2012届高考数学(文)一轮复习课件21三角函数的性质(人教A版)
- 格式:ppt
- 大小:707.50 KB
- 文档页数:52
第三章三角函数、解三角形第5讲三角函数的图象与性质教材回顾▼夯实基础课本温故追根求源知识梳理Aj=sinxJ =COSXj=tanxJT2k盘 ----2JJI2k Jt H—,L 23Ji"2— H——2」仇wz)为减[2 吃7T, 2航+兀]仗WZ)为减;\2kn—n92kn\(k^Z)为(一-于,仇GZ)为增2.学会求三角函数值域(最值)的两种方法(1)将所给函数化为j=Asin(ft>x+ (p)的形式,通过分析亦+卩的范围,结合图象写出函数的值域;(2)换元法:把sin x(cos劝看作一个整体,化为二次函数来解决.双基自测1. (2015•高考四川卷)下列函数中,最小正周期为兀的奇函数是(A.j=sin(2x+—B.j=cos^2r+~C.y= sin 2x+ cos 2xD.y= sin x+ cos xC 项,y=sin 2x+cos 2x=\/2sin^2x+—为非奇非偶函数,不符合题意;ink+于)最小正周期为2兀, 为非奇非偶函数,不符合题意.( JIj=sin|2x+- 为偶函数,不符合题意;解析:A 项,= cos 2x,最小正周期为n ,且y= cos^2r+_j= —sin 2x,最小正周期为 函数,符合题意;B 项, 1=/兀,且为奇,最小正周期为皿,D 项,j=sin x+ cos兀B. x=——33 x=-兀4解析:由题意得 f(x)= 2cos 2^x+~J= 2sin 2x= 1— cos 2x,函 数图象的对称轴方程为尸竺kEZ,故选D.2A • x~—4 C. 71故函数/(对=$中一了丿在区间[o,于]±的最小值为一申.3・函数/(x) = sin上的最小值为A. -1B. -申C 誓 D. 0解析:由已知xG 0, 兀 8二討得加-2兀 -eJI2在区间o,兀4所以14.(必修4 P40 练习1X2)改编)函数/(x) = 4-2cos -x, xE32,取得最小值时,X的取值集合为R的最小值是—{x\x=6kn9 kEL}(JT JI \5.(必修4 P44例6改编)函数j=tan|^-x—yJ的最小正周期是—,单调增区间是G+"扌+2”(疋牛典例剖析▼考点突破*名师导悟以例说法考点一三角函数的定义域和值域^§例1 (1)函数y= lg(2sin x—1)+*\/1 —2cosx的定义域是" 兀5兀、2k Ji +—, 2k 乳—]9 ZL 3 6 丿______ .3(2)函数j=cos 2x+ 2sin x的最大值为—132'[解析]⑴要使函数丿=lg(2sinx —1)+^/1—2cos 兀有意义,sin ,■ “Ji 5 n解得 2k Ji +_^x<2^ Ji +飞-,kEL.即函数的定义域为卜—+专,2—+寻)kE 乙3i 3所以当/=扌时,函数取得最大值字2sinx —1>0, 即1—2cosx^0, cosxWq.+WWl),(2)y=cos 2x+2sin x= —2sin 2x+2sin x+1,设 f=sin x(—12Q互动探光本例(2)变为函数y = cos 2x+ 4sin5的最大值为 _________解析:j=cos 2x+4sin x= — 2sin2x+ 4sin 兀+1,设t=sin中冬怎*),则原函数可以化为y=~li +4(+1= —2(1—1『+3,所以当1=扌时,函数取得最大值丰.⑴三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法①利用sinx和cosx的值域直接求.②把所给的三角函数式变换成y=Asin(cox+^的形式求值域.③把sin兀或cos兀看作一个整体,转换成二次函数求值域・④利用sin兀土cos兀和sin xcos x的关系转换成二次函数求值域.壘踪i噬1・(1)函数y= /2+logjx + \/tanx的定义域为r i V 2jxIOVxV亍或Ji WxW4 »____________________________ ■7(2)函数y= (4— 3sin x)(4— 3cos兀)的最小值为xIOVxV 亍或 n4j.解析:⑴要使函数有意义, 厂2+10即亠0,2JIx^kn T —, I 2—o -------- o ——0 ?利用数轴可得函数的定义域是x>0, tan x^O, k 兀 WxVkii T 扌WZ)・-<—e---------(2)j = 16— 12(sin x+ cos x)+ 9sin xcos x,令Z=sinx+cosx,贝!1[—\[29 ^2],且sinxcosx=-------------------2『一1 ]所以y=16- 12Z+9X --------- =一(9,一24/+23)・2 2• 4 7故当时,Jmin = --考点二三角函数的奇偶性、周期性及对称性典例2 (1)(2014-高考课标全国卷I )在函数®j= cos 12x1,®y = Icos xl, (3)j=cos^x, (4)j= tan(2x—^中,最小正周期为n的所有函数为(C )A.②④C.①②③B.①③④D.①③(2)(2016-河北省五校联盟质量监测)下列函数中最小正周期为兀且图象关于直线兀=£■对称的函数是(B)[解析]⑴①yKOsMFOslx, 1- •②由图象知,函数的周期r= 31・③*兀・兀④丁=亍综上可知,最小正周期为询所有函数为①②③.⑵由函数的最小正周期为兀,可排除C •由函数图象关于直JT线*=〒对称知,该直线过函数图象的最高点或最低点,对选B.(i )三角函数的奇偶性的判断技巧于 A,因为 sin^2Xy+确・对于D, sinl2X ---------33 f) ( Tl JI 、 对于 B, sin|2X-——J=_:. =sin Ji =0,所以选项A 不正 =si 可羊所以D 不正确, 兀=sinT =h所以选项B 正确,故首先要知道基本三角函数的奇偶性,再根据题目去判断所求三角函数的奇偶性;也可以根据图象进行判断.(2)求三角函数周期的方法①利用周期函数的定义.②利用公式:y=Asin(cox+(p)和y =Acos(cyx+°)的最小正周2兀JT期为面,y=tan(cox+(/)).③利用图象.(3)三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.[注意]判断函数的奇偶性时,必须先分析函数定义域是否关于原点对称.MISS] 2.(1)(2016-西安地区八校联考)若函数j = cos(ex+〒j(cyEN*)图象的一个对称中心是匕,0J,则co 的最小值为(A. 1B. 2C. 4D.(2)(2016•揭阳模拟)当心了时,函数/(gin(十)取得最小值,则函数)A.是奇函数且图象关于点仔,0)对称B.是偶函数且图象关于点(兀,0)对称C.是奇函数且图象关于直线兀=于对称D.是偶函数且图象关于直线兀=兀对称,■一JI 6; JI JI解析:(1 --------- 1=kJi ---------- (k £ Z)=>(o = 6k+ 2(kE:Z)=>(o6 6 2min =2Jl⑵因为当x=丁时,函数几兀)取得最小值,4所以sin&+J = —1,所以0=2反兀一普"(kEZ).所以/(x)=sin(+2“ 一冷9=sin|x J(k W Z).所以y=^~~x.=sin(—x)= —sin x.e 兀、JI 所以尸x)是奇函数,且图象关于直线兀=亍对称•考点三三角函数的单调性(高频考点)三角函数的单调性是每年高考命题的热点,题型既有选择题也有填空题,或解答题某一问出现,难度适中,多为中档题.高考对三角函数单调性的考查有以下四个命题角度:(1)求已知三角函数的单调区间;⑵已知三角函数的单调区间求参数;(3)利用三角函数的单调性求值域(或最值);(4)利用三角函数的单调性比较大小.⑴求心)的最小正周期和最大值;⑵讨论心)在[十,牛] 上的单调性.• sin (2015•高考重庆卷)已知函数几兀)=os 2x.[解](l)Ax)=sin 仔一Jsin x —A /§C =cos xsinx — 2 (H~cos 2x)1・,© o 並=-sm 2x — cos 2x —因此冷)的最小正周期为兀,最大值为2苫.os 2x(2)当兀丘[于,牛]时'0W2x —于W 兀,从而当弓^加一7~Wn,即弓时,/(兀)单调递减. Z Q 丄/ J调递减•J fl _ 7 y \ TL1 lz\ A A J KX& M n I y-Z z 产〒 r^Q^i 0« h P <Jlu tz 二\ J nf r/7 J? ryj n r^z^C 77 f r三角函数单调性问题解题策略.兀 兀 当0»亍亏, JI 5 JT . 即訐Tr 时' 的单调递增, 综上可知,几r )在单调递增; 刊上单(1)已知三角函数解析式求单调区间.①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律"同增异减”:②求形如j=Asin(ft)x+^)或y=Acos(ov +卩)(其中少>0)的单调区间时,要视“ov+卩”为一个整体, 通过解不等式求解.但如果evO,那么一定先借助诱导公式将少化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数.先求出函数的单调区间,然后利用集合间的关系求解.⑶利用三角函数的单调性求值域(或最值).形如j=Asin(ft>x +°)+〃或可化为y=4sin@v+°)+〃的三角函数的值域(或最值)问题常利用三角函数的单调性解决.通关练习3.(1)已知函数/(x)=2sinC+亍) ,则a9 b9 c的大小关系是(BB. c<a<bD. b<c<aA. a<c<bC. b<a<c减,则 少的取值范围是(A54-(2)已知 ft»O,函数 f(x)=sirA. 12-D. (0, 2]10 —n 21兀因为j=sinx 在0,—上递增,——= 2sin 解:⑴选Ra兀= 2sin所以c<a<b.6>>0,JlJTJIH < 3X ---- < 3 兀 H - ,44 4G JI 3131〒+亡'313 JI3 JI H —W —4 2又 j=sinx所以6) JI3 31"T解得詳。