂练习例题来源:杭州期末年份:2015【例题7】如图甲,李叔叔想要检测雕塑底座正面四边形ABCD是否为矩形,但他随身只带了有刻度的卷尺,请你设计一种方案,帮助李叔叔检测四边形ABCD是否为矩形(图乙供设计备用).【答案】(1)当AB=CD,且AD=BC时,四边形ABCD为平行四边形;否则四边形ABCD不是平行四边形,从而不是矩形;(2)当AC=BD时,四边形ABCD是矩形;否则四边形ABCD不是矩形.【解析】由矩形的判定定理:先测量四边形ABCD是否为平行四边形即两组对边是否分别相等,再测量对角线是否相等.解:方案如下:(1)用卷尺分别比较AB与CD,AD与BC的长度,当AB=CD,且AD=BC时,四边形ABCD为平行四边形;否则四边形ABCD不是平行四边形,从而不是矩形.(2)当四边形ABCD是平行四边形时,用卷尺比较对角线AC与BD的长度.当AC=BD时,四边形ABCD是矩形;否则四边形ABCD不是矩形.讲解用时:3分钟解题思路:本题涉及矩形的判定定理,且涉及实际问题,难度适中.教学建议:掌握矩形的判定并灵活运用.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习7.1】已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A 作BE的平行线与线段ED的延长线交于点F,连接AE,CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.【答案】(1)AF=CE;(2)矩形【解析】(1)可通过全等三角形来证明简单的线段相等.△ADF和△CDE中,已知了AD=CD,∠ADF=∠CDE,AF∥BE,因此不难得出两三角形全等,进而可得出AF=CE.(2)需先证明四边形AFCE是平行四边形,那么对角线相等的平行四边形是矩形.(1)证明:在△ADF和△CDE中,∵AF∥BE,∴∠FAD=∠ECD.又∵D是AC的中点,∴AD=CD.∵∠ADF=∠CDE,∴△ADF≌△CDE.∴AF=CE.(2)解:若AC=EF,则四边形AFCE是矩形.证明:由(1)知:AF=CE,AF∥CE,∴四边形AFCE是平行四边形.又∵AC=EF,∴平行四边形AFCE是矩形.讲解用时:3分钟解题思路:两条线段在不同的三角形中要证明相等时,通常是利用全等来进行证明.教学建议:掌握矩形的判定并灵活运用.难度: 4 适应场景:当堂练习例题来源:成都年份:2006【练习7.2】如图,四边形ABCD是由一个锐角为30°的直角△ABC与一个等腰直角△ACD拼成,E为斜边AC的中点.(1)判断线段BE、DE的大小,并说明理由(2)求∠BDE的大小.【答案】(1)BE=DE;(2)15°【解析】(1)根据直角三角形斜边上的中线等于斜边的一半可得BE=DE=AC;(2)求出∠BED的度数,再根据等腰三角形两底角相等列式计算即可得解.解:(1)∵E为斜边AC的中点,∴BE=DE=AC,∴BE=DE;(2)由题意得,∠BAC=90°﹣30°=60°,所以,∠AEB=∠BAC=60°,∠AED=90°,所以,∠BED=60°+90°=150°,所以,∠BDE=×(180°﹣150°)=15°.讲解用时:3分钟解题思路:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰直角三角形的性质,等腰三角形的性质,熟记各性质是解题的关键.教学建议:熟练掌握直角三角形斜边上的中线等于斜边的一半.难度: 3 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD【答案】D【解析】由四边形ABCD的对角线互相平分,可得四边形ABCD是平行四边形,再添加AC=BD,可根据对角线相等的平行四边形是矩形证明四边形ABCD是矩形.解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:D.难度: 3 适应场景:练习题例题来源:昆山市二模年份:2016【作业2】直角三角形斜边上的中线长为5cm,则斜边长为cm.【答案】10【解析】根据直角三角形的性质直接求解.解:∵直角三角形中斜边上的中线等于斜边的一半,∴斜边长=2×5=10cm.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,DE⊥AB于点D,交AC 于点E.(1)若BC=3,AC=4,求CD的长;(2)求证:∠1=∠2.【答案】(1)2.5;(2)∠1=∠2【解析】(1)由勾股定理求出AB,再根据直角三角形斜边上的中线等于斜边的一半解答即可;(2)由直角三角形的锐角关系和等腰三角形的性质即可得出结论.(1)解:∵∠ACB=90°,BC=3,AC=4,∴AB==5,∵CD是AB边上的中线,∴CD=AB=2.5;(2)证明:∵∠ACB=90°,∴∠A+∠B=90°,∵DE⊥AB,∴∠A+∠1=90°,∴∠B=∠1,∵CD是AB边上的中线,∴BD=CD,∴∠B=∠2,∴∠1=∠2.讲解用时:3分钟难度: 4 适应场景:练习题例题来源:无年份:2018【作业4】如图,平行四边形ABCD中,AC=6,BD=8,点P从点A出发以每秒1cm的速度沿射线AC移动,点Q从点C出发以每秒1cm的速度沿射线CA移动.(1)经过几秒,以P,Q,B,D为顶点的四边形为矩形?(2)若BC⊥AC垂足为C,求(1)中矩形边BQ的长.【答案】(1)7;(2)2√14【解析】(1)由四边形ABCD是平行四边形,AC=6,得到CP=AQ=1,PQ=BD=8,由OB=DO,OQ=OP,证得四边形BPDQ为平形四边形,根据对角线相等,证得四边形BPDQ为矩形;(2)根据直角三角形的性质、勾股定理求得结论.解:(1)当时间t=7秒时,四边形BPDQ为矩形.理由如下:当t=7秒时,PA=QC=7,∵AC=6,∴CP=AQ=1∴PQ=BD=8∵四边形ABCD为平行四边形,BD=8∴AO=CO=3∴BO=DO=4∴OQ=OP=4∴四边形BPDQ为平形四边形,∵PQ=BD=8∴四边形BPDQ为矩形,(2)由(1)得BO=4,CQ=7,∵BC⊥AC∴∠BCA=90°BC2+CQ2=BQ2∴BQ=.讲解用时:4分钟难度: 4 适应场景:练习题例题来源:无年份:2018。
6.2矩形的性质与判定定义:有一个角是直角的平行四边形是矩形.性质:(1)矩形具有平行四边形的一切性质.(2)四个角都是直角.(3)对角线相等.(4)是轴对称图形,有4条对称轴.定理:直角三角形斜边中线等于斜边的一半.判定:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形.基础闯关矩形的定义与性质1.矩形具有而一般的平行四边形不一定具有的特征是()。
A.对角相等 B. 对边相等 C.对角线相等 D. 对角线互相平分2.矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等3.矩形的两边长分别为10cm和15cm,其中一个内角平分线分长边为两部分,这两部分分别为()A.6cm和9cm B.5cm和10cm C.4cm和11cm D.7cm和8cm 4.在下列图形性质中,矩形不一定具有的是()A.对角线互相平分且相等 B.四个角相等C.是轴对称图形 D.对角线互相垂直平分5.一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为 .6.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为,短边长为 .7.已知,矩形的一条边上的中点与对边的两个端点的连线互相垂直,且该矩形的周长为24 cm,则矩形的面积为 cm2。
8.如图,矩形ABCD中,E为AD上一点,EF⊥CE交AB于F,若DE=2,矩形ABCD 的周长为16,且CE=EF,求AE的长.9.已知:如图所示,矩形ABCD 中,E 是BC 上的一点,且AE=BC ,︒=∠15EDC .求证:AD=2AB .10.如图,ABCD 是矩形纸片,翻折∠B 、∠D ,使BC 、AD 恰好落在AC 上。
设F 、H分别是B 、D 落在AC 上的两点,E 、G 分别是折痕CE 、AG 与AB 、CD 的交点。
数学矩形知识点归纳矩形1、矩形的定义:有一个角是直角的平行四边形叫做矩形。
2、矩形的性质:⑴ 矩形具有平行四边形的一切性质;⑵ 矩形的四个角都是直角;⑶ 矩形的对角线平分且相等;(AC=BD)⑷ 矩形是轴对称图形,它有2条对称轴。
提示:⑴ “矩形的四个角都是直角”这一性质可用来证两条线段互相垂直或角相等,“矩形的对角线相等”这一性质可用来证线段相等;⑵ 矩形的两条对角线分矩形为面积相等的四个等腰三角形。
3、矩形判定方法:⑴ 定义:有一个角是直角的平行四边形叫做矩形。
⑵ 方法1:对角线相等的平行四边形是矩形。
⑶ 方法2:有三个角是直角的四边形是矩形。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的`两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
初中数学知识点:点的坐标的性质下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。
新人教版初中数学——特殊的平行四边形知识点归纳及中考题型解析一、矩形的性质与判定1.矩形的性质:(1)四个角都是直角;(2)对角线相等且互相平分;(3)面积=长×宽=2S△ABD=4S△AOB.(如图)2.矩形的判定:(1)定义法:有一个角是直角的平行四边形;(2)有三个角是直角;(3)对角线相等的平行四边形.二、菱形的性质与判定1.菱形的性质:(1)四边相等;(2)对角线互相垂直、平分,一条对角线平分一组对角;(3)面积=底×高=对角线乘积的一半.2.菱形的判定:(1)定义法:有一组邻边相等的平行四边形;(2)对角线互相垂直的平行四边形;(3)四条边都相等的四边形.三、正方形的性质与判定1.正方形的性质:(1)四条边都相等,四个角都是直角;(2)对角线相等且互相垂直平分;(3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:(1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;(2)一组邻边相等的矩形;(3)一个角是直角的菱形;(4)对角线相等且互相垂直、平分.四、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等;(8)有三个角都是直角.五、中点四边形(1)任意四边形所得到的中点四边形一定是平行四边形.(2)对角线相等的四边形所得到的中点四边形是矩形.(3)对角线互相垂直的四边形所得到的中点四边形是菱形.(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一矩形的性质与判定1.矩形除了具有平行四边形的一切性质外,还具有自己单独的性质,即:矩形的四个角都是直角;矩形的对角线相等.2.利用矩形的性质可以推出直角三角形斜边中线的性质,即在直角三角形中,斜边上的中线等于斜边的一半.3.矩形的判定:有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形.典例1 如图,矩形ABCD的对角线交于点O,若∠BAO=55°,则∠AOD等于A.105°B.110°C.115°D.120°【答案】B【解析】∵四边形ABCD是矩形,∴OA=O B.∴∠BAO=∠ABO=55°.∴∠AOD=∠BAO+∠ABO=55°+55°=110°.故选B.典例2 如图,矩形ABCD的对角线AC与数轴重合(点C在正半轴上),AB=5,BC=12,点A表示的数是–1,则对角线AC、BD的交点表示的数A.5.5 B.5 C.6 D.6.5【答案】A【解析】连接BD交AC于E,如图所示:∵四边形ABCD是矩形,∴190,2B AE AC ∠==,∴13AC=,∴AE=6.5,∵点A表示的数是−1,∴OA=1,∴OE=AE−OA=5.5,∴点E表示的数是5.5,即对角线AC、BD的交点表示的数是5.5;故选A.1.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB =BC B .AC 垂直BD C .∠A =∠C D .AC =BD2.如图,在平行四边形ABCD 中,对角线AC BD 、交于点O ,并且6015DAC ADB ∠=︒∠=︒,,点E 是AD 边上一动点,延长EO 交于BC 点F ,当点E 从点D 向点A 移动过程中(点E 与点D ,A 不重合),则四边形AFCE 的变化是A .平行四边形→菱形→平行四边形→矩形→平行四边形B .平行四边形→矩形→平行四边形→菱形→平行四边形C .平行四边形→矩形→平行四边形→正方形→平行四边形D .平行四边形→矩形→菱形→正方形→平行四边形考向二 菱形的性质与判定1.菱形除了具有平行四边形的一切性质外,具有自己单独的性质,即:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角. 2.菱形的判定:四条边都相等的四边形是菱形; 对角线互相垂直的平行四边形是菱形.典例3 菱形具有而平行四边形不具有的性质是 A .两组对边分别平行 B .两组对边分别相等 C .一组邻边相等D .对角线互相平分【答案】C【解析】根据菱形的性质及平行四边形的性质进行比较,可发现A,B,D两者均具有,而C只有菱形具有平行四边形不具有,故选C.【名师点睛】有一组邻边相等的平行四边形是菱形.典例4如图,四边形ABCD的对角线互相垂直,且满足AO=CO,请你添加一个适当的条件_____________,使四边形ABCD成为菱形.(只需添加一个即可)【答案】BO=DO(答案不唯一)【解析】四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD 互相平分(对角线互相垂直且平分的四边形是菱形).故答案为:BO=DO(答案不唯一).3.已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为A.45°,135°B.60°,120°C.90°,90°D.30°,150°4.如图,在△ABC中,AD是∠BAC的平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.考向三正方形的性质与判定1.正方形的性质=矩形的性质+菱形的性质.2.正方形的判定:以矩形和菱形的判定为基础,可以引申出更多正方形的判定方法,如对角线互相垂直平分且相等的四边形是正方形.证明四边形是正方形的一般步骤是先证出四边形是矩形或菱形,再根据相应判定方法证明四边形是正方形.典例5面积为9㎝2的正方形以对角线为边长的正方形面积为A.18㎝2B.20㎝2C.24㎝2D.28㎝2【答案】A【解析】∵正方形的面积为9cm2,∴边长为3cm,∴根据勾股定理得对角线长cm,∴以=2=18cm2.故选A.典例6如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是A.8 B.C.D.【答案】D【解析】如图,连接AG,∵∠B=90°,AB=BC=4,∴∠CAB=∠ACB=45°,AC,∵把△ABC绕点A逆时针旋转45°得到△ADE,∴AD=AB=4,∠EAD=∠CAB=45°,∴∠FAB=90°,CD=AC﹣AD﹣4,∵∠B=90°=∠FAB,CF⊥AE,∴四边形ABCF是矩形,且AB=BC=4,∴四边形ABCF是正方形,∴AF=CF=AB=4=AD,∠AFC=∠FCB=90°,∴∠GCD =45°,且∠GDC =90°,∴∠GCD =∠CGD =45°,∴CD =GD ﹣4,∵AF =AD ,AG =AG ,∴Rt △AGF ≌Rt △AGD (HL ),∴FG =GD ﹣4,∴四边形ADGF 的周长=AF +AD +FG +GD ﹣﹣,故选D .5.如图,在正方形ABCD 内一点E 连接BE 、CE ,过C 作CF ⊥CE 与BE 延长线交于点F ,连接DF 、DE .CE =CF =1,DE ,下列结论中:①△CBE ≌△CDF ;②BF ⊥DF ;③点D 到CF 的距离为2;④S 四边形DECF +1.其中正确结论的个数是A .1B .2C .3D .46.如图,在正方形ABCD 中,,2BE FC CF FD ==,AE 、BF 交于点G ,下列结论中错误的是A .AE BF ⊥B .AE BF =C .43BG GE =D .ABGCEGF S S=四边形考向四 中点四边形1.中点四边形一定是平行四边形;2.中点四边形的面积等于原四边形面积的一半.典例7如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A.当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形【答案】D【解析】A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF∥HG,EF=HG,则四边形EFGH 为平行四边形,故C正确;D.如图所示,当E,F,G,H不是四边形ABCD各边中点时,若EF=FG=GH=HE,则四边形EFGH 为菱形,故D错误,故选D.7.顺次连接下列四边形的四边中点所得图形一定是菱形的是A.平行四边形B.菱形C.矩形D.梯形8.如图,我们把依次连接任意四边形ABCD各边中点所得四边形EFGH叫中点四边形.若四边形ABCD的面积记为S1,中点四边形EFGH的面积记为S2,则S1与S2的数量关系是A.S1=3S2B.2S1=3S2C.S1=2S2D.3S1=4S21.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=4,则OC=A.5 B.4 C.3.5 D.32.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AC=16,则图中长度为8的线段有A.2条B.4条C.5条D.6条3.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF 的长为A.158B.154C.152D.154.如图,菱形ABCD的对角线交于点O,AC=8 cm,BD=6 cm,则菱形的高为A.485cm B.245cm C.125cm D.105cm5.如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是A.108°B.72°C.90°D.100°6.如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF 交于点G.下列结论错误的是A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90°D.AE⊥BF7.如图,矩形ABCD中将其沿EF翻折后,D点恰落在B处,∠BFE=65°,则∠AEB=____________.8.如图,P为正方形ABCD内一点,且BP=2,PC=3,∠APB=135°,将△APB绕点B顺时针旋转90°得到△CP′B,连接PP′,则AP=_______.9.如图,在ABCD中,AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.10.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.11.如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形.直接写出答案,不需说明理由.1.下列命题正确的是A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形2.如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于AB.C.D.203.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是A.0 B.4 C.6 D.84.如图,正方形ABCD中,点E.F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为A.135B.125C.195D.1655.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE ,则GE的长为__________.6.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为A 点,D点的对称点为D点,若FPG,A EP90△的面积为1,则矩形ABCD的面积等于__________.△的面积为4,D PH7.如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为__________.8.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.9.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.10.如图,在菱形ABCD中,点E.F分别为A D.CD边上的点,DE=DF,求证:∠1=∠2.11.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:AF=CE.12.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.13.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.1.【答案】D【解析】结合选项可知,添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选D.2.【答案】A【解析】点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,当15°<∠EOD <75°时,四边形AFCE 为平行四边形, 当∠EOD =75°时,∠AEF =90°,四边形AFCE 为矩形, 当75°<∠EOD <105°时,四边形AFCE 为平行四边形,故选A . 3.【答案】B【解析】如图,由题意知AB =BC =AC ,∵AB =BC =AC ,∴△ABC 为等边三角形,即60B ∠=︒,根据平行四边形的性质,18060120.BAD ∠=-=︒︒︒故选B .4.【解析】∵DE ∥AC ,DF ∥AB , ∴四边形AEDF 为平行四边形, ∴∠FAD =∠EDA ,∵AD 是∠BAC 的平分线,∴∠EAD =∠FAD ,∴∠EAD =∠EDA , ∴AE =ED ,∴四边形AEDF 是菱形. 5.【答案】B【解析】∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°, ∵CF ⊥CE ,∴∠ECF =∠BCD =90°,∴∠BCE =∠DCF ,在△BCE 与△DCF 中,BC CDBCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF (SAS ),故①正确;∵△BCE ≌△DCF ,∴∠CBE =∠CDF ,∴∠DFB =∠BCD =90°,∴BF ⊥ED , 故②正确,过点D 作DM ⊥CF ,交CF 的延长线于点M ,∵∠ECF =90°,FC =EC =1,∴∠CFE =45°,∵∠DFM +∠CFB =90°,∴∠DFM =∠FDM =45°,∴FM =DM ,∴由勾股定理可求得:EF ,∵DE ,∴由勾股定理可得:DF =2,∵EF 2+BE 2=2BE 2=BF 2,∴DM =FM ∵△BCE ≌△DCF ,∴S △BCE =S △DCF ,∴S 四边形DECF =S △DCF +S △DCE =S △ECF +S △DEF =S △AFP +S △PFB =12B . 6.【答案】C【解析】在正方形ABCD 中,AB =BC ,∠ABE =∠C =90,又∵BE =CF ,∴△ABE ≌△BCF (SAS ),∴AE =BF ,∠BAE =∠CBF ,∴∠FBC +∠BEG =∠BAE +∠BEG =90°,∴∠BGE =90°,∴AE ⊥BF .故A 、B 正确; ∵CF =2FD ,∴CF :CD =2:3,∵BE =CF ,AB =CD ,32AB BE ∴=, ∵∠EBG +∠ABG =∠ABG +∠BAG =90°,∴∠EBG =∠BAG , ∵∠EGB =∠ABE =90°,∴△BGE ∽△ABE ,32BG AB GE BE ∴==,故C 不正确, ∵△ABE ≌△BCF ,∴S △ABE =S △BFC ,∴S △ABE –S △BEG =S △BFC –S △BEG ,∴S 四边形CEGF =S △ABG , 故D 正确.故选C .7.【答案】C【解析】∵顺次连接任意四边形的四边中点所得图形一定是平行四边形, 当对角线相等时,所得图形一定是菱形,故选C . 8.【答案】C【解析】如图,设AC 与EH 、FG 分别交于点N 、P ,BD 与EF 、HG 分别交于点K 、Q , ∵E 是AB 的中点,F 是BC 的中点,∴EF ∥AC , 同理可证EH ∥BD ,∴△EBK ∽△ABM ,△AEN ∽△EBK ,1.【答案】B【解析】∵四边形ABCD 是矩形,∴AC =BD ,OA =OC ,∠BAD =90°, ∵∠ADB =30°,∴AC =BD =2AB =8,∴OC =AC =4.故选B . 2.【答案】D【解析】∵AC =16,四边形ABCD 是矩形, ∴DC =AB ,BO =DO =12BD ,AO =OC =12AC =8,BD =AC , ∴BO =OD =AO =OC =8,∵∠AOD =120°,∴∠AOB =60°,∴△ABO 是等边三角形,∴AB =AO =8,∴DC =8,即图中长度为8的线段有AO 、CO 、BO 、DO 、AB 、DC 共6条,故选D . 3.【答案】B【解析】如图,连接AF .根据折叠的性质,得EF 垂直平分AC ,则设,则,在中,根据勾股定理,得,解得. 在中,根据勾股定理,得AC =5,则AO =2.5.12.AF CF =AF x =4BF x =-Rt △ABF 229(4)x x =+-258x =Rt △ABC在中,根据勾股定理,得 根据全等三角形的性质,可以证明则故选B .4.【答案】B【解析】∵菱形ABCD 的对角线∴AC ⊥BD ,OA =AC =4 cm ,OB =BD =3 cm ,根据勾股定理,(cm ).设菱形的高为h ,则菱形的面积,即,解得,即菱形的高为cm .故选B . 5.【答案】B【解析】如图,连接AP ,∵在菱形ABCD 中,∠ADC =72°,BD 为菱形ABCD 的对角线,∴∠ADP =∠CDP =12∠ADC =36°. ∵AD 的垂直平分线交对角线BD 于点P ,垂足为E ,∴PA =P D. ∴∠DAP =∠ADP =36°.∴∠APB =∠DAP +∠ADP =72°. 又∵菱形ABCD 是关于对角线BD 对称的,∴∠CPB =∠APB =72°.故选B.6.【答案】CRt △AOF 158,OF =,OE OF =154.EF=8cm 6cm AC BD ==,,12125AB ===12AB h AC BD =⋅=⋅15862h =⨯⨯245h =245【解析】∵AD//BC,∴∠DAE=∠AEB,∵BE=CF,AB=BC,∠ABE=∠BCF,∴△ABE≌△BCF,∴AE=BF,∠DAE=∠BFC,∵∠FBC+∠BFC=90°,∠AEB=∠BFC,∴∠FBC+AEB=90°,∴AE ⊥BF,所以A、B、D三个选项正确,∠AEB=∠BFC,故C选项错误,故选C.7.【答案】50°【解析】如图所示,由矩形ABCD可得AD∥BC,∴∠1=∠BFE=65°,由翻折得∠2=∠1=65°,∴∠AEB=180°–∠1–∠2=180°–65°–65°=50°.故答案为:50°.8.【答案】1【解析】∵△BP'C是由△BPA旋转得到,∴∠APB=∠CP'B=135°,∠ABP=∠CBP',BP=BP',AP=CP',∵∠ABP+∠PBC=90°,∴∠CBP'+∠PBC=90°,即∠PBP'=90°,∴△BPP'是等腰直角三角形,∴∠BP'P=45°,∵∠APB=∠CP'B=135°,∴∠PP'C=90°,∵BP=2,∴PP,∵PC=3,∴CP,∴AP=CP′=1,故答案为1.9.【解析】(1)∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴ABCD是矩形.(2)∵四边形ABCD是矩形,∴BD=AC=10.10.【解析】(1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,在△ACF和△ABE中,AC ABCAF BAEAF AE=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△ABE,∴BE=CF.(2)∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BEBD=BE﹣DE1.11.【解析】(1)OE=OF,理由如下:因为CE平分∠ACB,所以∠1=∠2,又因为MN∥BC,所以∠1=∠3,所以∠3=∠2,所以EO=CO,同理,FO=CO,所以OE=OF.(2)当点O运动到AC的中点时,四边形AECF是矩形,理由如下:因为OE=OF,点O是AC的中点,所以四边形AECF是平行四边形,又因为CF平分∠BCA的外角,所以∠4=∠5,又因为∠1=∠2,所以∠1=∠2,∠2+∠4=11802⨯︒=90°,即∠ECF=90°,所以平行四边形AECF是矩形.(3)当△ABC是直角三角形时,即∠ACB=90°时,四边形AECF是正方形,理由如下:由(2)证明可知,当点O运动到AC的中点时,四边形AECF是矩形,又因为∠ACB=90°,CE,CN分别是∠ACB与∠ACB的外角的平分线,所以∠1=∠2=∠3=∠4=∠5=45°,所以AC⊥MN,所以四边形AECF是正方形.1.【答案】A【解析】A.有一个角为直角的平行四边形是矩形满足判定条件;B.四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;故选A.【名师点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.2.【答案】C【解析】∵菱形ABCD的顶点A,B的坐标分别为(2,0),(0,1),∴AO=2,OB=1,AC⊥BD,∴由勾股定理知:AB==,∵四边形ABCD为菱形,∴AB=DC=BC=AD∴菱形ABCD的周长为:C.【名师点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.3.【答案】D【解析】如图,过E点作关于AB的对称点E′,则当E′,P,F三点共线时PE+PF取最小值,∵∠EAP=45°,∴∠EAE′=90°,又∵AE=EF=AE′=4,∴PE+PF的最小值为E′F=,∵满足PE+PF∴在边AB上存在两个P点使PE+PF=9,同理在其余各边上也都存在两个P点满足条件,∴满足PE+PF=9的点P的个数是8,故选D.【名师点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.4.【答案】A【解析】正方形ABCD 中,∵BC =4, ∴BC =CD =AD =4,∠BCE =∠CDF =90°, ∵AF =DE =1,∴DF =CE =3,∴BE =CF =5,在△BCE 和△CDF 中,BC CD BCE CDF CE DF =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△CDF (SAS ),∴∠CBE =∠DCF , ∵∠CBE +∠CEB =∠ECG +∠CEB =90°=∠CGE , cos ∠CBE =cos ∠ECG =BC CGBE CE=, ∴453CG =,CG =125,∴GF =CF ﹣CG =5﹣125=135, 故选A .【名师点睛】此题主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,锐角三角函数,证明△BCE ≌△CDF 是解本题的关键. 5.【答案】4913【解析】如图,令AE 与BF 的交点为M . 在正方形ABCD 中,∠BAD =∠D =90︒,∴∠BAM +∠FAM =90︒, 在Rt ADE △中,13==A E ,∵由折叠的性质可得ABF GBF △≌△, ∴AB =BG ,∠FBA =∠FBG , ∴BF 垂直平分AG , ∴AM =MG ,∠AMB =90︒, ∴∠BAM +∠ABM =90︒, ∴∠ABM =∠FAM ,∴ABM EAD △∽△,∴AM AB DE AE = ,∴12513AM =,∴AM =6013,∴AG =12013,∴GE =13–120491313=. 【名师点睛】本题考查了正方形与折叠,勾股定理,等腰三角形的性质,以及三角形相似的判定和性质,熟练掌握相关的知识是解题的关键.6.【答案】【解析】∵A 'E ∥PF ,∴∠A 'EP =∠D 'PH ,又∵∠A =∠A '=90°,∠D =∠D '=90°,∴∠A '=∠D ',∴△A 'EP ~△D 'PH , 又∵AB =CD ,AB =A 'P ,CD =D 'P ,∴A 'P = D 'P , 设A 'P =D 'P =x ,∵S △A 'EP :S △D 'PH =4:1,∴A 'E =2D 'P =2x ,∴S △A 'EP =2112422A E A P x x x ''⨯⨯=⨯⨯==, ∵0x >,∴2x =,∴A 'P =D 'P =2,∴A 'E =2D 'P =4,∴EP ==∴1=2PH EP =112DH D H A P ''===,∴415AD AE EP PH DH =+++=+=+ ∴2AB A P '==,∴25)10ABCD S AB AD =⨯=⨯=矩形,【名师点睛】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质. 7.【答案】24【解析】∵四边形ABCD 是菱形, ∴AB =BC =CD =AD ,BO =DO , ∵点E 是BC 的中点, ∴OE 是△BCD 的中位线, ∴CD =2OE =2×3=6,∴菱形ABCD 的周长=4×6=24; 故答案为:24.【名师点睛】本题考查了菱形的性质以及三角形中位线定理;熟记菱形性质与三角形中位线定理是解题的关键.8.【解析】(1)∵四边形ABCD是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD,∵DE=CF,∴AE=DF,在△BAE和△ADF中,AB ADBAE ADF AE DF=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△ADF(SAS),∴BE=AF;(2)解:由(1)得:△BAE≌△ADF,∴∠EBA=∠FAD,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE,在Rt△ABE中,12AB×AE=12BE×AG,∴AG=435⨯=125.【名师点睛】本题考查了全等三角形的判定与性质、正方形的性质、勾股定理以及三角形面积公式;熟练掌握正方形的性质,证明三角形全等是解题的关键.9.【解析】(1)∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,B DAEB CFD AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(AAS);(2)∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.【名师点睛】本题考查了矩形的判定、平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和矩形的判定是解题的关键.10.【解析】∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,AD CDD D DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CDE(SAS),∴∠1=∠2.【名师点睛】本题考查了菱形的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解题的关键.11.【答案】见解析.【解析】∵四边形ABCD是矩形,∴∠D=∠B=90°,AD=BC,在△ADF和△CBE中,AD CBD B DF BE⎧=∠=∠=⎪⎨⎪⎩,∴△ADF≌△CBE(SAS),∴AF=CE.【名师点睛】本题考查了矩形的性质、全等三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等是解题的关键.12.【答案】见解析.【解析】∵四边形ABCD中,AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴AC=2AO,BD=2OD,∵OA=OD,∴AC=BD,∴四边形ABCD是矩形.【名师点睛】本题考查了平行四边形的性质和判定,矩形的判定等知识点,能由题中已知信息推出四边形ABCD是平行四边形是关键.13.【解析】(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.【名师点睛】本题考查了菱形的性质,矩形的性质,全等三角形的判定和性质,正确的识别作图是解题的关键.。
专题02矩形的性质与判定(4个知识点9种题型1个易错点中考4种考法)【目录】倍速学习五种方法【方法一】脉络梳理法知识点1:矩形的定义知识点2:矩形的性质(重难点)知识点3:直角三角形斜边上的中线的性质(重点)知识点4:矩形的判定(重难点)【方法二】实例探索法题型1:利用矩形的性质求角的度数题型2:利用矩形的性质求边的长度题型3:直角三角形斜边上的中线的性质应用题型4:利用矩形的性质证明题型5:矩形的判定题型6:矩形的实际应用题型7:矩形中的折叠问题题型8:计算矩形中阴影部分面积题型9:矩形中的动态问题【方法三】差异对比法易错点1判断矩形的条件不足【方法四】仿真实战法考法1矩形性质的应用考法2矩形的判定考点3直角三角形斜边上的中线考法4矩形的性质与判定【方法五】成果评定法【知识导图】【倍速学习五种方法】【方法一】脉络梳理法知识点1:矩形的定义1.定义:有一个内角是直角的平行四边形叫做矩形.注意:矩形的定义既是矩形的基本性质,也是判定矩形的基本方法.知识点2:矩形的性质矩形除具有平行四边形的一切性质外,还有一些特殊性质.(1)矩形的四个角都是直角;(2)矩形的两条对角线相等.注意:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别是通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).知识点3:直角三角形斜边上的中线的性质在直角三角形中,斜边的中线等于斜边的一半.知识点4:矩形的判定矩形的判定定理1:有三个角是直角的四边形是矩形.矩形的判定定理2:对角线相等的平行四边形是矩形.【方法二】实例探索法题型1:利用矩形的性质求角的度数例1.如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A.3B.4C.5D.6题型2:利用矩形的性质求边的长度例2.已知矩形ABCD的周长为16,AB=5,则BC等于()A.3B.5C.6D.11题型3:直角三角形斜边上的中线的性质应用例3.如图,BD、CE是△ABC不同边上的高,点G、F分别是BC、DE的中点,试证明GF⊥DE.例4.如图,△ABC中,∠ACB=90°,D是AB中点,过点B作直线CD的垂线,垂足为E.求证:∠EBC=∠A.题型4:利用矩形的性质证明例5.如图所示,矩形ABCD的对角线AC、BD交于点O,BE AC⊥⊥于点E,CF BD 于点F,求证:BE=CF.A B CDEF O 例6.已知:若从矩形ABCD 的顶点C 作BD 的垂线交BD 于E ,交∠BAD 的平分线于F .求证:△CAF 是等腰三角形.G例7.已知:矩形ABCD 中,延长BC 至E ,使BE =BD ,F 为DE 中点,连接AF 、CF .求证:AF ⊥CF .A B CDE F题型5:矩形的判定例8.已知:如图,在△ABC 中,AB =AC ,AD 是∠BAC 的平分线,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .求证:四边形ADCE为矩形;例9.如图,在△ABC中,O是AC上的任意一点(不与点A、C重合),过点O平行于BC的直线l分别与∠BCA、∠DCA的平分线交于点E、F.(1)OE与OF相等吗?证明你的结论.(2)试确定点O的位置,使四边形AECF是矩形,并加以证明.题型6:矩形的实际应用例10.如图是一个矩形桌子,一小球从P撞击到Q,反射到R,又从R反射到S,从S反射回原处P,入射角与反射角相等(例如∠PQA=∠RQB等),已知AB=8,BC=15,DP=3.则小球所走的路径的长为.题型7:矩形中的折叠问题例11.如图所示,在矩形ABCD中,BC=8,AB=6,把矩形折叠使点C与点A重合,求折叠EF的长.例12.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,使点D落在点D'处,CD'交AB于点F,则重叠部分△AFC的面积为________.题型8:计算矩形中阴影部分面积例13.矩形ABCD中,横向阴影部分是长方形,另一部分是平行四边形,依照图中标注的数据,图中空白部分的面积为.题型9:矩形中的动态问题例14如图,已知在矩形ABCD中,AB=2,,点P是AD边上的一个动点,连接BP,点C关于直线BP的对称点为C1,当点P运动时,点C1也随之运动.若点P从点A运动到点D,则线段CC1扫过的区域的面积是.例15.如图,在△ABC中,AB=AC.将△ABC沿着BC方向平移得到△DEF,其中点E在边BC上,DE 与AC相交于点O.(1)求证:△OEC为等腰三角形;(2)连接AE、DC、AD,当点E在什么位置时,四边形AECD为矩形,并说明理由.【方法三】差异对比法易错点1判断矩形的条件不足1.下列命题中真命题是()A.对角线互相垂直的四边形是矩形B.对角线相等的四边形是矩形;C.四条边都相等的四边形是矩形;D.四个内角都相等的四边形是矩形;2.已知四边形ABCD是平行四边形,对角线AC与BD相交于点O,那么下列结论中正确的是()A.当AB=BC时,四边形ABCD是矩形⊥时,四边形ABCD是矩形B.当AC BDC.当OA=OB时,四边形ABCD是矩形D.当ABD CBD∠=∠时,四边形ABCD是矩形【方法四】仿真实战法考法1矩形性质的应用1.(2022•无锡)菱形具有而矩形不一定具有的性质是()A.对边平行B.对角线互相平分C.对角线互相垂直D.对角互补2.(2022•西宁)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是.3.(2022•吉林)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且AF=AC,连接EF.若AC=10,则EF=.4.(2022•邵阳)已知矩形的一边长为6cm,一条对角线的长为10cm,则矩形的面积为cm2.5.(2022•鄂州)如图,在矩形ABCD中,对角线AC、BD相交于点O,且∠CDF=∠BDC、∠DCF=∠ACD.(1)求证:DF=CF;(2)若∠CDF=60°,DF=6,求矩形ABCD的面积.6.(2022•哈尔滨)已知矩形ABCD的对角线AC,BD相交于点O,点E是边AD上一点,连接BE,CE,OE,且BE=CE.(1)如图1,求证:△BEO≌△CEO;(2)如图2,设BE与AC相交于点F,CE与BD相交于点H,过点D作AC的平行线交BE的延长线于点G,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEF除外),使写出的每个三角形的面积都与△AEF的面积相等.考法2矩形的判定7.(2022•聊城)要检验一个四边形的桌面是否为矩形,可行的测量方案是()A.测量两条对角线是否相等B.度量两个角是否是90°C.测量两条对角线的交点到四个顶点的距离是否相等D.测量两组对边是否分别相等8.(2022•恩施州)如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是()A.当t=4s时,四边形ABMP为矩形B.当t=5s时,四边形CDPM为平行四边形C.当CD=PM时,t=4sD.当CD=PM时,t=4s或6s9.(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AD B.AC⊥BD C.AB=AC D.AC=BD10.(2022•甘肃)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是.11.(2022•巴中)如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC 至点G,使CG=CE,连接DG、DE、FG.(1)求证:△ABE≌△FCE;(2)若AD=2AB,求证:四边形DEFG是矩形.12.(2022•六盘水)如图,在平行四边形ABCD中,AE平分∠BAC,CF平分∠ACD.(1)求证:△ABE≌△CDF;(2)当△ABC满足什么条件时,四边形AECF是矩形?请写出证明过程.13.(2022•十堰)如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设=k,当k为何值时,四边形DEBF是矩形?请说明理由.考点3直角三角形斜边上的中线14.(2022•永州)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,点D为边AC的中点,BD=2,则BC的长为()A.B.2C.2D.415.(2022•杭州)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.考法4矩形的性质与判定16.(2022•云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.17.(2022•德阳)如图,在菱形ABCD中,∠ABC=60°,AB=2cm,过点D作BC的垂线,交BC的延长线于点H.点F从点B出发沿BD方向以2cm/s向点D匀速运动,同时,点E从点H出发沿HD方向以1cm/s向点D匀速运动.设点E,F的运动时间为t(单位:s),且0<t<3,过F作FG⊥BC于点G,连结EF.(1)求证:四边形EFGH是矩形;(2)连结FC,EC,点F,E在运动过程中,△BFC与△DCE是否能够全等?若能,求出此时t的值;若不能,请说明理由.【方法五】成果评定法一、单选题1.(2023·河南平顶山·统考一模)下列叙述错误的是()A.平行四边形的对角线互相平分B.矩形的对角线相等C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形A.三角形B.矩形C.菱形D.梯形3.(2023·四川泸州·统考一模)如图,菱形ABCD的对角线,AC BD相交于点O 连接OE,若菱形ABCD的面积为16,4OA=,则OE的长为()A.3B.2.54.(2023·安徽·校联考一模)如图,菱形连接OH,点M是边AD的中点,连接A.53B.855.(2023·安徽合肥·统考一模)如图,在矩形A .BECS 二、填空题7.(2023·山东临沂·统考一模)如图,在长为半径画弧交AB 于点8.(2023·黑龙江哈尔滨·统考一模)如图,矩形连接BF ,过F 作CE 的垂线交CD 的长是___________.9.(2023·天津·校联考一模)如图,矩形为CE 的中点,90EOF ∠=11.(2023·山东泰安·统考一模)如图,一点,且P不与B、C重合.过P12.(2023·河南周口·统考二模)如图,在部,3PC=,D是AB的中点,连接13.(2023·四川成都·统考模拟预测)三、解答题Y中,点E是AD的中点,延长BE交CD的延长14.(2023春·江苏无锡·九年级统考期中)如图,在ABCD线于F.(1)求证:AEB DEF△≌△;(2)连接CE,当CE BF⊥时,若3AB=,求BC的长.15.(2023·浙江温州·模拟预测)规定:每个顶点都在格点的四边形叫做格点四边形.在106⨯的正方形网格中画出符合要求的格点四边形(设每个小正方形的边长为1).(1)在图甲中画出一个以AB为边的平行四边形,且它的面积等于8;(2)在图乙中画出一个以AB为对角线的矩形,且它的周长为无理数.16.(2023·江苏扬州·统考一模)如图,已知点E是矩形ABCD中BC边的中点,连接AE.(1)分别在CD、AE边上求作点P、点D¢,使得点D关于AP的对称点D¢恰好落在线段AE上;(请保留作图痕迹,不需要写作法)(2)在(1)的条件下,若36AB=,30BC=,求CP.17.(2022秋·广东佛山·九年级校考阶段练习)如图,在ABCD⊥于点E,延长BC至点F,Y中,AE BC=,连接DF,AF与DE交于点O.使CF E(1)求证:四边形AEFD 为矩形;(2)若3AB =,2OE =,5BF =,求DF 的长.18.(2023春·江苏南京·九年级统考期中)如图,O 为矩形ABCD 的对角线AC 的中点,过O 作EF AC ⊥分别交AD ,BC 于点E ,F .(1)求证:四边形AFCE 是菱形.(2)若6AB =,12BC =,求菱形AFCE 的面积.19.(2023·河南南阳·统考一模)综合与实践:在综合与实践课上,老师让同学们以“矩形纸片的折叠”为主题开展数学活动.(1)如图1,若F 为AD 边的中点,6AB BC ==,点G 与点H 重合,则ECF ∠=(2)如图2,若F 为AD 的中点,CG 平分ECF ∠,21AB =+,2BC =,求ECF ∠的度数及秒的速度运动,P 、Q 分别从A 、C 同时出发,当其中一点到端点时,另一点也随之停止运动,设运动时间为t 秒.问:(1)求t 为何值时,四边形PQCD 是平行四边形?(2)四边形ABQP 可能是矩形吗?如果可能,求出t 的值;如果不可能,说明理由;(3)四边形PQCD 可能是菱形吗?如果可能,求出t 的值;如果不可能,说明理由.21.(2023·全国·九年级专题练习)【问题发现】(1)如图①,在边长为5的等边ABC 中,点D ,E 分别是BC ,AB 边上一点,且22BD BE ==,点P(1)直接写出B、C、D各点的坐标:B、C、D;P,10),点E,M在四边形ABCD的边上,且E在第二象限.若(2)如图1,(3等腰直角三角形,请直接写出点E的坐标,并对其中一种情况计算说明;(3)如图2,F为y轴正半轴上一动点,过F的直线FH∥x轴,BH∠=∠,F在运动中FG的长度是否发生变化?若变化,求出变化范围;若不变,求出定的点,且HGF FAB值.。
初中数学矩形的性质与判定
矩形是平面几何中最基本的图形之一,它是一个由四条直线构成的平行四边形,两个对角
线相等,对角线分别叫做矩形的两个直角边。
由以上定义可知,矩形是一种特殊的平行四
边形,所以,矩形的性质有如下一些:
一、矩形的四边相等
矩形的四条边是相等的,不管你横向测量,还是纵向测量,都得到相同的长度。
二、矩形的两个对角线相等
即矩形对角线是相等的,并且垂直于矩形的四边。
三、矩形有四个顶点
矩形有四个定点,分布在矩形的每个角,两个对角上。
判定矩形:
我们可以根据以上性质来判定一个图形是否是矩形:
1、检查四边,如果四边相等,则可以推断它可能是矩形;
2、测量对角线的长度,如果两条对角线长度相等,且垂直于矩形的四边,则可以确认它
是矩形;
3、查看顶点,如果有四个顶点,则它就是矩形。
综上所述,矩形是一种平行四边形,有四边相等,两个对角线相等,且垂直于矩形的四边,有四个顶点的特殊图形。
我们可以根据矩形的性质和判定规则,很容易判断出一个平行四
边形是否是矩形。