《2.3 等差数列的前n项和》 教学案 6-公开课-优质课(人教A版必修五精品)
- 格式:doc
- 大小:82.50 KB
- 文档页数:5
课题: 2.3 等差数列的前n项和授课类型:新授课(第1课时)一、教学内容分析:《等差数列的前n项和》是《普通高中课程标准实验教科书必修5》人教A 版第二章第三节的内容,本节为新授课的第一课时。
二、学情分析:这节课是在学生学习了前一节《等差数列》的定义和通项公式后学习的,此时,学生已具备了等差数列的基础知识。
又因为高一学生本身已具有了一定的自主探究的能力,学生能进行简单的计算。
三、教学目标知识与技能:掌握等差数列前n项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n项和有关的问题。
过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平。
情感态度与价值观:通过公式的推导过程,展现数学中的对称美。
教学重点:等差数列前n项和公式的理解、推导及应用。
教学难点灵活应用等差数列前n项公式解决一些简单的有关问题。
四、教学模式及教法、学法本节采用“探究—发现-归纳-应用”的教学模式,教师采用多媒体辅助教学,学生积极自主探究、合作交流。
五、教学过程1.复习旧知:(1). 等差数列的定义:(2). 等差中项的定义:(3). 等差数列的通项公式:设置意图:复习旧知识,不但为了巩固上节所学,也为引出今天的课题,同时调动学生的学习积极性。
2、新知探索:创设情境,课题导入“小故事”:德国著名数学家高斯10岁的时候,有一次他的算术老师出了一道题目:1 +2 +3 + … + 100 = ?正当大家在:1+2=3;3+3=6;4+6=10…逐项相加,算得不亦乐乎时,高斯站起来说出了正确答案:1 +2 +3 + … + 100 = 5050。
设置问题:“你知道高斯是怎样算出来的吗?”设置意图:学生对于高斯的算法是熟悉的,借此为了调动学生学习本节课的兴趣。
学科数学年级/册高一必修五教材版本人教A版课题名称等差数列的前n项和教材分析本节对“等差数列前n 项和”的推导,为以后学习数列求和提供了一种重要的思想方法——倒序相加求和法,具有承上启下的重要作用。
学情分析学生已掌握了函数,数列等有关基础知识,并且在初中已了解特殊的数列求和。
学生已初步具有抽象逻辑思维能力,能够很好的掌握教材上的内容,能较好地应用数形结合的方法解决问题,但处理抽象问题的能力还有待进一步提高。
教学目标掌握等差数列前n项和公式,经历公式的推导过程,体验从特殊到一般的研究方法,了解倒序相加求和法的原理。
体会数形结合思想。
获得发现的成就感,逐步养成科学严谨的学习态度。
教学重点等差数列前n项和公式教学难点等差数列前n项和公式推导思路的获得教学方法采用“问题探究式”教学法.教学手段多媒体教学环节教学过程一、实例导入通过日常生活中楼梯贴砖问题和钢管数量问题,引发学生思考,引出本课的学习内容,通过实例提升学生学习兴趣,体现数学来源于生活服务于生活。
(提出问题)实例1:瓷砖数量实例2:管材数量二、抽象建模通过对实例1、2进行数学抽象建立数学模型,实现从现实生活中的问题回归到数学几何问题(培养学生数学抽象、直观想象核心素养)。
(分析问题)通过探究分析,得到解决简单等差数列求和的基本思想方法,利用图形的拼接让数量化的问题转化为几何上的问题。
让学生逐渐突破数形结合的障碍。
(探究问题)建模1拼接求解建模2 拼接求解设置思考:通过抽象拼接,我们顺利的解决了楼梯砖块问题,管材问题,请同学们思考,如果楼梯台阶数增加,还能这样计算吗?你能否得到等差数列的前n 项和公式。
(培养学生特殊到一般的数学思想方法)三、拓展深入通过将特殊的简单的等差数列求和方法进行迁移,并归纳出推理出等差数列的前n 项和公式。
(培养学生逻辑推理的数学核心素养)在推理过程中让学生掌握倒序相加法的内涵和基本思想。
通过图形思考等差数列前n 项和的公式与面积公式之间有什么关系。
§2.3 等差数列的前n 项和(2)【教学目标】 1.知识与技能:进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题,会利用等差数列通项公式和前n 项和公式研究n S 的最值.初步体验函数思想在解决数列问题中的应用. 2.过程与方法:通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力. 3.情感、态度与价值观:①提高学生代数的思维能力,使学生获得一定的成就感;②通过生动具体的现实问题、数学问题,激发学生探究的兴趣与欲望,树立求真的勇气与自信心,增强学生学好数学的心理体验,产生热爱数学的情感. 【教学重点】等差数列前n 项和公式的掌握与应用. 【教学难点】灵活应用求和公式解决问题. 【教辅手段】多媒体投影仪、黑板 【教学过程】 I.情景设置—温故知新首先,回顾上一节所学的内容: (1)等差数列的前n 项和公式1:()12n nn a as +=(2)等差数列的前n 项和公式2:()112n n n d s na -+= Ⅱ.新知探究1.等差数列的等价条件例1:已知数列{}n a 的前n 项和n n Sn212+=,求(1)).2(1≥--n S S n n (2)求这个数列的通项公式.(3)这个数列是等差数列吗?如果是,它的首项和公差分别是什么? 分析:课本例题,题型比较简单,主要是靠引导学生.过程略.[设计意图]本例题实际上给出了数列前n 项和公式判别是否是等差数列的依据,要让学生们知道等差数列前n 项是一个常数项为0的关于n 的二次型函数.接下来,我们来完成一探究题.如果一个数列{}n a 的前 n 项和为2nS pn qn r =++.其中p 、q 、r 为常数,且0p ≠ ,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是什么?解:由2n S pn qn r =++ 得11S a p q r ==++ ⎩⎨⎧-=-11n n n S S S a ).2()1(≥=n n 又2n S pn qn r =++ 2n ≥ 时 221()[(1)(1)]2()n n n a S S pn qn r p n q n r pn p q -=-=++--+-+=-+⎩⎨⎧+-++=∴)(2q p pn rq p a n ).2()1(≥=n n1[2()][2(1)()]2n n d a a pn p q p n p q p -=-=-+---+= ∴此类数列从第二项开始为等差数列.归纳要使数列{}n a 为等差数列,则,)(12r q p q p p ++=+-⨯即.0=r[设计意图]本探究实际上是对例1的深化,目的是为了让学生进一步认识到,如果一个数列的前n 项公式是一个常数项为0的关于n 的二次型函数,则这个数列一定是等差数列,从而使学生从结构上认识数列. 2.等差数列的最值问题例2:已知等差数列24,3,775,4的前n 项和为n s ,求使得n s 最大的序号n 的值分析:等差数列的前n 项和公式可以写成211(1)()222n n n d d dS na n a n -=+=+- ,所以可以看成函数2122d d x a x y ⎛⎫++ ⎪⎝⎭=,()*x N ∈,当x n =时的函数值.另一方面,容易知道n s 关于n 的图像是一条抛物线上的一些点,因此,我们可以利用二次函数来求n 的值. 解:由题意知,等差数列24,3,775,4 的公差为57-所以 ()2252512775514515112514256n n n n n n s ⎡⎤⎛⎫=⨯+-- ⎪⎢⎥⎝⎭⎣⎦-=⎛⎫=--+ ⎪⎝⎭当 n 取与152最接近的整数即为7或8时n s 取最大值.[设计意图]通过学习等差数列前n 项和的函数性质来用于实际题型中的应用,加深对函数结构的认识。
《等差数列的前n 项和》教学设计【课题】等差数列的前n 项和【教材】人民教育出版社《数学》必修5 【课时】1课时【教材分析】1、教学内容《等差数列的前n 项和》为现行高中教材必修5 第三章第三节“等差数列前n 项和”的第一课时,主要内容是等差数列前n 项和的推导过程和简单应用。
2、地位与作用本节对“等差数列前n 项和”的推导,是在学生学习了等差数列通项公式的基础上进一步研究等差数列,其学习平台是学生已掌握等差数列的性质以及高斯求和法等相关知识。
对本节的研究,为以后学习数列求和提供了一种重要的思想方法——倒序相加求和法,具有承上启下的重要作用。
【学生学情分析】1、学生知识基础情况:课堂学生为高二年级的的学生,学生已掌握了函数,数列等有关基础知识,并且在初中已了解特殊的数列求和。
经过高一的学习,学生已初步具有抽象逻辑思维能力,能够在教师的引导下解决一些简单问题。
2、任教班级学生特点:我班学生大多来自农村,入学基础薄弱,基础知识较一般,但是学生思维较活跃,学习态度认真,只是处理抽象问题的能力还有待进一步提高。
【教学目标】1、知识与能力:A:知识(1) 掌握等差数列前n 项和公式;(2) 掌握等差数列前n 项和公式的推导过程;(3) 会简单运用等差数列的前n 项和公式。
B:能力(1) 通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2) 利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
(3) 通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。
2、过程与方法:(1) 启发式教学。
从三角形图案入手,以高斯算法引入,设计了很多“想一想”、“试一试”、“探究”,就是为了启发、诱导学生,让学生主动发现问题,得到公式推导的思路,并能自觉地得到解决办法;指导学生合情推理,加深认识,正确运用。
等差数列的前n项和一.学习目标:1.理解数列前n项和Sn的概念,并掌握Sn与an的关系.2.通过等差数列前n项和公式的推导体会倒序相加的思想.3.会选择恰当的公式解决简单的等差数列求和问题.4.体会两组公式分别从哪些角度反映了等差数列的性质.二.教学重点、难点:1.教学重点:掌握数列的前n项Sn与an的关系、差数列的前n项和公式,学会用公式解决一些简单问题,体会两组公式所反映出的等差数列的性质是本节课的重点.2.难点:等差数列前n项和公式的推导思路的获得是难点.三.新课内容:1.数列的前n项和①Sn=_______________②Sn与an的关系③题型练习:已知数列{an}的前n项和Sn=n2则通项公式an=_______2.你能快速求出1+2+3+...+100=?3.这种方法能推广到求一般的等差数列求前n项和?为什么?Sn=a1+a2+a3+...+an4.等差数列前n项和公式Sn=_______5.题型练习:已知等差数列{an}中①a1=-4,a8=-18则S8=______②S10=120,则a2+a9=______③a7=2,则S13=_______※该公式从哪个角度体现了等差数列的性质?6.等差数列的前n 项和Sn=________7.题型练习:已知等差数列{an}中①a1=-16,d=4,则S6=_______;Sn=_______②上式中,当n 取何值时,Sn取到最小值?※该公式从哪个角度说明了等差数列的性质?三.课堂小结、作业1.课堂小结:2.作业:课本44页例3、例4以及45页的练习题.3.思考:题型练习3中的第二问可否从通项公式着手解答?四.板书设计五.教学反思。
等差数列的前n项和说课稿一、背景分析1.教学内容分析《等差数列的前n项和》是按照从特殊到一般的探究方式,引导学生采用倒序相加法推导等差数列的前n项和公式,并体会公式的一些应用,同时让学生探究等差数列的前n 项和公式与关于n的二次函数之间的联系。
2.在教材中的地位等差数列前n项和是进一步学习数列、微积分的基础,与数学课程的其它内容(函数、三角、不等式等)有着密切的联系。
3.重点、难点定位重点:等差数列前n项和公式的理解、推导及应用。
难点:等差数列前n项和公式推导方法及它与二次函数的关系。
二、学生学情分析1、知识准备学生已经学习了等差数列的通项公式和性质,数列的和等有关内容。
2、能力储备学生经过初高中的数学学习,已具有一定的自主探究能力,从特殊到一般的类比推理能力,但学生对于倒序求和的思想还初次见到。
3、学生情况我所在的学校是省示范性高中,学生基础还不错,经过近几年的课改,已经形成了较浓的自主探究氛围与合作交流意识。
这些都为本节课突破难点提供了有利条件。
三、教学目标1、知识与技能(1)理解等差数列前项和的定义以及等差数列前项和公式推导的过程,并理解推导此公式的方法——倒序相加法,记忆公式的两种形式;(2)用方程思想认识等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个量;(3)会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题.2、过程与方法(1)通过对历史有名的高斯求和的介绍,引导学生发现等差数列的第k项与倒数第k项的和等于首项与末项的和这个规律,然后体验从特殊到一般的研究方法。
通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并运用数学知识和方法科学地解决问题.3、情感与价值观(1) 通过对数列知识的进一步学习,不断培养学生自主学习、合作交流、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,提高参与意识和合作精神;(2)通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,产生热爱数学的情感, 形成学数学、用数学的思维和意识,培养学好数学的信心,体验在学习中获得成功的成就感,为远大的志向而不懈奋斗。
等差数列的前n项和第一课时一、教材分析1.教材地位与作用本节课的教学内容是等差数列前n项和公式的推导及其简单应用。
在推导等差数列前n项和公式的过程中,采用了:1.从特殊到一般的研究方法;2.等差数列的基本元表示;3.逆序相加求和。
不仅得出了等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。
等差数列前n项和是学习极限、微积分的基础,与数学课程的其它内容(函数、三角、不等式等)有着密切的联系。
2.教学目标知识与技能目标:掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。
过程与方法目标:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。
情感、态度与价值观目标:获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
3.教学重点、难点•等差数列前n项和公式是重点。
•获得等差数列前n项和公式推导的思路是难点。
二、教法分析教学过程分为问题呈现阶段、探索与发现阶段、应用知识阶段。
探索与发现公式推导的思路是教学的重点。
如果直接介绍“逆序相加”求和,无疑就像波利亚所说的“帽子里跳出来的兔子”。
所以在教学中采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法。
应用公式也是教学的重点。
为了让学生较熟练掌握公式,可采用设计变式题的教学手段,通过“选择公式”,“变用公式”,“知三求二”三个层次来促进学生新的认知结构的形成三、学法分析建构主义学习理论认为,学习是学生积极主动的建构知识的过程,学习应该与学生熟悉的背景相联系。
在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、思考、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。
四、教学过程1.问题呈现泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。
高一数学集体备课教案教学重点熟练掌握等差数列的求和公式.教学难点灵活应用求和公式解决问题.第一课时导入新课高斯是伟大的数学家、天文学家,高斯十岁时,有一次老师出了一道题目,老师说:“现在给大家出道题目:1+2+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:“1+2+3+…+100=5 050.”教师问:“你是如何算出答案的?”高斯回答说:因为1+100=101;2+99=101;…;50+51=101,所以101×50=5 050. 师这个故事告诉我们什么信息?高斯是采用了什么方法来巧妙地计算出来的呢?生高斯用的是首尾配对相加的方法.也就是:1+100=2+99=3+98=…=50+51=101,有50个101,所以1+2+3+…+100=50×101=5 050.师对,高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5 050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果。
作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西.师问:数列1,2,3,…,100是什么数列?而求这一百个数的和1+2+3+…+100相当于什么?生这个数列是等差数列,1+2+3+…+100这个式子实质上是求这数列的前100项的和.师对,这节课我们就来研究等差数列的前n项的和的问题.(二)、推进新课[合作探究]师我们再回到前面的印度泰姬陵的陵寝中的等边三角形图案中,在图中我们取下第1层到第21层,得到右图,则图中第1层到第21层一共有多少颗宝石呢?生这是求“1+2+3+…+21”奇数个项的和的问题,高斯的方法不能用了.要是偶数项的数求和就好首尾配成对了.师高斯的这种“首尾配对”的算法还得分奇、偶个项的情况求和,适用于偶数个项,我们是否有简单的方法来解决这个问题呢?生有!我用几何的方法,将这个全等三角形倒置,与原图补成平行四边形.平行四边形中的每行宝石的个数均为22个,共21行.则三角形中的宝石个数就是221)211(⨯+.师妙得很!这种方法不需分奇、偶个项的情况就可以求和,真是太好了!我将他的几何法写成式子就是:1+2+3+…+21,21+20+19+…+1,对齐相加(其中下第二行的式子与第一行的式子恰好是倒序)这实质上就是我们数学中一种求和的重要方法——“倒序相加法”.现在我将求和问题一般化:(1)求1到n的正整数之和,即求1+2+3+…+(n-1)+n.(注:这问题在前面思路的引导下可由学生轻松解决)(2)如何求等差数列{a n}的前n项的和S n?生 1 对于问题(2),我这样来求:因为S n =a 1+a 2+a 3+…+a n ,S n =a n +a n -1+…+a 2+a 1,再将两式相加,因为有等差数列的通项的性质:若m +n =p +q ,则a m +a n =a p +a q ,所以2)(1n n a a n S +=.(Ⅰ) 生2 对于问题(2),我是这样来求的:因为S n =a 1+(a 1+d )+(a 1+2d )+(a 1+3d )+…+[a 1+(n -1)×d ],所以S n =na 1+[1+2+3+…+(n -1)]d =na 1+2)1(-n n d , 即S n =na 1+2)1(-n n d .(Ⅱ) [教师精讲]其中公式(Ⅰ)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a 1,下底是第n 项a n ,高是项数n ,有利于我们的记忆.[方法引导]师 如果已知等差数列的首项a 1,项数为n ,第n 项为a n ,则求这数列的前n 项和用公式(Ⅰ)来进行,若已知首项a 1,项数为n ,公差d ,则求这数列的前n 项和用公式(Ⅱ)来进行.引导学生总结:这些公式中出现了几个量?生 每个公式中都是5个量.师 如果我们用方程思想去看这两个求和公式,你会有何种想法?生 已知其中的三个变量,可利用构造方程或方程组求另外两个变量(知三求二).师 当公差d ≠0时,等差数列{a n }的前n 项和S n 可表示为n 的不含常数项的二次函数,且这二次函数的二次项系数的2倍就是公差.[知识应用]【例1】 (直接代公式)计算:(1)1+2+3+…+n ;(2)1+3+5+…+(2n -1);(3)2+4+6+…+2n ;(4)1-2+3-4+5-6+…+(2n -1)-2n .(让学生迅速熟悉公式,即用基本量观点认识公式)请同学们先完成(1)~(3),并请一位同学回答.生 (1)1+2+3+…+n =2)1(+n n ;(2)1+3+5+…+(2n -1)=2)11(-+n n =n 2;(3)2+4+6+…+2n =2)22(+n n =n (n +1). 师 第(4)小题数列共有几项?是否为等差数列?能否直接运用S n 公式求解?若不能,那应如何解答?(小组讨论后,让学生发言解答)生(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以原式= [1+3+5+…+(2n-1)]-(2+4+6+…+2n)=n2-n(n+1)=-n.生上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=(-1)+(-1)+(-1)+…+(-1)=-n.师很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法.注意在运用求和公式时,要看清等差数列的项数,否则会引起错解.【例2】(课本例1)分析:这是一道实际应用题目,同学们先认真阅读此题,理解题意.你能发现其中的一些有用信息吗?生由题意我发现了等差数列的模型,这个等差数列的首项是500,记为a1,公差为50,记为d,而从2001年到2010年应为十年,所以这个等差数列的项数为10.再用公式就可以算出来了.师这位同学说得很对,下面我们来完成此题的解答.(按课本解答示范格式)【例3】(课本例2)已知一个等差数列的前10项的和是310,前20项的和是1 220,由此可以确定求其前n项和的公式吗?分析:若要确定其前n项求和公式,则必须确定什么?生必须要确定首项a1与公差d.师首项与公差现在都未知,那么应如何来确定?生由已知条件,我们已知了这个等差数列中的S10与S20,于是可从中获得两个关于a1和d的关系式,组成方程组便可从中求得.(解答见课本)师通过上面例题3我们发现了在以上两个公式中,有5个变量.已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二).运用方程思想来解决问题.[合作探究]师请同学们阅读课本例3,阅读后我们来互相进行交流.(给出一定的时间让学生对本题加以理解)师本题是给出了一个数列的前n项和的式子,来判断它是否是等差数列.解题的出发点是什么?生从所给的和的公式出发去求出通项.师对的,通项与前n项的和公式有何种关系?生当n=1时,a1=S1,而当n >1时,a n=S n-S n-1.师回答的真好!由S n的定义可知,当n=1时,S1=a1;当n≥2时,a n=S n-S n-1,即a n=S1(n=1),S n -S n -1(n ≥2).这种已知数列的S n 来确定数列通项的方法对任意数列都是可行的.本题用这方法求出的通项a n =2n -21,我们从中知它是等差数列,这时当n =1也是满足的,但是不是所有已知S n 求a n 的问题都能使n =1时,a n =S n -S n -1满足呢?请同学们再来探究一下课本第51页的探究问题.生1 这题中当n =1时,S 1=a 1=p +q +r ;当n ≥2时,a n =S n -S n -1=2pn -p +q ,由n =1代入的结果为p +q ,要使n =1时也适合,必须有r =0.生2 当r =0时,这个数列是等差数列,当r ≠0时,这个数列不是等差数列. 生3 这里的p ≠0也是必要的,若p =0,则当n ≥2时,a n =S n -S n -1=q +r ,则变为常数列了,r ≠0也还是等差数列.师 如果一个数列的前n 项和公式是常数项为0,且是关于n 的二次型函数,则这个数列一定是等差数列,从而使我们能从数列的前n 项和公式的结构特征上来认识等差数列.实质上等差数列的两个求和公式中皆无常数项.(三)、课堂练习:等差数列-10,-6,-2,2,…前多少项的和是54? (学生板演)解:设题中的等差数列为{a n },前n 项和为S n ,则a 1=-10,d =(-6)-(-10)=4,S n =54,由公式可得-10n +2)1(-n n ×4=54.解之,得n 1=9,n 2=-3(舍去).所以等差数列-10,-6,-2,2…前9项的和是54.(教师对学生的解答给出评价)(四)、课堂小结:师 同学们,本节课我们学习了哪些数学内容? 生 ①等差数列的前n 项和公式1:2)(1n n a a n S +=,②等差数列的前n 项和公式2:2)1(1d n n na S n -+=. 师 通过等差数列的前n 项和公式内容的学习,我们从中体会到哪些数学的思想方法?生 ①通过等差数列的前n 项和公式的推导我们了解了数学中一种求和的重要方法——“倒序相加法”。
2.3 等差数列的前n项和(第一课时)三维目标:一、知识与技能掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题.二、过程与方法通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.三、情感态度与价值观通过公式的推导过程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感.教学重点:等差数列的前n项和公式的理解、推导及应用.教学难点:获得推导公式的思路。
[克服难点的关键是通过具体例子发现一般规律].教具准备:多媒体课件、投影仪等教学过程一、导入新课1.故事引入:泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。
陵寝以宝石镶饰,图案之细致令人叫绝。
传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见上图),奢靡之程度,可见一斑。
你知道这个图案一共耗费了多少宝石吗?(这问题赋予了课堂人文历史的气息,缩短了数学与现实之间的距离,引领学生步入探讨高斯算法的阶段)学生:只要计算出1+2+3+…+100的结果就是这些宝石的总数.老师:问题转化为求这100个数的和.将这100个数组成数列,就是我们之前所认识的等差数列。
1+2+3+…+100这个式子实质上是求这个等差数列的前100项的和. 这节课我们就来研究等差数列的前n项的和的问题:2.3.1等差数列的前n项和。
2. 等差数列的前n项和的定义:一般的,我们称a1+a2+a3+…+an为数列{an}的前n项和,用Sn表示,即Sn =a1+a2+a3+…+an3.高斯算法——首尾配对相加法:教师出示图片:高斯是伟大的数学家、天文学家,高斯十岁时,有一次老师出了一道题目,老师说:“现在给大家出道题目:1+2+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:“1+2+3+…+100=5 050.”教师问:“你是如何算出答案的?”高斯回答说:因为1+100=101;2+99=101;…;50+51=101,所以101×50=5 050.老师:这个故事告诉我们什么信息?高斯是采用了什么方法来巧妙地计算出来的呢?学生:高斯用的是首尾配对相加的方法.也就是:1+100=2+99=3+98=…=50+51=101,有50个101,所以1+2+3+…+100=50×101=5 050.老师:高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5 050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西.4.高斯启发——倒序相加法:根据等差数列的特点,首尾配对求和的确是一种巧妙的方法。
第二节 等差数列及其前n 项和学习目标:1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.(重点)3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.基础知识梳理(一)等差数列的有关概念1.等差数列:如果一个数列从 起,每一项与它的前一项的 都等于同一个常数,那么这个数列就叫做等差数列.符号表示为 (n ∈N *,d 为常数).2.等差中项:若数列a ,A ,b 成等差数列,则A 叫做a ,b 的 .且思考:A =a +b 2是a ,A ,b 成等差数列的什么条件?(二)等差数列的有关公式1.通项公式:a n = .2.前n 项和公式:S n = = .(三)等差数列的性质1.通项公式的推广:a n = a m + ____________________ (n ,m ∈N*).2.若m ,n ,p ,q ∈N *,且m +n =p +q ,{a n }为等差数列, 则 a m +a n =a p +a q . 特别地:若2,m n p +=则____________________3.若{a n }为等差数列,则S n ,S 2n -S n ,S 3n -S 2n ,…仍为等差数列.考点一 等差数列的判断与证明[例1] 在数列{a n }中,a 1=-3,a n =2a n -1+2n +3 (n ≥2,且n ∈N *).(1)求a 2,a 3的值;(2)设b n =a n +32n(n ∈N *),证明:{b n }是等差数列.练习:1.数列{a n }的前n 项和为S n ,若a 1=3,点(S n ,S n +1)在直线 y =n +1n x +n +1(n ∈N *)上.(1)求证:数列{S n n }是等差数列;(2)求S n .2.数列{a n }中,a 1=2,a 2=1,2a n=1a n +1+1a n -1(n ≥2,n ∈N *),则a n =________.考点二、 等差数列的基本运算[例2] (2012·重庆高考)已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.练习.(1)在等差数列中,已知a 6=10,S 5=5,则S 8=______.(2)设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________考点三、 等差数列的性质[例3]1.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________ {} _______n a a a S 481116112.在等差数列中,已知+=,则该数列前项和=3.等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项和S 9等于 ________102030{}________.n n a n S S S S 10304.已知等差数列的前项和为,且=,=,则=考点四、 等差数列前n 项和的最值 例4.设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.练习: 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.课堂小结1、等差数列的判定方法2、等差数列的性质3、等差数列的前n项和和最值得解法作业三维设计56页1,2题。
《2.3 等差数列的前n 项和》 教学案 6
教学目标
一、知识与技能
1.进一步熟练掌握等差数列的通项公式和前n 项和公式;
2.了解等差数列的一些性质,并会用它们解决一些相关问题;
3.会利用等差数列通项公式与前n 项和的公式研究S n 的最值.
二、过程与方法
1.经历公式应用的过程,形成认识问题、解决问题的一般思路和方法;
2.学会其常用的数学方法和体现出的数学思想,促进学生的思维水平的发展.
三、情感态度与价值观
通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题. 教学重点
熟练掌握等差数列的求和公式.
教学难点
灵活应用求和公式解决问题.
教具准备
多媒体课件、投影仪、投影胶片等
教学过程
导入新课
师 首先回忆一下上一节课所学主要内容.
生 我们上一节课学习了等差数列的前n 项和的两个公式: (1)2
)(1n n a a n S +=;(2)
2)1(1d n n na S n -+=. 师 对,我们上一节课学习了等差数列的前n 项和的公式,了解等差数列的一些性质.学会了求和问题的一些方法,本节课我们继续围绕等差数列的前n 项和的公式的内容来进一步学习与探究.
推进新课
[合作探究]
师 本节课的第一个内容是来研究一下等差数列的前n 项和的公式的函数表示,请同学们将求和公式写成关于n 的函数形式.
生 我将等差数列{a n }的前n 项和的公式2
)1(1d n n na S n -+=整理、变形得到:)2
(212d a n d S n -+=n .(*) 师 很好!我们能否说(*)式是关于n 的二次函数呢?
生1 能,(*)式就是关于n 的二次函数.
生2 不能,(*)式不一定是关于n 的二次函数.
师 为什么?
生2 若等差数列的公差为0,即d =0时,(*)式实际是关于n 的一次函数!只有当d ≠0时,(*)式才是关于n 的二次函数.
师 说得很好!等差数列{a n }的前n 项和的公式可以是关于n 的一次函数或二次函数.我来问一下:这函数有什么特征?
生 它一定不含常数项,即常数项为0.
生 它的二次项系数是公差的一半.
……
师 对的,等差数列{a n }的前n 项和为不含常数项的一次函数或二次函数.问:若一数列的前n 项和为n 的一次函数或二次函数,则这数列一定是等差数列吗?
生 不一定,还要求不含常数项才能确保是等差数列.
师 说的在理.同学们能画出(*)式表示的函数图象或描述一下它的图象特征吗?
生 当d =0时,(*)式是关于n 的一次函数,所以它的图象是位于一条直线上的离散的点列,当d ≠0时,(*)式是n 的二次函数,它的图象是在二次函数x d a x d y )2
(212-+=的图象上的一群孤立的点.这些点的坐标为(n ,S n )(n =1,2,3,…).
师 说得很精辟.
[例题剖析]
【例】
分析:等差数列{a n }的前n 项和公式可以写成n d a n d S n )2
(212-+=,所以S n 可以看成函数x d a x d y )2(212-+= (x ∈N *)当x=n 时的函数值.另一方面,容易知道S n 关于n 的图象是一条
抛物线上的点.因此我们可以利用二次函数来求n 的值.
师 我们能否换一个角度再来思考一下这个问题呢?请同学们说出这个数列的首项和公差. 生 它的首项为5,公差为7
5-.
师 对,它的首项为正数,公差小于零,因而这个数列是个单调递减数列,当这数列的项出现负数时,则它的前n 项的和一定会开始减小,在这样的情况下,同学们是否会产生新的解题思路呢?
生 老师,我有一种解法:先求出它的通项,求得结果是a n =a 1+(n -1)d =7
4075+-n . 我令7
4075+=n a n ≤0,得到了n ≥8,这样我就可以知道a 8=0,而a 9<0.从而便可以发现S 7=S 8,从第9项和S n 开始减小,由于a 8=0对数列的和不产生影响,所以就可以说这个等差数列的前7项或8项的和最大.
师 说得非常好!这说明我们可以通过研究它的通项取值的正负情况来研究数列的和的变化情况.
[方法引导]
师 受刚才这位同学的新解法的启发,我们大家一起来归纳一下这种解法的规律: ①当等差数列{a n }的首项大于零,公差小于零时,它的前n 项的和有怎样的最值?可通过什么来求达到最值时的n 的值?
生S n 有最大值,可通过⎩⎨⎧≤≥+001n n a a 求得n 的值.
师 ②当等差数列{a n }的首项不大于零,公差大于零时,它的前n 项的和有怎样的最值?可通过什么来求达到最值时的n 的值?
生 S n 有最小值,可以通过⎩⎨⎧≥≤+001n n a a 求得n 的值.
[教师精讲]
好!有了这种方法再结合前面的函数性质的方法,我们求等差数列的前n 项的和的最值问题就有法可依了.主要有两种:
(1)利用a n 取值的正负情况来研究数列的和的变化情况;
(2)利用S n :由n d a n d S n )2
(212-+=利用二次函数求得S n 取最值时n 的值. 课堂练习
请同学们做下面的一道练习:
已知:a n =1 024+lg21-n (lg2=0.3 01 0)n ∈*.问多少项之和为最大?前多少项之和的绝对值最
小?(让一位学生上黑板去板演)
解:1°⎩⎨⎧-=≥-+=+02lg 102402lg )1(10241<n a n a n n
2
lg 10242lg 1024≤⇒n <+1⇒3 401<n <3 403.所以n =3 402.
2°S n =1 024n +2
)1(-n n (-lg2),当S n =0或S n 趋近于0时其和绝对值最小,
令S n =0,即1 024+2
)1(-n n (-lg2)=0,得n =2
lg 2048+1≈6 804.99.
因为n ∈N *,所以有n =6 805. (教师可根据学生的解答情况和解题过程中出现的问题进行点评)
[合作探究]
师 我们大家再一起来看这样一个问题:
全体正奇数排成下表:
1
3 5
7 9 11
13 15 17 19
21 23 25 27 29
…… ……
此表的构成规律是:第n 行恰有n 个连续奇数;从第二行起,每一行第一个数与上一行最后一个数是相邻奇数,问2 005是第几行的第几个数?
师此题是数表问题,近年来这类问题如一颗“明珠”频频出现在数学竞赛和高考中,成为出题专家们的 “新宠”,值得我们探索.请同学们根据此表的构成规律,将自己的发现告诉我. 生1 我发现这数表n 行共有1+2+3+…+n 个数,即n 行共有2
)1(+n n 个奇数.
师 很好!要想知道2 005是第几行的第几个数,必须先研究第n 行的构成规律.
生2 根据生1的发现,就可得到第n 行的最后一个数是2×2
)1(+n n -1=n 2+n -1.
生3 我得到第n 行的第一个数是(n 2+n -1)-2(n -1)=n 2-n +1.
师 现在我们对第n 行已经非常了解了,那么这问题也就好解决了,谁来求求看?
生4 我设n 2-n +1≤2 005≤n 2+n -1,
解这不等式组便可求出n =45,n 2-n +1=1 981.再设2 005是第45行中的第m 个数,则由2 005=
1 981+(m-1)×2,解得m=13.因此,
2 005是此表中的第45行中的第13个数.
师 很好!由这解法可以看出,只要我们研究出了第n 行的构成规律,则可由此展开我们的思路.从整体上把握等差数列的性质,是迅速解答本题的关键.
课堂小结
本节课我们学习并探究了等差数列的前n 项和的哪些内容?
生1
我们学会了利用等差数列通项公式与前n 项和的公式研究S n 的最值的方法:
①利用a n :当a n >0,d <0,前n 项和有最大值.可由a n ≥0,且a n +1≤0,求得n 的值;当a n ≤0,d >0,前n 项和有最小值.可由a n ≤0,且a n +1≥0,求得n 的值.
②利用S n :由S n =2d n 2+(a 1-2
d )n 利用二次函数求得S n 取最值时n 的值.
生2 我们还对等差数列中的数表问题的常规解法作了探究,学习了从整体上把握等差数列的性质来解决问题的数学思想方法.
师 本节课我们在熟练掌握等差数列的通项公式和前n 项和公式的基础上,进一步去了解了等差数列的一些性质,并会用它们解决一些相关问题.学会了一些常用的数学方法和数学思想,从而使我们从等差数列的前n 项和公式的结构特征上来更深刻地认识等差数列. 预习提纲:
①什么是等比数列?
②等比数列的通项公式如何求?
板书设计。