最新2009年中考数学复习教材回归知识讲解+例题解析+强化训练(平面直角坐标系)文档
- 格式:doc
- 大小:155.50 KB
- 文档页数:10
最新2009年中考数学复习教材回归知识讲解+例题解析+强化训练(二次函数与方程(组)或不等式)文档2009年中考数学复习教材回归知识讲解+例题解析+强化训练二次函数与方程(组)或不等式◆知识讲解(1)最大值或最小值的求法第一步确定a的符号:a>0有最小值,a<0有最大值;第二步求顶点,•顶点的纵坐标即为对应的最大值或最小值.(2)y轴与抛物线y=ax2+bx+c的交点为(0,c).(3)与y轴平行的直线x=h与抛物线y=ax2+bx+c有且只有一个交点(h,ah2+bh+c).(4)抛物线与x轴的交点.二次函数y=ax2+bx+c的图像与x轴的两个交点的横坐标x1,x2是对应的一元二次方程ax2+bx+c=0的两个实数根.抛物线与x•轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔△>0⇔抛物线与x轴相交.②有一个交点(顶点在x轴上)⇔△=0⇔抛物线与x轴相切;③没有交点⇔△<0⇔抛物线与x轴相离.(5)平行于x轴的直线与抛物线的交点.同(4)一样可能有0个交点,1个交点,2个交点.当有2个交点时,•两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax 2+bx+c=k 的两个实数根.(6)一次函数y=kx+n (k≠0)的图像L 与二次函数y=ax 2+bx+c (a≠0)的图像G 的交点,由方程组2y kx n y ax bx c =+⎧⎨=++⎩的解的数目确定:①当方程组有两组不同的解时⇔L 与G 有两个交点;②方程组只有一组解时⇔L 与G 只有一个交点;③方程组无解时⇔L 与G 没有交点.(7)利用函数图像求不等式的解集,先观察图像,找出抛物线与x 轴的交点,•再根据交点坐标写出不等式的解集.注意:观察图像时不要看漏了其中的部分.◆例题解析例1 如图所示,已知抛物线y=-12x 2+(5)x+m -3与x 轴有两个交点A ,B ,点A•在x 轴的正半轴上,点B 在x 轴的负半轴上,且OA=OB .(1)求m 的值;(2)求抛物线的解析式,并写出抛物线的对称轴和顶点C 的坐标;(3)问在抛物线上是否存在一点M ,△MAC•≌△OAC ,若存在,求出点M 的坐标;若不存在,请说明理由.【分析】抛物线与x 轴交于A ,B 两点,OA=OB ,故A ,B 两点关于y 轴对称,就可求得m 的值,由抛物线交y 轴的正半轴,得m 的确定值.【解答】(1)∵抛物线与y 轴交于正半轴,且OA=OB .∴23050m a m ->⎧⎪⎨-=⎪⎩由②得m=±5,由①m>3,故m=-5应舍去.∴m=5.(2)抛物线的解析式为y=-12x 2+2,对称轴是y 轴,顶点C 的坐标为C (0,2).(3)令y=0得 -12x 2+2=0,∴x=±2. ∴A (2,0),B (-2,0),C (0,2),△OAC 是等腰直角三角形.若存在一点M ,使△MAC ≌△OAC ,∵AC 为公共边,OA=OC ,∴点M 与O 关于直线AC 对称,∴M 点的坐标为(2,2).当x=2时,-1x2+2=0≠2.2∴M(2,2)不在抛物线上,即不存在一点M,使△MAC≌△OAC.【点评】存在性问题,通常是先假定存在,若能找出具备某种条件或性质的对象,就说明存在,其叙述过程就是理由;若不存在,就需要进一步说明理由.例2 已知二次函数y=x2-(2m+4)x+m2-4(x为自变量)的图像与y轴的交点在原点下方,与x轴交于A,B两点,点A在点B的左边,且A,B两点到原点的距离AO,OB•满足3(•OB-AO)=2AO·OB,直线y=kx+k与这个二次函数图像的一个交点为P,且锐角∠POB•的正切值4.(1)求m的取值范围;(2)求这个二次函数的解析式;(3)确定直线y=kx+k的解析式.【分析】利用抛物线与x轴的交点A,B的位置及与y轴交点的位置和A,B两点到原点的距离可以求出m的值,再利用一元二次方程根与系数的关系可以求解.【解答】(1)设点A,B的坐标分别为A (x1,0),B(x2,0)(x1<x2),依题意,方程x2-(2m+4)x+m2-4=0有两个不相等的实数根.∴△=[-(2m+4)] 2-4(m2-4)>0.解得m>-2.①又∵函数的图像与y轴的交点在原点下方,∴m2-4<0,∴-2<m<2.②(2)∵图像交y轴于负半轴,与x轴交于A,B两点,且x1<x2,∴x1<0,x2>0.由3(OB-AO)=2AO·OB可得3[x2-(-x1)]=2(-x1)·x2即3(x1+x2)=-2x1x2由于x1,x2是方程x2-(2m+4)x+m2-4=0的两个根,所以x1+x2=2m+4,x1·x2=m2-4.∴3(2m+4)=-2(m2-4)整理,得m2+3m+2=0.∴m=-1或m=-2(舍去).∴二次函数的解析式为y=x2-2x-3.(3)由y=x2-2x-3,得A(-1,0),B(3,0).∵直线y=kx+k 与抛物线相交,∴由223,,y x x y kx k ⎧=-+⎨=+⎩ 解得121,0.x y =-⎧⎨=⎩ 或2223,4.x k y k k =+⎧⎨=+⎩ ∵∠POB 为锐角.∴点P 在y 轴右侧,∴点P 坐标为(k+3,k 2+4k ),且k+3>0. ∵tan ∠POB=4,∴2|4|3k k k ++=4.如图所示,当点P 在x 轴上方时.243k kk ++=4.解得k 13k 2=-3经检验,k 13,k 2=-3都是方程的解,但k 2+3<0.∴k 2=-3∴直线的解析式为33当点P 在x 轴下方时,243k kk ++=-4,解得k3=-2,k4=-6.经检验,k3=-2,k4=-6是方程的解,但k4+3<0.∴k4=-6舍去.∴y=-2x-2.,或y=∴所求直线的解析式为-2x-2.【点评】本题以求解析式为目标,综合了函数,一元二次方程根与系数的关系,三角函数等知识,综合性强,灵活性大,解题关键是认真审题,认真分析纷繁复杂的条件,从中找到解题的突破口,易错点是在第(3)小题中忽视分类讨论而失解.◆强化训练一、填空题1.与抛物线y=2x2-2x-4关于x轴对称的图像表示的函数关系式是_______.2.已知二次函数y=(a-1)x2+2ax+3a-2的图像最低点在x轴上,那么a=______,此时函数的解析式为_______.3.(2006,湖北襄樊)某涵洞的截面是抛物线型,如图1所示,在图中建立的直角坐标系中,抛物线的解析式为y=-14x2,当涵洞水面宽AB为12m时,水面到桥拱顶点O•的距离为_______m.图 1 图24.(2006,山西)甲,乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P,羽毛球飞行的水平距离s(m)与其距地面高度h(m)之间的关系式为h=-112s2+23s+32.如图2,已知球网AB距原点5m,乙(用线段CD表示)扣球的最大高度为94m,•设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是_______.5.若抛物线y=12x2与直线y=x+m只有一个公共点,则m的值为_____.6.设抛物线y=x2+(2a+1)x+2a+5的图像与x•4轴只有一个交点,•则a18+•323a-6•的值为_______.7.已知直线y=-2x+3与抛物线y=x2相交于A,B两点,O为坐标原点,那么△OAB•的面积等于______.8.(2008,安徽)图3为二次函数y=ax2+bx+c 的图像,在下列说法中:①ab<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随着x•的增大而增大.正确的说法有_______.(请写出所有正确说法的序号)图3 图4 图5二、选择题9.(2006,绍兴)小敏在某次投篮球中,球的运动路线是抛物线y=-15x2+3.5的一部分(图4),若命中篮圈中心,则他与篮底的距离是()A.3.5m B.4m C.4.5m D.4.6m10.当m在可以取值范围内取不同的值时,代)A.0 B.5 C.3D.911.二次函数y=ax2+bx+c的图像如图5所示,则下列结论:①a>0,②c>0,•③b2-4ac>0,其中正确的个数是()A.0个B.1个C.2个D.3个12.抛物线y=x2+(2m-1)x+m2与x轴有两个交点,则m的取值范围是()A.m>14B.m>-14C.m<14D .m<-1413.根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数y 的对应值,•判断方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的一个解x 的范围是( )A .6<x<6.17B .6.17<x<6.18C .6.18<x<6.19D .6.19<x<6.2014.若二次函数y=ax 2+bx+c (a≠0)的图像的顶点在第一象限且经过点(0,1)和(•-1,0),则S=a+b+c 的值的变化范围是( )A .0<S<2B .0<S<1C .1<S<2D .-1<S<115.二次函数y=ax 2+bx+c (a≠0)的最大值是零,那么代数式│a│+244ac b a 的化简结果是( )A . aB .- aC .D .016.(2006,甘肃兰州)已知y=2x 2的图像是抛物线,若抛物线不动,把x 轴,y•轴分别向上,向右平移2个单位,那么在新坐标系下抛物线的解析式是()A.y=2(x-2)2+2 B.y=2(x+2)2-2C.y=2(x-2)2-2 D.y=2(x+2)2+2三、解答题17.(2006,吉林省)如图,三孔桥横截面的三个孔都呈抛物线形,•两小孔形状,大小都相同.正常水位时,大孔水面宽度AB=20m,顶点M距水面6m(即MO=6m),•小孔顶点N距水面4.5m(即NC=4.5m).当水位上涨刚好淹没小孔时,借助图中的直角坐标系,求此时大孔的水面宽度EF.18.(2008,安徽)杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B 处,其身体(看成一点)的路线是抛物线y= x2+3x+1的一部分,如图所示.-35(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4m,在一次表演中,人梯到起跳点A的水平距离是4m,问这次表演是否成功?请说明理由.19.(2006,沈阳市)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,则所获利润y A(万元)与投资金额x(万元)•之间存在正比例函数关系:y A=kx,并且当投资5万元时,可获利润2万元;信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)•之间存在二次函数关系:y B=ax2+bx,并且当投资2万元时,可获利润2.4万元;当投资4万元时,•可获得3.2万元.(1)请分别求出上述的正比例函数表达式与二次函数表达式;(2)如果企业同时对A,B两种产品共投资10万元.•请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.20.(2008,烟台)如图所示,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y•轴于M 点.抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴下方的部分是否存在点N,使以A,C,M,N•为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P•关于原点的对称点Q是否在抛物线L2上,请说明理由.21.已知:二次函数y=ax2+bx+c的图像经过点A(0,4),顶点在x轴上,•且对称轴在y轴的右侧.设直线y=x与二次函数图像自左向右分别交于P(x1,y1),Q(x2,y2)两点,•且OP:PQ=1:3.(1)求二次函数的解析式;(2)求△PAQ的面积;(3)在线段PQ上是否存在一点D,使△APD≌△QPA,若存在,求出点D坐标,•若不存在,说明理由.22.(2005,武汉市)已知二次函数y=ax2-ax+m 的图像交x轴于A(x1,0),B(x2,0)两点,x1<x2,交y轴的负半轴于C点,且AB=3,tan∠BAC-tan∠ABC=1.(1)求此二次函数的解析式;(2)在第一象限,抛物线上是否存在点P,使S△PAC=6?若存在,请你求出点P的坐标;• 若不存在,请你说明理由.答案:1.y=-2x2+2x+4 2.2;y=x2+4x+4 3.9 4.5.-126.5796 7.6 8.①②④9.B 10.B 11.C12.C 13.C 14.A 15.B 16.B 17.设抛物线解析式为y=ax2+6,依题意得,B(10,0).∴a×102+6=0,解得a=-0.06.即y=-0.06x2+6,当y=4.5时,-0.06x2+6=4.5,解得x=±5,∴DF=5,EF=10,即水面宽度为10m.18.(1)y=-35x2+3x+1=-35(x-52)2+194.∵-35<0,∴函数的最大值是194.答:演员弹跳离地面的最大高度是194m.(2)当x=4时,y=-35×42+3×4+1=3.4=BC,所以这次表演成功.19.(1)当x=5时,y A=2,2=5k,k=0.4.∴y A=0.4x,当x=2时,y B=2.4;当x=4时,y B =3.2.∴ 2.442,3.2164.a b a b =+⎧⎨=+⎩ 解得0.2,1.6.a b =-⎧⎨=⎩∴y B =-0.2x 2+1.6x .(2)设投资B 种商品x 万元,则投资A 种商品(10-x )万元,获得利润W 万元,根据题意可得W=-0.2x 2+1.6x+0.4(10-x )=-0.2x 2+1.2x+4.∴W=-0.2(x -3)2+5.8.当投资B 种商品3万元时,可以获得最大利润5.8万元.所以投资A 种商品7万元,B 种商品3万元,这样投资可以获得最大利润5.8万元.20.(1)令y=0时,得-x 2-2x+3=0,∴x 1=-3,x 2=1,∴A (-3,0),B (1,0). ∵抛物线L 1向右平移2个单位长度得抛物线L 2,∴C (-1,0),D (3,0).∴抛物线L 2为y=-(x+1)(x -3). 即y=-x 2+2x+3.(2)存在.如图所示.令x=0,得y=3,∴M(0,3).∵抛物线L2是L1向右平移2个单位长度得到的,∴点N(2,3)在L2上,且MN=2,MN∥AC.又∵AC=2,∴MN=AC.∴四边形ACNM为平行四边形.同理,L1上的点N′(-2,3)满足N′M∥AC,N′M=AC,∴四边形ACMN′是平行四边形.∴N(2,3),N′(-2,3)即为所求.(3)设P(x1,y1)是L1上任意一点(y1≠0),则点P关于原点的对称点Q(-x1,-y1),且y1=-x12-2x1+3,将点Q的横坐标代入L2,得y Q=-x12-2x1+3=y1≠-y1.∴点Q不在抛物线L2上.21.(1)抛物线过(0,4)点.∴c=4,∴y=ax 2+bx+4又OP :PQ=1:3,∴x 1:x 2=1:4由24y x y ax bx =⎧⎨=++⎩得ax 2+(b -1)x+4=0,∵x 1,x 2是该方程的两个根,∴x 1+x 2=-1ba -,x 1·x 2=4a .消去x 1得25a=(b -1)2.∵抛物线的对称轴在y 轴右侧∴-2b a >0,∴b a<0,又抛物线的顶点在x 轴上, ∴b 2=16a 得a=1,b=-4(b=49舍去).∴y=x 2-4x+4.(2)如图所示,S △PAQ =S △AQO -S △APO=12×4×x 2-12×4×x 1=2(x 2-x 1)22112()4x x x x +-2116()b a a---9. (3)存在点D ,设D (m ,n )易得P (1,1),Q (4,4),由△APD∽△QPA得PA2=PQ·PD,运用勾股定理得│m-1│=53,得m=83或23.∵1<m<4,∴D(83,83).22.(1)∵AB=3,x1<x2,∵x2-x1=3.由根与系数的关系有x1+x2=1,∴x1=-1,x2=2.∴OA=1,OB=2,x1·x2=ma=-2.∵tan∠BAC-tan∠ABC=1,∴=1,∴OC=2∴m=-2,a=1.∴此二次函数的解析式为y=x2-x-2.(2)在第一象限,抛物线上存在一点P使S△APC=6.解法一:过点P作直线MN∥AC交x轴于点M,交y轴于点N,连接PA,PC,MC,NA,如图所示.∵MN∥AC,∴S △MAC =S △NAC =S △PAC =6.由(1)有OA=1,OC=2∴12×AM×2=12×CN×1=6, ∴AM=6,CN=12.∴M (5,0),N (0,10).∴直线MN 的解析式为y=-2x+10.由2210,2.y x y x x =-+⎧⎨=--⎩ 得12123,4,4.18.x x y y ==-⎧⎧⎨⎨==⎩⎩(舍去). ∴在第一象限,抛物线上存在点P (3,4),使S △PAC =6.解法二:设AP 与y (0,n )(n>0).∴直线AP 的解析式为y=nx+n .22,.y x x y nx n ⎧=--⎨=+⎩∴x 2-(n+1)x -n -2=0,∴x A +x P =n+1,∴x P =n+2.又S △PAC =S △ADC +S △PDC =12CD·AO+12CD·x p =12CD (AO+x p ). ∴12(n+2)(1+n+2)=6,n 2+5n -6=0. ∴n=-6(舍去)或n=1.∴在第一象限,抛物线上存在点P(3,4),使S△PAC =6.。
2009年中考数学复习教材回归知识讲解+例题解析+强化训练方程和方程组的应用◆知识讲解1.行程问题的几种类型及等量关系:(1)相遇问题:全路程=甲走的路程+乙走的路程.(2)追及问题:若甲为快者,则被追路程=甲走的路程-乙走的路程.(3)流水问题:船速+水速,逆流航速=船速-水速.2.工程问题的基本等量关系:甲的工作量+乙的工作量=甲乙合作的工作总量,•工程问题通常把总工作量看作“1”,解工程问题的关键是先找出单位时间内的工作效率.3.浓度问题的基本等量关系:浓度=溶质质量溶液质量×100% 溶液质量=溶质质量+溶剂质量. 4.数学问题的等量关系: n 位数12n a a a=a 1×10n -1+a 2×10n -2+…+a n . 5.增长率等量关系: 增长率=(增量÷基础量)×100%.6.利润问题:利润=销售价-进货价;利润率=利润进货价; 销售价=(1+利润率)×进货价. 7.利息问题: 利息=本金×利率×期数; 本息和=本金+利息.8.其他经济类问题◆例题解析例1 (2004,黄冈市)某超市对顾客实行优惠购物,规定如下:(1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元以下部分(包括500元)给予九折优惠,超过500元部分给予八折优惠.小李两次去该超市购物,分别付款198元和554元,现在小张决定一次性地购买和小李分两次购买同样多的物品,他需付多少元?【分析】首先要求出小李两次去超市购物付款198元和554元的实际购物所值金额,因为付款198元时,小李购物可能不超过200元,也可能超过200元,而付款554元时,小李购物肯定超过554元,所以小李两次购物中,第一次购物有两种情况,•因此本题应分类求解.【解答】(1)小李第一次购物付款198元.①当小李购买的物品不超过200元时,不予优惠,此时实际购买198元的物品;②当小李购买的物品超过200元时,设小李购买x元的物品,依题意可得:x×90%=198,解之,得x=220即小李实际购买220元的物品.(2)小李第二次购物付款554元,因为554>500,故第二次小李购物超过500元,•设第二次小李购物y元,依题意可得:(y-500)×80%+500×90%=554,解之得y=630,即小李实际购买630元的物品.当小张决定一次性购买和小李分两次购买同样多的物品时,•小张应购买的物品为:198+630=828(元)或者220+630=850(元),此时应付款为:500×90%+(828-500)×80%=712.4(元)或者:500×90%+(850-500)×80%=730(元)答:小张应付款712.4元或730元.【点评】解答本例要注意三点:(1)由于超市实际购物优惠,•所以顾客购买物品时,所付金额数与购物金额数不一定相等;(2)•要根据付款金额数正确确定顾客购物时所符合的优惠条款,从而利用该条款求出该顾客的购物金额;(3)•若顾客所付金额数属于两种或两种以上优惠条款时,应分情况讨论求解,切忌遗漏.例2 (2004,哈尔滨市)某通信器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,•出厂价分别为甲种手机每部1800元,乙种手机每部600元,丙种手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买;(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,•请你求出商场每种型号的手机的购买数量.【分析】(1)题中将60000元恰好用完容易理解,•即所选的两种手机的总钱数等于60000元;共有三种不同型号的手机,购其中两种不同型号的手机共40部,需要分三种情况考虑:①选甲,丙两种手机共40部;②选甲,丙两种手机共40部;③选乙,丙两种手机共40部;(2)题中告诉了乙种手机买数的范围,•可得乙种手机的购买数量可能的取值为6,7,8,若设甲种手机购x 部,丙种手机购y 部,则可列3个不同的方程组,即①64018006006120060000x y x y ++=⎧⎨+⨯+=⎩ ②74018006007120060000x y x y ++=⎧⎨+⨯+=⎩③74018006008120060000x y x y ++=⎧⎨+⨯+=⎩ 【解答】(1)①选购甲,乙两种型号的手机,设甲种手机购x 部,乙种手机购y 部.•依题意:40180060060000x y x y +=⎧⎨+=⎩,解这个方程组得30,10.x y =⎧⎨=⎩②选购甲,丙两种型号的手机,设甲种手机购a 部,丙种手机购b 部.依题意,得401800120060000a b a b +=⎧⎨+=⎩解这个方程组,得20,20.a b =⎧⎨=⎩ ③选购乙,丙两种型号的手机,设购乙种手机m 部,购丙种手机n 部,依题意得40600120060000m n m n +=⎧⎨+=⎩解这个方程组,得20,60.m n =-⎧⎨=⎩(不合实际,舍去). 答:有两种购买方案:①甲种手机购30部,乙种手机购买10部;②甲种手机购20部,丙种手机购20部.(2)由乙种手机的购买数量不少于6部且不多于8部,则乙种手机的购买数量有三种可能,即6部,7部,8部.设购甲种手机x 部,丙种手机y 部,由以上分析可列三个方程组:①64018006006120060000x y x y ++=⎧⎨+⨯+=⎩ ②74018006007120060000x y x y ++=⎧⎨+⨯+=⎩③74018006008120060000x y x y ++=⎧⎨+⨯+=⎩解方程组①得:268xy=⎧⎨=⎩,解方程组②:得276xy=⎧⎨=⎩,解方程组③得:284xy=⎧⎨=⎩.答:若购买乙种手机6部,则甲种手机购26部,丙种手机购8部;•若购买乙种手机7部,则甲种手机购27部,丙种手机购6部;若购买乙种手机8部,则甲种手机购28部,•丙种手机购4部.【点评】在现有的可能条件下,运用所学知识探寻最佳、最优方案,以获取最佳效益,是每个经营者所追求的目标,也是每个学生走进社会后所应具备的基本素质,这类题体现了素质教育的要求,必奖是今后中考的热点题型.同时,本题只有题设条件,结论不具体、不唯一,这对解题思路的探寻也是一种挑战,解题者必须具备创造性思维,不能囿于传统解法的限制.本例的解题关键在于依题合理分类考虑,不能漏掉存在的任何一种可能,其次是对所得的结果检验,看其是否满足生活实际.例3 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?【分析】这是一道工程问题.本题提供的关键信息有:①甲班种150•棵树所用的天数=乙班种120棵树所用的天数+2天;②甲班每天植树的棵树+10棵=•乙班每天植树的棵树.我们可以从不同的角度入手.【解答】(1)从工作时间入手,寻求解题的途径(直接设解法):设甲班每天植树x棵,那么乙班每天植树(x+10)棵.由①中的数量关系列方程,得150x=12010x++2.150(x+10)=120x+2x(x+10).150x+1500=120x+2x+20x.2x2-10x-1500=0.x2-5x-750=0.(x-30)(x+25)=0,x1=30,x2=-25.经检验知:x1=30,x2=-25都是原方程的解.但x=-25不符合题意舍去.∴当x=30时,x+10=40.(2)从工作效率入手,寻求解题途径(间接设解法):设乙班植树x天,那么甲班植树(x+2)天,甲班每天植树1502x+棵,乙班每天植树120x棵.由②中的数量关系列方程得1502x++10=120x.去分母,整理,得x2+5x-24=0.解得x1=-8,x2=3,经检验:x1=-8,x2=3都是原方程的解.又∵x>0,∴x=-8舍去,只取x=3.∴1502x+=30(棵),120x=40(棵).答:甲班每天植树30棵;乙班每天植树40棵.◆强化训练一、填空题1.某班学生为希望工程共捐款131元,比每人平均2元还多35元,设这个班的学生有x 人,根据题意,列方程为_______.2.一种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是_______.3.轮船顺水航行40km所需的时间和逆水航行30km所需的时间相同,•已知水流速度为3km/h,设轮船在静水中的速度xkm/h,可列方程_______.4.杉杉打火机厂生产某种型号的打火机.每只的成本为2元,毛利润为25%.•工厂通过改进工艺,降低成本,在售价不变的情况下,毛利率增加了15%,•则这种打火机每只的成本降低了_____元(精确到0.01元,毛利率=-售价成本成本×100%).5.高温煅烧石灰石(CCO3)可以制取生石灰(CaO)和二氧化碳(CO2),•如果不考虑杂质及损耗,生产生石灰14t就需要煅烧石灰石25t.那么生产生石灰224t,•需要石灰石_______t.6.为了绿色北京,北京市在执行严格的机动车尾气排放标准,同时正在不断设法减少工业及民用燃料所造成的污染.随着每年10亿m3的天然气输到北京,•北京每年将少烧300万t煤,这样,到2006年底,北京的空气质量将会基本达到发达国家城市水平.某单位1个月用煤30t,若改用天然气,1年大约要用_______m2的天然气.7.李明计划在一定日期内读完200页的一本书,读了5天后改变了计划,每天多读5页,结果提前一天读完,求他原计划平均每天读几页书.解题方案设李明原计划平均每天读书x页,用含x的代数式表示:(1)李明原计划读完这本书需用_____天;(2)改变计划时,已读了_____页,还剩____页;(3)读了5天后,每天多读5页,读完剩余部分还需______天;(4)根据问题中的相等关系,列出相应方程________;(5)李明原计划平均每天读书_______页(用数字作答).8.依法纳税是公民应尽的义务,根据我国税法规定,工资所得不超过1600元不必纳税,超过1600元的部分为全月应纳税所得额,此项税款按下表累加计算:某人本月纳税150.1元,则他本月的工资收入为______元.二、选择题9.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元.•设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x×40%×80%=240 B.x(1+40%)×80%=240C.240×40%×80%=x D.x×40%=240×80%10.刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用10元,•设刘刚买的两种贺卡分别为x张,y张,则下面的方程组正确的是()A.1028yxx y⎧+=⎪⎨⎪+=⎩B.128210x yx y⎧+=⎪⎨⎪+=⎩C.1028x yx y+=⎧⎨+=⎩D.8210x yx y+=⎧⎨+=⎩11.小萍要在一幅长90cm,宽40cm的风景画的四周外围,•镶上一条宽度相同的金色纸边,制成一幅挂图(图4-5),使风景画的面积是整个挂图面积的54%.•设金色纸边的宽为xcm,根据题意所列方程为()A.(90+x)(40+x)×54%=90×40B.(90+2x)(40+2x)×54%=90×40C.(90+x)(40+2x)×54%=90×40D.(90+2x)(40+x)×54%=90×4012.某商场第一季度的利润是82.75万元,其中一月份的利润是25万元,若利润平均月增长率为x,则依题意列方程为()A.25(1+x)2=82.75 B.25+50x=82.75C.25+75x=82.75 D.25[1+(1+x)+(1+x)]=82.7513.为了贫困家庭子女能完成初中作业,国家给他们免费提供教科书,•下表是某中学免费提供教科书补助的部分情况:若设获得免费提供教科书补助的七年级为x人,八年级为y人,根据题意列出方程组为()A.4012010994190010095x yx y++=⎧⎨++=⎩B.1201099410095x yx y+=⎧⎨+=⎩C.40109941900x yx y+=⎧⎨+=⎩D.1099440120190010095x yx y++=⎧⎨++=⎩14.古代有这样一个寓言故事:驴和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,•那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴原来所驮货物的袋数是()A.5 B.6 C.7 D.815.A,B两地相距450km,甲,乙两车分别从A,B两地同时出发,相向而行,已知甲车速度为120km/h,乙车速度为80km/h,经过th两车相距50km,则t的值是()A.2或2.5 B.2或0 C.10或12.5 D.2或12.516.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,给九折优惠;(3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库容原因,第一次在该供应商处购买原料付示7800•元,•第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为()A.1460元B.1540元C.1560元D.2000元三、解答题17.(2005,湘潭市)2004年年底,东南亚地区发生海啸,给当地人民带来了极大的灾难,听到这个消息,某校初中毕业班中的30名同学踊跃捐款,支援灾区人民.其中女同学共捐款150元,男同学共捐款120元,男同学比女同学平均每人少捐款2元,男,•女同学平均每人各捐款多少元?18.(2008,温州)某皮鞋专卖店老板对第一季度男女皮鞋的销售收入进行统计,•并绘制了扇形统计图(图4-6),由于三月份开展促销活动,男,女皮鞋的销售收入分别比二月份增长了40%,64%,已知第一季度男女皮鞋的销售总收入为200万元.(1)一月份销售收入___万元,二月份销售收入____•万元,•三月份销售收入____万元;(2)二月份男,女皮鞋的销售收入各是多少万元?19.(2005,海南省)在当地农业技术部门指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收.图4-7所示是小明爸爸,妈妈的一段对话.请你用学过的知识帮助小明算出他们家今年菠萝的收入.(收入-投资=净赚)20.(2005,武汉市)武汉江汉一桥维修工程中,拟由甲,乙两个工程队共同完成某项目.从两个工程队的资料可以知道:若两个工程队合做24天恰好完成;•若两个工程队合做18天后,甲工程队再单独做10天,也恰好完成.请问:(1)甲,乙两个工程队单独完成该项目各需多少天?(2)又已知甲工程队每天的施工费为0.6万元,乙工程队每天的施工费为0.35•万元,要使该项目总的施工费不超过22万元,则乙工程队最少施工多少天?21.(2008,连云港)“爱心”帐篷集团的总厂和分厂分别位于甲,乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,•该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,•总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍,1.5倍,恰好按时完成了这项任务.(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?(2)现要将这批帐篷用卡车一次性运送到该地震灾区的A,B两地,•由于两市通往A,B两地道路的路况不同,卡车的运载量也不同,已知运送帐篷每千顶所需的车辆数,两地所急需的帐篷数如表所示:请设计一种运送方案,使所需的车辆总数最少.说明理由,并求出最少车辆总数.22.(2008,广州市)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km远的郊区进行抢修.维修工骑摩托车先走,15min后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.答案1.2x+35=131 2.10% 3.403x+=303x-4.0.21 5.400 6.1.2×1057.(1)200x(2)5x,200-5x (3)20055xx-+(4)200x-(20055xx-++5)=1(5)208.3101 9.B 10.D 11.B 12.D 13.A 14.A 15.A 16.A 17.设男同学平均每人捐款x元,则女同学平均每人捐款为(x+2)元依题得:1501202x x++=30化简得:x2-7x-8=0解之得x=-1或x=8经检验它们都是原方程的根,但x=-1<0(舍去)答:男同学平均每人捐款8元,女同学平均每人捐款10元.18.(1)50;60;90(2)解:设二月份男,女皮鞋的销售收入分别为x 万元,y 万元,根据题意,得 60(140%)(164%)90x y x y +=⎧⎨+++=⎩解得3525x y =⎧⎨=⎩ 答:二月份男,女皮鞋的销售收入分别为35万元,25万元.19.设小明家去年种植菠萝的收入为x 元,投资y 元,依题意,得8000(135%)(110%)11800x y x y -=⎧⎨+-+=⎩解方程组,得120004000x y =⎧⎨=⎩ ∴小明家今年菠萝的收入应为:(1+35%)x=1.35×12000=16200元20.(1)设甲工程队单独完成该项目需x 天,乙工程队单独完成该项目需y 天.依题意得242411818101x y xy x ⎧+=⎪⎪⎨⎪++=⎪⎩,解之得4060x y =⎧⎨=⎩ 经检验4060x y =⎧⎨=⎩是原方程的解,并且符合题意.答:甲,乙两工程队单独完成此项目各需40天,60天.(2)设甲工程队施工a 天,乙工程队施工b 天时总的施工费用不超过22万元,• 根据题意得140600.60.3522a b a b ⎧+=⎪⎨⎪+≤⎩解之得b ≥40答:要使该项目总的施工费用不超过22万元,乙工程队最少施工40天.21.(1)设总厂原来每周制作帐篷x 千顶,分厂原来每周制作帐篷y 千顶.由题意,得9,1.6 1.514,x y x y +=⎧⎨+=⎩ 解得5,4.x y =⎧⎨=⎩ 所以1.6x=8(千顶),1.5y=6(千顶).答:在赶制帐篷的一周内,总厂,分厂各生产帐篷8千顶,6千顶.(2)设从(甲市)总厂调配m 千顶帐篷到灾区的A 地,则总厂调配到灾区B •地的帐篷为(8-m )千顶,(乙市)分厂调配到灾区,A ,B 两地的帐篷分别为(9-m )千顶和(m -3)千顶.甲,乙两市所需运送帐篷的车辆总数为n 辆.由题意,得n=4m+7(8-m )+3(9-m )+5(m -3)(3≤m ≤8),即n=-m+68(3≤m≤8).因为-1<0,所以n随m的增大而减小.所以,当m=8时,n有最小值60.答:从总厂运送到灾区A地帐篷8千顶,从分厂运送到灾区A,B两地帐篷分别为1千顶,5千顶时所用车辆最少,最少的车辆为60辆.22.设抢修车的速度为xkm/h,则吉普车的速度为1.5xkm/h.由题意得1515151.560x x-=,解得x=20.经检验,x=20是原方程的解,且x=20,1.5x=30都符合题意.答:抢修车的速度为20km/h,吉普车的速度为30km/h.。
2009年中考数学复习教材回归知识讲解+例题解析+强化训练用统计图表描述数据◆知识讲解描述数据常用三种统计图表:条形统计图、折线统计图、扇形统计图.条形统$计图能清楚地表示出每个项目的具体数目;折线统计图能清楚地反映事物的变化情况;扇形统计图能清楚地表示出各部分在总体中所占的百分比.要熟悉三种统计图的制作方法及其特点,运用它描述数据要作合理的选择;作出合理预测与决断.◆例题解析例1根据北京市统计局公布的2000年,2005•年北京市常住人口相关数据,绘制统计图表如下:2000年,2005年北京市常住人口数统计图 2005年北京市常住人口各年龄段人数统计图图6-1 图6-22000年,2005年北京市常住人口中受教育程度情况统计表(人数单位:万人)年份大学程度人数(指大专及以上)高中程度人数(含中考)初中程度人数小学程度人数其他人数2000年233 320 475 234 1202005年362 372 476 212 114 请利用上述统计图表提供的信息回答下列问题:(1)从2000年到2005年北京市常住人口增加了多少万人?(2)2005年北京市常住人口中,少儿(0~14岁)人口约为多少万人?(3)请结合2000年和2005年北京市常住人口受教育程序的状况,谈谈你的看法.【分析】(1)由条形统计图6-1获知:从2000年到2005•年北京市常住人口增加了1536-1382=154(万人).(2)由扇形统计图6-2获知2005年北京市常住人口中,少儿(•0•~14•岁)•人口为1536×10.2%=156.672≈157(万人).(3)由统计表可以给出各个层面受教育程度的状况,例如:依数据可得,2000年受大学教育的人口比例为16.86%,2005年受大学教育的人口比例为23.57%,可知,•受大学教育的人口比例明显增加,教育水平有所提高.【点评】条形图能清楚地表示出每个项目的具体数目,扇形图能清楚地表示出各部分在总体中所占的百分比,折线图能清楚反映事物的变化情况.我们在选择统计图整理数据时,应注意“扬长避短”.例2(2005,贵阳市)“国际无烟日”来临之际,小彬就公众对在餐厅吸烟的态度进行了调查,并将调查结果制作成如图6-3所示的统计图,•请根据图中的信息回答下列问题:(1)被调查者中,不吸烟者赞成在餐厅彻底禁烟的人数是______;(2)被调查者中,希望在餐厅设立吸烟室的人数是_______;(3)求被调查者中赞成在餐厅彻底禁烟的频率;(4)贵阳市现有人口约为370万,•根据图中的信息估计贵阳市现有人口中赞成在餐厅彻底禁烟的人数.【分析】(1),(2),(3)分清题意,(4)应用百分比求人数.【解答】(1)97 (2)63 (3)0.6 (4)370×0.6=222(万)【点拨】在三种意向中,每一种都含有不吸烟的人和吸烟的人,在审题中要注意这些区别是关键.◆强化训练一、填空题1.(2005,安徽省)某校九年级(1)班有50名同学,•综合素质评价“运动与健康”方面的等级统计如图所示,则该班“运动与健康”评价等级为A的人数是______.2.(2005,吉林省)图a,b是县统计部门对某地农村,县城近四年彩电,冰箱,摩托车三种商品购买情况的抽样调查统计图.根据统计图提供的信息回答问题:(1)分别对农村,县城购买的趋势作出大致判断(填“上升”、•“下降”或“基本平稳”);农村购买趋势彩电______;冰箱_____;摩托车_______;•县城购买趋势彩电_______;冰箱_______;摩托车________.(2)若2003年农村购买的彩电平均价格每台1500元,冰箱每台2000元,•摩托车每台4000元;县城购买的彩电平均价格每台2500元,冰箱每台3000元,•摩托车每台6000元,农村,县城2003年三种商品消费总值的比_______.图a 图b3.“三年的初中学习生活结束了,•愿中考将我送达另一个理想的彼岸”.•这27个字中,每个字的笔画数依次是:3,6,8,7,4,8,3,5,9,9,7,2,14,4,6,9,7,9,6,•5,1,3,11,13,8,8,8.其中笔画数是8的字出现的频数是______,频率是______.4.如图是某学校的一学生到校方式的频数分布直方统计图,根据图形可得步行人数占总人数的_____%.(第4题) (第6题)5.对某班同学的身高进行统计(单位:cm),频数分布表中165.5~170.5这一组的学生人数是12.频率为0.2,则该班有_____名同学.6.(2006,旅顺市)某区从2300•名参加初中毕业升学统一考试数学试测的学生中随机抽取200名学生的试卷,成绩从低到高按59~89,90~119,120~134,135~150分成四组进行统计(最低成绩为59分,且分数均为整数),整理后绘出如图所示的各分数段频数分布直方图的一部分,已知前三个小组从左到右的频率依次为0.25,•0.30,0.35.(1)第四组的频数为______,并将频数分布直方图补充完整;(2)若90分及其以上成绩为及格,则此次测试中数学成绩及格以上为_____人.7.(2008,重庆)光明中学七年级甲,乙,丙三个班中,每班的学生人数都为40名,•某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值)丙班数学成绩频数统计表分数50~60 60~70 70~80 80~90 90~100人数 1 4 15 11 9根据以上图,表提供的信息,则80~90分这一组人数最多的班是_____.二、选择题8.某农场今年粮食,棉花,油料三种作物种植面积的比是5:2:1,在扇形统计图上表示粮食面积的扇形圆心角是()A.220° B.45° C.225° D.90°9.(2008,南通)图6-9是我国2003~2007年粮食产量及其增长速度的统计图,•下列说法不正确的是()A.这5年中,我国粮食产量先增后减 B.后4年中,我国粮食产量逐年增加C.这5年中,2004年我国粮食产量年增长率最大D.后4年中,2007年我国粮食产量年增长率最小10.(2005,安徽省)某市社会调查队对城区的一个社区居民的家庭经济状况进行调查,调查的结果是,该社区共有500户,设收入,中等收入和低收入家庭分别有125户,280户和95户,已知该市有100万户家庭,下列表述正确的是()A.该市高收入家庭约25万户B.该市中等收入家庭约56万户C.该市低收入家庭约19万户D.因城市社区家庭经济状况较好,•所以不能据此数据估计全市所有家庭经济状况11.(2005,南京市)图6-10是甲,乙两户居民家庭全年支出费用的扇形统计图.A.甲户比乙户多 B.甲,乙两户一样多C.乙户比甲户多 D.无法确定哪一户多12.下表是某一地区在一年中不同季节对同一商品的需求情况统计:季度第一季度第二季度第三季度第四季度某商品需求量/t若你是工商局的统计员,要为国家提供关于这商品的直观统计图,则应选择的统计图是()A.条形统计图 B.折线统计图 C.扇形统计图 D.前面三种都可以三、解答题13.(2008,河南)下图甲、乙反映的是某综合商场2008年1~5•月份的商品销售额统计情况,观察图甲和图乙,解答下面问题:(1)来自商场财务部的报告表明,商场1~5月份的销售总额一共是370万元,请你根据这一信息补全图甲,并写出两条由如上两图获得的信息;(2)商场服装部5月份的销售额是多少万元?(3)小华观察图乙后认为,5月份服装部的销售额比4月份减少了,•你同意他的看法吗?为什么?14.(2008,大连)典典同学学完统计知识后,•随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成扇形和条形统计图,如图所示.请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了______名居民的年龄,扇形统计图中a=_____,b=_____;(2)补全条形统计图.(3)若该辖区年龄在0~14岁的居民约有3人,请估计年龄在15~59岁的居民的人数.15.(2006,浙江绍兴)下图是某校七年级360•位同学购买不同品牌计算器人数的扇形统计图,每位同学购买一只计算器.试回答下列问题:(1)分别求出购买各品牌计算器的人数;(2)试画出购买不同品牌计算器人数的频数分布直方图.16.(2006,浙江金华)某年级组织学生参加夏令营活动,本次夏令营分为甲,乙,•丙三组进行.下面统计图反映了学生参加夏令营的报名情况,请你根据图中的信息回答下列问题:(1)该年级报名参加丙组的人数为_______;(2)该年级报名参加本次活动的总人数为______,并补全频数分布直方图;(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少学生到丙组?答案1.19(提示:50×38%=19.)2.(1)上升;基本平稳;上升;基本平稳;上升;下降;(2)73:1293.5;0.185 4.50 5.606.(1)20;图略(2)1725 7.甲班8.C (提示:58×360°=225°.)9.D 10.D 11.D 12.A13.(1)图略.(按照4月份商场销售总额为65万元,正确补出图形)(答案不唯一,根据图中的信息,回答合理即可)(2)70×15%=10.5(万元).(3)不同意.因为4月份服装销售额为:65×16%=10.4(万元)<10.5(万元),所以5•月份服装部的销售额比4月份增加了,而不是减少了.14.(1)500 20% 12%(2)条形统计图如图所示:(3)∵3500÷20%=17500,∴17500×(46%+22%)=11900.∴年龄在15~59岁的居民总数约11900人.15.(1)购买甲品牌计算器人数:360×20%=72(人).购买乙品牌计算器人数:360×30%=108(人).购买丙品牌计算器人数:360×50%=180(人).(2)如图所示.16.(1)25 (2)50,图略(3)应从甲组抽调5名学生到丙组.下面是赠送的范文,不需要的朋友可以下载后编辑删除2013党风建设心得体会范文按照上级的统一部署,我们认真组织开展了党风廉政建设教育活动。
中考数学复习考点知识归类讲解与练习专题01 平面直角坐标系与函数基本概念知识对接考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移1 / 27要点补充:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于;(2)点P(x,y)到y 轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点补充:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.专项训练一、单选题1.已知点P (a ,a+3)在第二象限,且点P 到x 轴的距离为2,则a 的值为()A .1-B .5-C .2-D .2y x 22y x +【答案】A【分析】先判断a的取值,进而根据点P到x轴的距离为2得到a+3=2,解得即可.【详解】解:∵点P(a,a+3)在第二象限,∴30aa<⎧⎨+>⎩,∴-3<a<0,∵点P到x轴的距离为2,∴|a+3|=2,∴a+3=2,∴a=-1,故选:A.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(﹣3,﹣4)D.(4,﹣3)【答案】A【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】3 / 27解:点P (3,4)关于y 轴对称点的坐标为(-3,4),故选:A .【点睛】此题主要考查了关于y 轴对称点的坐标,关键是掌握点的坐标的变化规律.3.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-【答案】A【分析】 先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),5 / 27由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.4.小娜驾车从哈尔滨到大庆.设她出发第x min 时的速度为y km/h ,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系式.下列说法:(1)在77≤x ≤88时,小娜在休息;(2)小娜驾车的最高速度是120km/h ;(3)小娜出发第16.5min 时的速度为48km/h ;(4)如果汽车每行驶100km 耗油10升,那么小娜驾车在33≤x ≤66时耗油6.6升. 其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【分析】根据函数图象对每个选项进行分析判断,最后得出结论.①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;②观察图象小娜的最高时速为120千米;③用待定系数法求出11≤x ≤22时的函数关系式,可求小娜出发第16.5min 时的速度;④小娜驾车在33≤x ≤66时时速为120千米/小时,依次求出小娜驾车在33≤x ≤66时行驶的路程,从而耗油量可求.【详解】解:①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;故①错误; ②观察图象小娜的最高时速为120千米,故②正确;③在11≤x ≤22时,设y =kx +b .将(11,24)和(22,72)代入上式:11242272k b k b +=⎧⎨+=⎩, 解得:481124k b ⎧=⎪⎨⎪=-⎩. ∴482411y x =-. 当x =16.5min 时,y =48.∴小娜出发第16.5min 时的速度为48km /h .故③正确;④由图象可知:小娜驾车在33≤x ≤66时时速为120千米/小时,∴车在33≤x ≤66时小娜行驶了66331206660-⨯=(千米). ∴耗油为:66×10100=6.6(升).7 / 27故④正确;综上,正确的有②③④共三个.故选:C .【点睛】本题主要考查了一次函数的应用.理解函数图象上的点的实际意义是解题的关键.另外待定系数法是确定函数解析式的重要方法.5.下列不能表示y 是x 的函数的是()A .B .21y x =+C .D .【答案】C【分析】根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断即可.【详解】解:根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断, A :观察列表数据发现,符合函数的定义,不符合题意;B :观察x 与y 的等式发现,符合函数的定义,不符合题意;C :观察函数图像发现,不符合函数的定义,符合题意;D :观察函数图像发现,符合函数的定义,不符合题意;故选:C .【点睛】此题主要考查了函数的定义,涉及到了函数的表示方法(解析法,图像法和列表法),熟练掌握函数的基础知识是解题的关键.x的函数的是()6.下列各图象中,y不是..A.B.C.D.【答案】B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.9 / 277.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.6【答案】A【分析】 由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,根据勾股定理求得DE 的长度,再根据三角形相似求得BF ,矩形的性质得到OF ,即可求解.【详解】解:由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,如下图:∵5CD AD ==,DE AC ⊥ ∴132CE AC ==,90DEC ∠=︒由勾股定理得4DE =∵//AB DC∴DCE BAC ∠=∠,90ODC BOD ∠=∠=︒又∵AC BC⊥∴90 ACB CED∠=∠=︒∴DEC BCA△∽△∴DE CE CDBC AC AB==,即4356BC AB==解得8BC=,10AB=∵CF OB⊥∴90 ACB BFC∠=∠=︒∴BCF BAC∽△△∴BC BFAB BC=,即8108BF=解得 6.4BF=由题意可知四边形OFCD为矩形,∴5OF CD==11.4OB BF OF=+=故选A【点睛】此题考查了相似三角形的判定与性质,图形的平移,矩形的判定与性质,勾股定理等,熟练掌握相关基本性质是解题的关键.8.在平面直角坐标系中,已知点A(0,0)、B(2,2)、C(3,0),若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标不可能为()A.(﹣1,2) B.(5,2) C.(1,﹣2) D.(2,﹣2)【答案】D【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的11 / 27性质容易得出点D 的坐标. 【详解】解:分三种情况:①BC 为对角线时,点D 的坐标为(5,2) ②AB 为对角线时,点D 的坐标为(﹣1,2), ③AC 为对角线时,点D 的坐标为(1,﹣2),综上所述,点D 的坐标可能是(5,2)或(﹣1,2)或(1,﹣2). 故选:D . 【点睛】本题考查了平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解决问题的关键.9.半径是R 的圆的周长C 2R π=,下列说法正确的是() A .C ,π,R 是变量,2是常量 B .C 是变量,2,π,R 是常量 C .R 是变量,2,π,C 是常量 D .C ,R 是变量,2π是常量【答案】D 【分析】根据变量和常量的概念解答即可. 【详解】解:在半径是R 的圆的周长2C R π=中,C ,R 是变量,2π是常量. 故选D . 【点睛】本题主要考查了变量和常量,在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.10.关于变量x ,y 有如下关系:①6-=x y ;②24y x =;③2y x =;④3y x =.其中y 是x 函数的是() A .①③ B .①②③④ C .①③④ D .①②③【答案】C 【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数. 【详解】解:y 是x 函数的是①x -y =6;③y =2|x |;④3y x =; ∵x =1时,y =±2,∴对于y 2=4x ,y 不是x 的函数; 故选:C . 【点睛】本题考查了函数的定义,函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量. 二、填空题11.若点()25,4P a a --到两坐标轴的距离相等,则点P 的坐标是______. 【答案】()1,1或()3,3-; 【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案. 【详解】解:∵P (2a -5,4-a )到两坐标轴的距离相等, ∴254a a -=-.13 / 27∴254a a -=-或25(4)a a -=--, 解得3a =或1a =,当3a =时,P 点坐标为(1,1); 当1a =时,P 点坐标为(-3,3). 故答案为:(1,1)或(-3,3). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.12.在平行四边形ABCD 中,点A 的坐标是(﹣1,0),点B 的坐标是(2,3),点D 的坐标是(3,1),则点C 的坐标是___. 【答案】(6,4). 【分析】根据四边形ABCD 是平行四边形,可得AB∥DC ,且AB =DC ,根据坐标间关系可得2-(-1)=x C -3,3-0=y C -1,解得x C =6,y C =4即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB∥DC ,且AB =DC , ∴2-(-1)=x C -3,3-0=y C -1, ∴x C =6,y C =4, 点C (6,4) 故答案为(6,4).【点睛】本题考查平行四边形的性质,点的坐标关系建构方程,掌握平行四边形的性质,点的坐标关系建构方程.13.函数y=182xx+-的自变量的取值范围是______.【答案】x≠4【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零,据此可得结论.【详解】解:由题可得,8﹣2x为分母,8﹣2x≠0,解得x≠4,∴函数182xyx+=-的自变量的取值范围是x≠4,故答案为:x≠4.【点睛】本题考查的是自变量的取值范围,由于此题表达式为分式,根据分式有意义的条件,分母不为零,得到自变量的取值范围.14.若一个函数图象经过点A(1,3),B(3,1),则关于此函数的说法:①该函数可能是一次函数;②点P(2,2.5),Q(2,3.5)不可能同时在该函数图象上;15 / 27③函数值y 一定随自变量x 的增大而减小;④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大. 所有正确结论的序号是 ___. 【答案】①②④ 【分析】根据函数的定义,一次函数的图象及函数的性质一一分析即可求解. 【详解】解:①因为一次函数的图象是一条直线,由两点确定一条直线,故该函数可能是一次函数,故正确;②由函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量,所以点P (2,2.5),Q (2,3.5)不可能同时在该函数图象上,故正确;③因为函数关系不确定,所以函数值y 不一定一直随自变量x 的增大而减小,故错误; ④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大,故正确; 故答案为①②④. 【点睛】本题主要考查函数的定义及一次函数的图象与性质,熟练掌握函数的定义及一次函数的图象与性质是解题的关键.15.在圆周长公式2C r π=中,常量是__________. 【答案】2π 【分析】根据常量的定义即可解答. 【详解】解:圆周长公式2C r π=中,常量是2π, 故答案为:2π. 【点睛】本题考查了常量的定义,正确理解定义是关键.16.如图,平面直角坐标系中O 是原点,等边△OAB 的顶点A 的坐标是(2,0),点P 以每秒1个单位长度的速度,沿O →A →B →O →A …的路线作循环运动,点P 的坐标是__________________.【答案】12⎛ ⎝⎭【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可. 【详解】解:由题意得,第1秒结束时P 点运动到了线段OA 的中点C 的位置,所以P 1的坐标为P 1(1,0);第2秒结束时P 点运动到了点A 的位置,所以P 2的坐标为P 2(2,0);第3秒结束时P 点运动到了线段AB 的中点D 的位置,如下图所示,过D点作x轴的垂线交于x2处,∵△OAB是等边三角形,且OA=2,∴在Rt△AD x2中,∠DA x2=60°,AD=1,∴21 2Ax=,2Dx=故D点的坐标为32⎛⎝⎭,即P332⎛⎝⎭;第4秒结束时P点运动到了点B的位置,同理过B点向x轴作垂线恰好交于点C,在Rt△OBC中,∠BOC =60°,2OB=,1OC=,BC故B点的坐标为(1,即P4(1;第5秒结束时P点运动到了线段OB的中点E的位置,根据点D即可得出E点的坐标为12⎛⎝⎭,即 P512⎛⎝⎭;第6秒结束时运动到了点O的位置,所以P6的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……17 / 27由上可知,P 点的坐标按每6秒进行循环, ∵2021÷8=336……5,∴第2021秒结束后,点P 的坐标与P 5相同为12⎛ ⎝⎭,故答案为:12⎛ ⎝⎭.【点睛】本题主要考查了点的坐标特征,等边三角形的性质,数字规律,关键是求出前面几个点坐标,得出规律.17.平面直角坐标系中,点()5,3A -,()0,3B ,()5,0C -,在y 轴左侧一点(),P a b (0b ≠且点P 不在直线AB 上).若40APO ∠=︒,BAP ∠与COP ∠的角平分线所在直线交于D 点.则ADO ∠的度数为______°.【答案】110或70 【分析】分两种情况,①点P 在AO 下方,设AP 与CO 交于点N ,过点N 作//NM AD ,先证明NM 平分PNO ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMO P ∠=+∠,即可求解;②点P 在AO 上方,设PO 与AB 交于点M,过点M 作//NM OD ,先证明NM 平分PNA ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMA P ∠=+∠,即可求解. 【详解】19 / 27解:分两种情况, ①点P 在AO 下方时,设AP 与CO 交于点N ,过点N 作//NM AD ,PAD PNM ∴∠=∠, //AB NO , BAN ONP ∴∠=∠,AD 平分BAN ∠,12PAD BAN ∴∠=∠,12PNM ONP ∴∠=∠,NM∴平分ONP ∠,OM 平分NOP ∠,111(180)70222MNO NOM ONP PON NPO ∴∠+∠=∠+∠=-∠=︒,110NMO ∴∠=︒, //NM AD ,110ADO NMO ∴∠=∠=︒;①点P 在AO 上方时,设AB 与PO 交于点N ,过点N 作//NM OD ,POD PNM ∴∠=∠,//AB CO ,PNA POC ∴∠=∠,DO 平分POC ∠,12POD POC ∴∠=∠,12PNM PNA ∴∠=∠,NM∴平分ANP ∠,直线CD 平分NAP ∠,111(180)70222MNA NAM PNA PAN NPA ∴∠+∠=∠+∠=-∠=︒,110NMA ∴∠=︒, //NM AD ,18070ADO NMO ∴∠=-∠=, 70ADO ∴∠=︒或110︒.故答案为:70或110.【点睛】本题主要考查了三角形双内角平分线模型,平行线的性质,解题的关键是找基本模型. 18.一个三角形的底边长是3,高x 可以任意伸缩,面积为y ,y 随x 的变化变化,则其中的常量为________,y 随x 变化的解析式为______________. 【答案】3 32y x = 【分析】先根据变量与常量的定义,得到3为常量,x 和y 为变量,再根据三角形面积公式得到21 / 27y =12×3×x =32x (x >0), 【详解】解:数值发生变化的量为变量,数值始终不变的量为常量,因此常量为底边长3,由三角形的面积公式得y 随x 变化的解析式为32y x =. 故答案为:3;32y x =. 【点睛】本题考查主要函数关系式中的变量与常量和列函数关系式解决本题的关键是要理解函数关系中常量和变量. 三、解答题19.已知一个圆柱的底面半径是3cm ,当圆柱的高(cm)h 变化时,圆柱的体积()3cm V 也随之变化.(1)在这个变化过程变量h 、V 中,自变量是______,因变量是______; (2)在这个变化过程中,写出圆柱的体积V 与高h 之间的关系式;(3)当圆柱的高h 由3cm 变化到6cm 时,圆柱的体积V 由______变化到______. 【答案】(1)h ,V ;(2)9V h π=;(3)327cm π,354cm π 【分析】(1)利用函数的概念进行回答;(2)利用圆柱的体积公式求解;(3)分别计算出h =3和6对应的函数值可得到V 的变化情况. 【详解】解:(1)在这个变化过程中,自变量是h ,因变量是V ;故答案为h ,V ;(2)V =π•32•h =9πh ;(3)当h =3cm 时,V =27πcm 3;当h =6cm 时,V =54πcm 3;所以当h 由3cm 变化到6cm 时,V 是由27πcm 3变化到54πcm 3.故答案为:27πcm3;54πcm3.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.函数解析式是等式.解决此题的关键是圆柱的体积公式.20.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?【答案】(1)t,s;(2)50,30;(3)15小时,450km【分析】(1)根据函数图像可得;(2)根据函数图象中的数据,可以计算出小轿车和大客车的速度;(3)设两车出发xh时,两车相遇,根据题意列出方程,解之可得x,再乘以大客车的速度可得到甲地的距离.【详解】解:(1)自变量是时间t;因变量是路程s;(2)由图象可得,小轿车的速度为:500÷10=50(km/h),大客车的速度为:500÷503=30(km/h),故答案为:50,30;(3)设两车出发x小时,两车相遇,30x+50(x-14)=500,解得,x=15,30x=30×15=450,即两车出发15h后两车相遇,两车相遇时,距离甲地的路程是450km,故答案为:15,450.【点睛】本题考查了从函数图像获取信息,一元一次方程的应用,解答本题的关键是明确题意,结合函数图像得到必要信息.21.在平面直角坐标系中,O为坐标原点,C(4,0),A(a,3),B(a+4,3)(1)求ΔOAC的面积;(2)若aOABC是菱形.【答案】(1)6;(2)见解析【分析】(1)过点A(a,3)作AE⊥x轴于点E,根据A(a,3),C(4,0)求出AE和OC的长度,23 / 27然后根据三角形面积公式求解即可;(2)首先根据点A 和点B 的纵坐标相同得到//AB OC ,然后结合AB OC =得到四边形OABC 是平行四边形,然后根据勾股定理求出OA 的长度,得到OA =OB ,根据菱形的判定定理即可证明. 【详解】解:(1)如图所示,过点A (a ,3)作AE ⊥x 轴于点E ,则AE =3, 又∵C (4,0), ∴OC =4,∴S △OAC =11=43622OC AE ⨯⨯⨯⨯=.(2)若a =)A ,)43B ,, ∵A B y y =, ∴//AB OC , ∵44AB OC ==,, ∴AB OC =.∴四边形OABC 是平行四边形, 过点A 作AE ⊥x 轴,则90AEO ∠=︒,3AE OE ==,∴4OA =,∴OA AB=,∴四边形OABC是菱形.【点睛】此题考查了三角形面积的求法,菱形的判定,解题的关键是根据题意找到坐标和线段的关系.22.定义:平面直角坐标系中,点M(a,b)和点N(m,n)的距离为MN,例如:点(3,2)和(4,0(1)在平面直角坐标系中,点(2,5-)和点(2,1)的距离是,点(72,3)和点(12,1-)的距离是;(2)在平面直角坐标系中,已知点M(2-,4)和N(6,3-),将线段MN平移到M ′ N′,点M的对应点是M′,点N的对应点是N′,若M′的坐标是(8-,m),且MM′=10,求点N′的坐标;(3)在平面直角坐标系中,已知点A在x轴上,点B在y轴上,点C的坐标是(12,5),若BC=13,且△ABC的面积是20,直接写出点A的坐标.【答案】(1)6,5;(2)当M′(-8,12)时,N′(0,5),当M′(-8,-4)时,N′(0,-11);(3)(8,0)或(-8,0)或(16,0)或(32,0)【分析】(1)分别利用两点间距离公式求解即可.(2)构建方程求出m的值,可得结论.(3)设(0,)B t,构建方程求出t的值,可得结论.【详解】解:(1)点(2,5)-和点(2,1)的距离6,25 / 27点7(2,3)和点1(2,1)-的距离5=, 故答案为:6,5. (2)由题意,10MM '=,∴10=,12m =∴或4-,(8,12)M ∴'-或(8,4)--,当(8,12)M '-时,(0,5)N ', 当(8,4)M '--时,(0,11)N '-. (3)设(0,)B t ,(12,5)C ,13BC =,∴13,解得0t =或10,(0,0)B ∴或(0,10),当(0,0)B 时,20ABC S ∆=,∴15202OA ⨯⨯=, 8OA ∴=,(8,0)A ∴或(8,0)-.当(0,10)B 时,20ABC BOC AOC AOB S S S S ∆∆∆∆=+-=或20ABC AOC AOB BOC S S S S ∆∆∆∆=--=,∴111101*********OA OA ⨯⨯+⨯⨯-⨯⨯=或111101012520222OA OA ⨯⨯-⨯⨯-⨯⨯=,16OA ∴=或32,∴或(32,0),A(16,0)综上所述,满足条件的点A的坐标为(8,0)或(8,0)-或(16,0)或(32,0).【点睛】本题属于三角形综合题,考查了两点间距离公式,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27 / 27。
2009年中考数学复习教材回归知识讲解+例题解析+强化训练一元一次方程◆知识讲解1.等式和它的性质等式:表示相等关系的式子,叫做等式.等式的性质:①等式两边都加上(或减去)同一个数或同一个整式所得的结果仍是等式;②等式两边都乘以(或除以)同一个数(除数不为零)所得的结果仍是等式.2.方程方程:含有未知数的等式叫做方程.一元一次方程:在整式方程中,只含有一个未知数,并且未知数的次数是1•,系数不等于0的方程叫做一元一次方程.ax+b=0(a≠0)是一元一次方程的标准形式.方程的解:使方程左右两边相等的未知数的值叫做方程的解.一元方程的解也叫方程的根.解方程:求方程解的过程叫做解方程.3.解一元一次方程的一般步骤①去分母;②去括号;③移项;④合并同类项;⑤系数化为1.4.列一元一次方程解应用题的一般步骤(1)弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;(2)找出能够表示应用题全部含义的一个相等关系;(3)根据这个相等关系列出需要的代数式,从而列出方程;(4)解这个方程,求出未知数的值;(5)检验方程的解是不是符合应用题题意的解;(6)写出答案(包括单位名称).◆例题解析例1(2004,黄冈市)关于x的一元一次方程(k2-1)x k-1+(k-1)x-8=0的解为_____.【分析】由一元一次方程的定义可知,原方程是一元一次方程,则有两种情况,①当k -1=1,即k=2时,原方程3x+x-8=0,解之得x=2 ②当k2-1=0且k-1≠0时,也就是当k=-1时,原方程化为-2x-8=0,解之得x=-4,所以原方程的解为x=2或x=-4,•故答案为x=2或x=-4.【解答】x=2或x=-4.【点评】运用一元一次方程的概念特征解题,•可以从两个方向把握:其一是应用概念的本质属性作出正确的判断;其二是在这一概念下,据概念具备的本质特征得出相应的结论(如本例中的k-1=1和k-1=0且k-1≠0),在解题过程中不断探索,实现解题目的.例2 解下列方程:(1)213x+-516x-=1;(2)34[43(12x-14)-8]=32x.【分析】对于(1),将方程的两边同乘以6,约去分母,对第(2)题,不难看出,先用分配律简化方程,再求解较容易.【解答】(1)去分母,得2(2x+1)-(5x-1)=6,去括号,得4x+2-5x+1=6,移项,得-x=3,两边同乘以-1,得x=-3.(2)去括号,得12x-14x-6=32x,移项,合并同类项,得-x=614,系数化为1,得x=-614.【点评】(1)①去分母时,方程两边同乘以各分母的最小公倍数,•不要漏乘没有分母的项;②去分母后,分数线起到括号的作用,尤其是分式前是负号的项.(2)技巧性解法的发现需要认真观察问题的结构特征,需要突破习惯性思维的束缚.例3(2003,襄樊市)一牛奶制品厂现有鲜奶9t.若将这批鲜奶制成酸奶销售,则加工1t 鲜奶可获利1200元;若制成奶粉销售,则加工1t鲜奶可获利2000元.•该厂的生产能力是:若专门生产配奶,则每天可用去鲜奶3t;若专门生产奶粉,则每天可用去鲜奶1t.由于受人员和设备的限制,酸奶和奶粉两产品不可能同时生产,•为保证产品的质量,这批鲜奶必须在不超过4天的时间内全部加工完毕.假如你是厂长,你将如何设计生产方案,才能使工厂获利最大,最大利润是多少?【分析】要确定哪种方案获利最多,首先应求出每种方案各获得的利润,再比较即可.【解答】生产方案设计如下:(1)将9t鲜奶全部制成酸奶,则可获利1200×9=10800元.(2)4天内全部生产奶粉,则有5t鲜奶得不到加工而浪费,且利润仅为2000×4元=8000元.(3)4天中,用x天生产酸奶,用4-x天生产奶粉,并保证9t鲜奶如期加工完毕.由题意,得3x+(4-x)×1=9..∴4-(天).故在4天中,,,则利润为(×3××1×2000)元=12000元.答:按第三种方案组织生产能使工厂获利最大,最大利润是12000元.【点评】运用数学知识解决现代经济生产中的实际问题是中考的热点考查对象之一,同学们应多关心商品经济,生活中的规律、规则,把数学与生活有机结合起来.对于方案三的销售金额计算时,不能按“问什么设什么”的经验,设销售金额为x元,则不易找到它与已知数量的联系,故列方程将很困难,•这说明列方程解应用题时,恰当地设未知数很重要.◆强化训练一、填空题1.若732a-x2-3x=1是关于x的一元一次方程,则a=_____.2.街房三角形花园的周长是30cm,一边长为(x+2y)m,另一边长为(y-2)m,则第三边长为______.3.若式子12-3(9-y)与式子5(y-4)的值相等,则y=______.4.代数式225x-+x与x+2的值互为相反数,则所列方程为______,x=_____.5.若x=5为方程27324312x x m x---+=的解,则m=_____.6.若13[14(13x-1)-6]+2=0,则x=_____.7.如果x=2是方程12x+a=-1的根,则a的值是_____.8.当a____,b____时,方程ax+1=x-b有唯一解,当a_____,b_____时,方程ax+1=x-b 有无解,当a_____,b_____时,方程ax+1=x-b,有无穷多解.9.某企业原有管理人员与营销人员人数之比为3:2,总人数为180人,为了扩大市场,应从管理人员中抽调_____人参加营销工作,•就能使营销人员人数是管理人员人数的2倍.10.某商店一套夏装的进价为200元,按标价的80%销售可获利72元,•则该服装的标价为_______元.二、选择题11.在方程x-2=3x,0.3y=1,x2-5x+6=0,-y=9,213x+=16x中,是一元一次方程的有()A.2个B.3个C.4个D.5个12.已知11xy=⎧⎨=-⎩是方程x-ay=2的一个解,那么a的值是()A.1 B.3 C.-3 D.-113.小李在解方程5a-x=13(x为未知数)时,误将-x看作+x,得方程的解为x=-2,则原方程的解为()A.x=-3 B.x=0 C.x=2 D.x=114.某校七年级学生外出参观,如果每辆汽车坐45人,那么有15个学生没有座位;如果每辆汽车坐60人,那么空出一辆汽车.设有x辆汽车,则下列方程正确的是()A.60x=(45x+15)+1 B.60(x-1)=45x-15C.60(x-1)=45x+15 D.154560x x-==+115.在一次美化校园活动中,先安排32人去拨草,18人去植树,后又增派22人去支援他们,结果拔草的人数是植树人数的2倍.问支援拔草和支援植树的分别有多少人?解题时,若设支援拔草有x人,则下列方程中正确的是()A.32+x=2×18 B.32+x=2(40-x)C.54-x=2(18+x)D.54-x=2×1816.一列火车长为150m,以15m/s的速度通过600m的隧道,从火车进入隧道口算起,到这列火车完全通过隧道所需时间是()A.60s B.50s C.40s D.30s17.足球比赛的计分规则为胜1场得3分,平1场得1分,负1场得0分.1•个队打了14场比赛,负5场共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场18.某商品进货价便宜8%,而售价保持不变,那么它的利润(按进货价而定)•可由目前的x%增加到(x+10)%,则x%是()A.12% B.15% C.30% D.50% 三、解答题19.解下列方程:(1)0.10.020.10.10.0020.05x x-+-=0;(2)12[1-2x+12(3x-5)]=x.20.(2006,某某某某)在社会主义新农村建设中,•某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,•那么剩下的工程还需要两队合作20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合作完成这项工程所需的天数.21.(2008,)京津城际铁路于2008年8月1日开通运营,预计高速列车在,.某次试车时,•试验列车由到某某的行驶时间比预计时间多用了6min,由某某返回的行驶时间与预计的时间相同.如果这次试车时,由某某返回比去某某时平均每小时多行驶40km,那么这次试车时由到某某的平均速度是多少?22.(2008,某某省)生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗2000棵,种植A,B两种树苗的相关信息如表所示:设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数关系式;(2)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?23.(2003,市海淀区)某同学在A,B•两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全家购物满100元返购物券30元(不足100元不返券,购物券全场通用),•但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买省钱?答案:1.732.32-x-3y 3.y=524.225x+x+x+2=0 -48515.m=4 6.37.-2 8.≠1 为任意实数=1 ≠-1 =1 =-19.48 10.340 11.B 12.A 13.C 14.C 15.B 16.B 17.C 18.B (提示:设该商品的原进货价为a元,根据题意得(1+x%)a=[1+(x+10)%]·a×(1-8%),两边同除以a得1+x%=[1+(x+10)%](1-8%),解得x%=15%)19.(1)x=1 4(2)去括号,得14(1-2x+32x-52)=x,再去括号,得14-x+34x-54=x,移项,合并同类项,得-54x=34.两边同乘以-45,得x=-35.20.(1)设乙工程队单独完成这项工程需要x天,根据题意得:10 x +(1x+140)×20=1.解得x=60,经检验:x=60是原方程的解.答:乙工程队单独完成这项工程所需要的天数为60天.(2)设两队合作完成这项工程所需的天数为y天,根据题意得:(140+160)y=1,解得y=24.答:两队合作完成这项工程所需的天数为24天.21.设这次试车时,由到某某的平均速度是xkm/h,则由某某返回的平均速度是(x+40)km/h.依题意,得30660x=12(x+40).解得x=200.答:这次试车时,由到某某的平均速度是200km/h.22.(1)y=(15+3)x+(20+4)(2000-x)=-6x+48000.(2)由题意,可得:(2000-x)=1960.∴x=500.当x=500时,y=-6×500+48000=45000.∴造这片林的总费用需45000元.23.(1)设书包的单价为x元,则随身听的单价为(4x-8)元.根据题意,得4x-8+x=452.解这个方程,得x=92.因为4x-8=4×92-8=360,故该同学看中的随身听单价为360元,书包单价为92元.(2)在超市A购买随身听与书包各一件需花费现金:452×(元).因为361.6<400,所以可以选择在超市A购买.在超市B可先花费现金360元购买随身听,再利用得到的90元返券,加上2•元现金购买书包,总计共花费现金:360+2=362(元).因为362<400,所以也可以选择在超市B购买.,所以在超市A购买更省钱.。
中考复习——平面直角坐标系、一次函数、反比例函数【知识梳理】一、平面直角坐标系1. 坐标平面上的点与 有序实数对 构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于x 轴对称的点的坐标为 ;关于y 轴对称的点的坐标为 ;关于原点对称的点的坐标为5.两点之间的距离二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有 的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式 (2)实际问题具有 意义3.函数的表示方法; (1) (2) (3) 三、一次函数的概念、图象、性质1.正比例函数的一般形式是 ( ),一次函数的一般形式是 (k≠0). 2. 一次函数y kx b =+的图象是经过( , )和( , )两点的一条直线.4.若两个一次函数解析式中,k 相等,表示两直线 ;若两直线垂直,则 。
5.的大小决定直线的倾斜程度,越大,直线越 ;四、反比例函数的概念、图象、性质1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质k >0,b >0k >0,b <0k <0,b >0k <0,21212211P P )0()0()2(y y y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 3.k 的几何含义:反比例函数y =k x(k≠0)中比例系数k 的几何意义,即过双曲线y =k x(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 。
【例题精讲】 例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = . 例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的 坐标为(8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,点C 的坐标为例4.一次函数y=(3a+2)x -(4-b),求满足下列条件的a 、b 的取值范围。
2009年中考数学复习教材回归知识讲解+例题解析+强化训练反比例函数在中考中的常见题型◆知识讲解1.反比例函数的图像是双曲线,故也称双曲线y=kx(k≠0).2.反比例函数y=kx(k≠0)的性质(1)当k>0时⇔函数图像的两个分支分别在第一,三象限内⇔在每一象限内,y随x的增大而减小.(2)当k<0时⇔函数图像的两个分支分别在第二,四象限内⇔在每一象限内,y随x的增大而增大.(3)在反比例函数y=kx中,其解析式变形为xy=k,故要求k的值,•也就是求其图像上一点横坐标与纵坐标之积,•通常将反比例函数图像上一点的坐标当作某一元二次方程的两根,运用两根之积求k的值.(4)若双曲线y=kx图像上一点(a,b)满足a,b是方程Z2-4Z-2=0的两根,求双曲线的解析式.由根与系数关系得ab=-2,又ab=k,∴k=-2,故双曲线的解析式是y=2x-.(5)由于反比例函数中自变量x和函数y的值都不能为零,所以图像和x轴,y•轴都没有交点,但画图时要体现出图像和坐标轴无限贴近的趋势.◆例题解析例1(2006,某某市)如图,在直角坐标系中,O为原点,点A在第一象限,它的纵坐标是横坐标的3倍,反比例函数y=12x的图像经过点A,(1)求点A的坐标;(2)如果经过点A的一次函数图像与y轴的正半轴交于点B,且OB=AB,•求这个一次函数的解析式.【分析】(1)用含一个字母a的代数式表示点A的横坐标,纵坐标,把点A的坐标代入y=12x可求得a的值,从而得出点A的坐标.(2)设点B的坐标为(0,m),根据OB=AB,可列出关于m的一个不等式,•从而求出点B的坐标,进而求出经过点A,B的直线的解析式.【解答】(1)由题意,设点A的坐标为(a,3a),a>0.∵点A在反比例函数y=12x的图像上,得3a=12a,解得a1=2,a2=-2,经检验a1=2,a2=-2•是原方程的根,但a2=-2不符合题意,舍去.∴点A的坐标为(2,6).(2)由题意,设点B的坐标为(0,m).∵m>0,∴.解得m=103,经检验m=103是原方程的根,∴点B的坐标为(0,1013).设一次函数的解析式为y=kx+10 13.由于这个一次函数图像过点A(2,6),∴6=2k+103,得k=43.∴所求一次函数的解析式为y=43x+103.例2 如图,已知Rt△ABC的顶点A是一次函数y=x+m与反比例函数y=mx的图像在第一象限内的交点,且S△AOB=3.(1)该一次函数与反比例函数的解析式是否能完全确定?如能确定,•请写出它们的解析式;如不能确定,请说明理由.(2)如果线段AC的延长线与反比例函数的图像的另一支交于D点,过D作DE⊥x•轴于E,那么△ODE的面积与△AOB的面积的大小关系能否确定?(3)请判断△AOD为何特殊三角形,并证明你的结论.【分析】△AOB 是直角三角形,所以它的面积是两条直角边之积的12,•而反比例函数图像上任一点的横坐标,纵坐标之积就是反比例函数中的系数.由题意不难确定m ,则所求一次函数,反比例函数的解析式就确定了.由反比例函数的定义可知,过反比例函数图像上任一点作x 轴,y 轴的垂线,•该点与两垂足及原点构成的矩形的面积都是大小相等的. 【解答】(1)设B (x ,0),则A (x 0,mx ),其中0>0,m>0. 在Rt △ABO 中,AB=mx ,OB=x 0. 则S △ABO =12·x 0·0m x =3,即m=6.所以一次函数的解析式为y=x+6;反比例函数的解析式为y=6x. (2)由66y x y x =+⎧⎪⎨=⎪⎩得x 2+6x -6=0,解得x 1=-15x 2=-315∴A (-1515D (-315315由反比例函数的定义可知,对反比例函数图像上任意一点P (x ,y ),有y=6x.即xy=6. ∴S △DEO =12│x D y D │=3,即S △DEO =S △ABO .(3)由A (-1515和D (-315315可得3,3即AO=DO .由图可知∠AOD>90°,∴△AOD 为钝角等腰三角形.【点评】特殊三角形主要指边的关系和角的关系.通过对直观图形的观察,借助代数运算验证,便不难判断.◆强化训练 一、填空题1.(2006,某某)如图1,直线y=kx (k>0)与双曲线y=4x交于A (x 1,y 1),B (x 2,y 2)两点,•则2x 1y 2-7x 2y 1的值等于_______.图1 图2 图32.(2006,某某)如图2,矩形AOCB 的两边OC ,OA 分别位于x 轴,y 轴上,点B 的坐标为B (-203,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是______.3.近视眼镜的度数y (度)与镜片焦距x (m )成反比例,已知400•度近视眼镜镜片的焦距为,则y 与x 的函数关系式为_______. 4.若y=2131a a a x--+中,y 与x 为反比例函数,则a=______.若图像经过第二象限内的某点,则a=______. 5.反比例函数y=kx的图像上有一点P (a ,b ),且a ,b 是方程t 2-4t -2=0的两个根,则k=_______;点P 到原点的距离OP=_______.6.已知双曲线xy=1与直线y=-b 无交点,则b 的取值X 围是______. 7.反比例函数y=kx的图像经过点P (a ,b ),其中a ,b 是一元二次方程x 2+kx+4=0的两个根,那么点P 的坐标是_______.8.(2008,某某)两个反比例函数y=k x 和y=1x在第一象限内的图像如图3所示,•点P 在y=k x 的图像上,PC ⊥x 轴于点C ,交y=1x 的图像于点A ,PD ⊥y 轴于点D ,交y=1x的图像于点B ,•当点P 在y=kx的图像上运动时,以下结论:①△ODB 与△OCA 的面积相等; ②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_______(把你认为正确结论的序号都填上,•少填或错填不给分). 二、选择题9.(2008,某某)如图4所示,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y=x 上,其中A 点的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴,y 轴,•若双曲线y=kx(k≠0)与△ABC 有交点,则k 的取值X 围是( ) A .1<k<2 B .1≤k≤3C .1≤k≤4 D .1≤k<4图4 图5 图6 10.反比例函数y=kx(k>0)的第一象限内的图像如图5所示,P 为该图像上任意一点,PQ 垂直于x 轴,垂足为Q ,设△POQ 的面积为S ,则S 的值与k 之间的关系是( ) A .S=4k B .S=2kC .S=kD .S>k 11.如图6,已知点A 是一次函数y=x 的图像与反比例函数y=2x的图像在第一象限内的交点,点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为( ) A .2 B .22C 2D .2 12.函数y=mx与y=mx -m (m≠0)在同一平面直角坐标系中的图像可能是( )13.如果不等式mx+n<0的解集是x>4,点(1,n)在双曲线y=2x上,那么函数y=(n-1)x+2m的图像不经过()A.第一象限B.第二象限C.第三象限D.第四象限14.(2006,某某)正比例函数y=2kx与反比例函数y=1kx在同一坐标系中的图像不可能是()15.已知P为函数y=2x的图像上一点,且P到原点的距离为3,则符合条件的P点数为(•)A.0个B.2个C.4个D.无数个16.如图,A,B是函数y=1x的图像上关于原点O对称的任意两点,AC平行于y轴,•交x轴于点C,BD平行于y轴,交x轴于点D,设四边形ADBC的面积为S,则()A.S=1 B.1<S<2 C.S=2 D.S>2三、解答题17.已知:如图,反比例函数y=-8x与一次函数y=-x+2的图像交于A,B两点,求:(1)A,B两点的坐标;(2)△AOB的面积.18.(2006,某某白云区)如图,已知一次函数y=kx+b的图像与反比例函数y=-8x的图像交于A,B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积.19.已知函数y=kx的图像上有一点P(m,n),且m,n是关于x方程x2-4ax+4a2-6a-8=0•的两个实数根,其中a是使方程有实根的最小整数,求函数y=kx的解析式.20.(2006,市)在平面直角坐标系Oxy中,直线y=-x绕点O顺时针旋转90•°得到直线L.直线L与反比例函数y=kx的图像的一个交点为A(a,3),试确定反比例函数的解析式.21.(2008,某某)如图所示,已知双曲线y=kx与直线y=14x相交于A,B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=kx上的动点.过点B作BD∥y轴交x轴于点D.•过N(0,-n)作NC∥x轴交双曲线y=kx于点E,交BD于点C.(1)若点D的坐标是(-8,0),求A,B两点的坐标及k的值;(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;(3)设直线AM,BM分别与y轴相交于P,Q两点,且MA=pMP,MB=qMQ,求p-q 的值.22.如图,在等腰梯形ABCD中,CD∥AB,CD=6,AD=10,∠A=60°,以CD•为弦的弓形弧与AD相切于D,P是AB上的一个动点,可以与B重合但不与A重合,DP•交弓形弧于Q.(1)求证:△CDQ∽△DPA;(2)设DP=x,CQ=y,试写出y关于x的函数关系式,并写出自变量x的取值X围;(3)当DP之长是方程x2-8x-20=0的一根时,求四边形PBCQ的面积.答案:1.20 2.y=-12x 3.y=100x4.2或-1;-1 5.-2;6.0≤b<4 7.(-2,-2)8.①②④ 9.C 10.B 11.C 12.C 13.B 14.D 15.A 16.C17.(1)由82y x y x ⎧=-⎪⎨⎪=-+⎩,解得1142x y =⎧⎨=-⎩,1124x y =-⎧⎨=⎩ ∴A (-2,4),B (4,-2).(2)当y=0时,x=2,故y=-x+2与x 轴交于M (2,0),∴OM=2.∴S △AOB =S △AOM +S △BOM =12OM·│y A │+12OM·│y B │=12·2·4+12·2·2=4+2=6. 18.(1)y=-x+2 (2)S △AOB =619.由△=(-4a )2-4(4a 2-6a -8)≥0得a≥-43, 又∵a 是最小整数, ∴a=-1.∴二次方程即为x 2+4x+2=0,又mn=2,而(m ,n )在y=k x 的图像上,∴n=k m,∴mn=k ,∴k=2,∴y=2x. 20.依题意得,直线L 的解析式为y=x . ∵A (a ,3)在直线y=x 上, 则a=3.即A (3,3). 又∵A (3,3)在y=kx的图像上, 可求得k=9.∴反比例函数的解析式为y=9x. 21.(1)∵D (-8,0),∴B 点的横坐标为-8,代入y=14x 中,得y=-2. ∴B 点坐标为(-8,-2),而A ,B 两点关于原点对称,∴A (8,2). 从而k=8×2=16.(2)∵N (0,-n ),B 是CD 的中点,A ,B ,M ,E 四点均在双曲线上,∴mn=k ,B (-2m ,-2n),C (-2m ,-n ),E (-m ,-n ). S 矩形DO =2mn=2k ,S △DBO =12mn=12k ,S △OEN =12mn=12k ,∴S 四边形OBCE =S 矩形DO -S △DBO -S △OEN =k . ∴k=4. 由直线y=14x 及双曲线y=4x,得A (4,1),B (-4,-1), ∴C (-4,-2),M (2,2).设直线CM 的解析式是y=ax+b ,由C ,M 两点在这条直线上,得42,2 2.a b a b -+=-⎧⎨+=⎩解得a=b=23. ∴直线CM 的解析式是y=23x+23. (3)如图所示,分别作AA 1⊥x 轴,MM 1⊥x 轴,垂足分别为A 1,M 1.设A 点的横坐标为a ,则B 点的横坐标为-a ,于是p=111A M MA a mMP M O m-==. 同理q=MB MQ =m am+, ∴p -q=a m m --m am+=-2. 22.(1)证∠CDQ=∠DPA ,∠DCQ=∠PDA . (2)y=60x(185 (3)S 四边形PBCQ =48-3word 11 / 11。
2009年中考数学复习教材回归知识讲解+例题解析+强化训练变量与函数◆知识讲解①在某一变化过程中,可以取不同数值的值叫做变量.数值保持不变的量叫常量.常量和变量是相对的,判断常量和变量的前提是“在某一变化的过程中”,同一量在不同的变化过程中可以为常量也可以为变量,这是根据问题的条件而定的.常量和变量并一定都是量,也可以是常数或变数.②在某一变化的过程中有两个变量x与y,如果对于x在取值X围内取的每一个确定的值,y都有唯一确定的值与它对应,那么说x是自变量,y是x的函数,函数不是数,•它是指某一变化过程中两个变量之间的关系.③自变量的取值必须使含自变量的代数式有意义.自变量的取值X围可以是无限的也可以是有限的.可以是几个数,也可以是单独的一个数,表示实际问题时,自变量的取值必须使实际问题有意义.④对于自变量在取值X围内取一个确定的值,函数都有唯一确定的值与之对应,这个对应值叫做函数的一个函数值.函数由一个解析式表示时,求函数的值,就是求代数式的值,函数的值是唯一确定的,但对应的自变量的值可以是多个.函数值的取值X围是随自变量的取值X围的变化而变化的.⑤函数的三种表示法:解析法、列表法、图像法.这三种表示法各具特色,在应用时,•通常将这三种方法结合在一起运用,其中画函数图像的一般步骤为:列表、描点、连线.◆例题解析例1 观察右图,回答下列问题:(1)自变量x的取值X围;(2)函数y的取值X围;(3)当x取何值时,y的值最小,并写出这个最小值;(4)当x取何值时,y的值最大,并写出这个最大值;(5)当x=0或-5时,y的值;(6)当y=0和2时,x的值;(7)当y随x的增大而增大时,x的取值X围;(8)当y随x的增大而减小时,x的取值X围.【分析】由于函数图像与自变量x、函数y的取值有关,因此图像能反映出x、•y的取值X围,从左到右,x的值逐渐增大,因此,观察图像应从左到右,这时若图像逐渐升高,则y的值逐渐增大,若图像逐渐下降,则y的值逐渐变小.【解答】(1)由图像可知:图像左端端点横坐标为-5,右端端点横坐标为5,且5用了空心点,所以自变量x的取值X围为-5≤x<5;(2)由于图像最低点的纵坐标为-3,最高点的纵坐标4,所以-3≤y<4;(3)由于图像最低点坐标为(-3,-3),所以当x=-3时,y有最小值为-3;(4)由于图像最高点坐标为(2,4),所以当x=2时,y有最大值为4;\(5)因为图像过点(0,2)与点(-5,0),所以当x=0时,y=2;当x=-5时,y=0;(6)由图像可知,图像与x轴有两个交点,它们的横坐标为-5和-1,故当y=0时,•x=-5或-1;同理当y=2时,x=0或4;(7)图像从点(-3,-3)到点(2,4)是逐渐升高的,因此当-3≤x≤2时,y随x•的增大而增大;(8)图像从点(-5,0)到点(-3,-3)及从点(2,4)到点(5,0)是逐渐降低的,因此当-5≤x≤-3或2≤x<5时,y随x的增大而减少.【点评】虽然图像法表示函数形象直观,但有时却不精细,所以利用图像观察得出的数值往往有时精确,有时近似,这因题而异.根据函数的图像求函数的某些值,探讨函数y 随自变量x变化的规律,是数形结合的具体表现.例2 如图所示表示玲玲骑自行车离家的距离与时间的关系,•她9•点离开家,15点回到家,请根据图像回答下列问题:(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11:00到12:00她骑了多少千米?(5)她在9:00~10:00和10:00~10:30的平均速度各是多少?(6)她在何时至何时停止前进并休息用午餐?(7)她在停止前进后返回,骑了多少千米?(8)返回时的平均速度是多少?【分析】小玲骑自行车离家的距离是时间的函数,从图像中线段CD和EF与横轴平行,表明这两段时间她在休息,通过读图可分别求解各问题.【解答】(1)由图像知,玲玲到达离家最远的地方是12点,离家30km;(2)由线段CD平行于横轴知,10:30开始休息,休息半个小时;(3)第一次休息时离家17km;(4)从纵坐标看出,11:00到12:00,她骑了13km(30-17=13);(5)由图像知,9:00~10:00共走了10km,速度为10km/h,10:00~10:30•共走了7km,速度为14km/h;(6)她在12:00~13:00时停止前进并休息用午餐;(7)她在停止前进后返回,骑了30km回到家(离家0km);(8)返回时的路程为30km,时间为2h,故返回时的平均速度为15km/h.【点评】如图a所示,表示速度v与时间t的函数图像中,①表示物体从0开始加速运动,②代表物体匀速运动,③代表物体减速运动到停止.如图b所示,•表示路程s与时间t的函数图像中,①代表物体匀速运动,②代表物体停止,③代表物体反向运动直至回到原地.(a) (b)◆强化训练一、填空题1.如果水的流速是am/min(一定量),那么每分钟的进水量Q(m3)与所选择的水管直径D(m)之间的函数关系式是________,其自变量是_______.中,自变量x的取值X围是________.2.(2006,某某)在函数5x3.三角形的面积是12,三角形底边长y是高x的函数,在平面直角坐标系中,•它的图像只能在第______象限.4.设点P(3,m),Q(n,2)在函数y=x+b的图像上,则m+n=______.5.若点(3,-3)在反比例函数y=k x(k ≠0)的图像上,则k=______. 6.某地铁自行车存车处在某星期日的车量为4000辆次,,,若普通车存车数为x 辆次,存车费总收入y (元)与x 的函数关系式是___________________.7.题目中的图是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察发现:第n 个“上”字的棋子数S 与n之间的关系式为_______________.8.(2006,某某)下列函数中,自变量x 的取值X 围是x>2的函数是()A .y=2x -B .y=21x -C .y=12x - D .y=121x - 二、选择题9.(2006,某某)在物理实验课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中(右图),然后匀速向上提起,直至铁块完全露出水面一定高度,则能反映弹簧秤的读数y (N )与铁块被提起的高度x (cm )之间的函数关系的大致图像是()A B C D10.汽车由驶往相距120km 的某某,平均速度是30km/h ,则汽车距某某的路程s (km )与行驶时间t (h )的函数关系式及自变量t 的取值X 围是()A .s=120-30t (0≤t ≤4)B .s=30t (0≤t ≤4)C .s=120-30t (t>0)D .s=30t (t=4)11.下列关于变量x ,y 的关系式中:①5x -2y=1;②y=│3x │;③x -y=2,•其中表示y是x 的函数的是()A .②B .②③C .①②D .①②③12.(2008,某某)三军受命,我解放军各部奋力抗战在货物救灾一线,现有甲,•乙两支解放军小分队将救灾货物送往重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km,下图是他们行走的路程关于时间的函数图像,•四位同学观察此函数图像得到有关信息,其中正确的个数是()A.1 B.2 C.3 D.413.某班同学在探究弹簧的长度跟外力的变化关系时,实验记录得到的数据如下表:砝码的质量x/g 0 50 100 150 200 250 300 400 500指针位置y/cm 2 3 4 5 6 7则y关于x的函数图像是()14.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y•表示父亲与儿子行进中离家的距离,用横轴x表示父亲离家的时间,•那么下面的图像与上述诗的含义大致吻合的是()15.某人骑车外出所行的路程s(km)与时间t(h)的函数关系如图所示,•现有下列四种说法:①第3h中的速度比第1h中的速度快;②第3h中的速度比第1h中的速度慢;③第3h后已停止前进;④第3h后保持匀速前进.其中说法正确的是()A.②③B.①③C.①④D.②④16.(2008,某某)如图所示,A,B,C,D为⊙O的四等分点,动点P从圆心O出发,•沿O─C─D─O路线做匀速运动,设运动时间为t(s),∠APB=y(°),则下列图像中表示y与t之间函数关系最恰当的是()三、解答题17.如图所示,周长为24的凸五边形ABCDE被对角线BE分为等腰△ABE及矩形BCDE,且AE=DE,设AB的长为x,CD的长为y,求y与x之间的函数关系式,写出自变量的取值X围.18.(2008,某某)在平面直角坐标系中,一动点P(x,y)从M(1,0)出发,沿由A (-•1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(图①)•按一定方向运动.图②是P点运动的路程s(个单位)与运动时间t(秒)之间的函数图像,图③是P点的纵坐标y与P点运动的路程s之间的函数图像的一部分.(1)s与t之间的函数关系式是________;(2)与图5-26③相对应的P点的运动路径是:______;P点出发____•秒首次到达点B;(3)写出当3≤s≤8时,y与s之间的函数关系式,并在图③中补全函数图像.19.(2006,枣庄)如图所示,在△ABC中,AB=AC=1,点D,E在直线BC上运动.•设BD=x,CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;(2)如果∠BAC=α,∠DAE=β,当α、β满足怎样的关系时,(1)中的y与x之间的函数关系式还成立?试说明理由.20.A市和B市有两条路可走,一辆最多可载19人的依维柯汽车在这条公路行驶时的有关数据如下表所示:路程/km 耗油量(L/100km)票价/(元/人)过路费/(元/辆)油价/(元/L)第一条路60 14 16 20第二条路64 10 12 5如果用y1(元),y2(元)表示从A市到B市分别走两条路时司机的收入,仅就其中数据求出y1,y2与载客人数x(人)之间的函数表示式.21.(2005,某某省)小明受《乌鸦喝水》故事的启发,•利用量筒和体积相同的小球进行了如下操作:请根据图中给出的信息,解答下列问题:(1)放入一个小球量筒中水面升高_______cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)•之间的一次函数关系式(不要求写出自变量的取值X围)(3)量筒中至少放入几个小球时有水溢出?22.观察图中小黑点的摆入规律,并按照这样的规律继续摆放,记第n个图中小黑点的个数为y.解答下列问题:(1)填表:n 1 2 3 4 5 6 7 …y 1 3 7 13 …(2)当n=8时,y=_______;(3)根据上表中的数据,把n作为横坐标,把y作为纵坐标,在图5-30的平面直角坐标系中描出相应的各点(n,y),其中1≤n≤5;(4)请你猜一猜上述各点会在某一函数的图象上吗?如果在某一函数的图像上,•请写出该函数的解析式.答案:1.Q=14a D2,D 2.x>5 3.一4.5 5.-36.y=-0.10x+1200(0≤x≤4000)7.S=4n+2(n>0且为整数)8.C 9.C 10.A 11.C 12.D 13.B 14.C 15.A 16.C 17.y=24-4x,4<x<618.(1)设s=kt,知(2,1)在图像上,把(2,1)代入解析式得k=12,∴s与t•的函数关系式为s=12t(t≥0).(2)M→D→A→N 10(3)当3≤s<5,即P从A到B时,y=4-s;当5≤s<7,即P从B到C时,y=-1;当7≤s≤8,即P从C到M时,y=s-8.补全图像如图所示.19.(1)在△ABC中,AB=AC=1,∠BAC=30°∵∠ABC=∠ACB=75°∴∠ABD=∠ACE=105°.∵∠DAE=105°,∴∠DAB+∠CAE=75°又∠DAB+∠ADB=∠ABC=75°∴∠CAE=∠ADB,∴△ADB∽△EAC∴AB BDEC AC=即11xy=,∴y=1x.(2)当α、β满足关系式β-2α=90°时,函数关系式y=1x成立.理由如下:要使y=1x即AB BDEC AC=成立,•则需且只需△ADB∽△EAC,由于∠ABD=∠ECA,故只需∠ADB=∠EAC,又∠ADB+∠BAD=•∠ABC=90°-2α,∠EAC+∠BAD=β-α,只需90°-2α=β-α,∴β-2α=90°.20.由题意可知:司机收入=客人付票款-耗油费-过路费.耗油费=•油价×耗油量,word11 / 11 则y 1=16x -20-×14100×60,即y=16x -,同理y 2=12x -(0<x ≤19). 21.(1)2.(2)设y=kx+b ,把(0,30),(3,36)代入得: 30,336.b k b =⎧⎨+=⎩解得2,30.k b =⎧⎨=⎩ 即y=2x+30.(3)由2x+30>49,.即至少放入10个小球时有水溢出.22.(1)n=5时y=21,n=6时y=31,n=7时y=43.(2)n=8时y=57.(3)根据题设要求可把点(1,1),(2,3),(3,7),(4,13),(5,21)五个点在图中直观地表示出来.(4)在y=n 2-n+1上.。
2009年中考数学复习教材回归知识讲解+例题解析+强化训练用统计图表描述数据◆知识讲解描述数据常用三种统计图表:条形统计图、折线统计图、扇形统计图.条形统$计图能清楚地表示出每个项目的具体数目;折线统计图能清楚地反映事物的变化情况;扇形统计图能清楚地表示出各部分在总体中所占的百分比.要熟悉三种统计图的制作方法及其特点,运用它描述数据要作合理的选择;作出合理预测与决断.◆例题解析例1根据北京市统计局公布的2000年,2005•年北京市常住人口相关数据,绘制统计图表如下:2000年,2005年北京市常住人口数统计图 2005年北京市常住人口各年龄段人数统计图图6-1 图6-22000年,2005年北京市常住人口中受教育程度情况统计表(人数单位:万人)请利用上述统计图表提供的信息回答下列问题:(1)从2000年到2005年北京市常住人口增加了多少万人?(2)2005年北京市常住人口中,少儿(0~14岁)人口约为多少万人?(3)请结合2000年和2005年北京市常住人口受教育程序的状况,谈谈你的看法.【分析】(1)由条形统计图6-1获知:从2000年到2005•年北京市常住人口增加了1536-1382=154(万人).(2)由扇形统计图6-2获知2005年北京市常住人口中,少儿(•0•~14•岁)•人口为1536×10.2%=156.672≈157(万人).(3)由统计表可以给出各个层面受教育程度的状况,例如:依数据可得,2000年受大学教育的人口比例为16.86%,2005年受大学教育的人口比例为23.57%,可知,•受大学教育的人口比例明显增加,教育水平有所提高.【点评】条形图能清楚地表示出每个项目的具体数目,扇形图能清楚地表示出各部分在总体中所占的百分比,折线图能清楚反映事物的变化情况.我们在选择统计图整理数据时,应注意“扬长避短”.例2(2005,贵阳市)“国际无烟日”来临之际,小彬就公众对在餐厅吸烟的态度进行了调查,并将调查结果制作成如图6-3所示的统计图,•请根据图中的信息回答下列问题:(1)被调查者中,不吸烟者赞成在餐厅彻底禁烟的人数是______;(2)被调查者中,希望在餐厅设立吸烟室的人数是_______;(3)求被调查者中赞成在餐厅彻底禁烟的频率;(4)贵阳市现有人口约为370万,•根据图中的信息估计贵阳市现有人口中赞成在餐厅彻底禁烟的人数.【分析】(1),(2),(3)分清题意,(4)应用百分比求人数.【解答】(1)97 (2)63 (3)0.6 (4)370×0.6=222(万)【点拨】在三种意向中,每一种都含有不吸烟的人和吸烟的人,在审题中要注意这些区别是关键.◆强化训练一、填空题1.(2005,安徽省)某校九年级(1)班有50名同学,•综合素质评价“运动与健康”方面的等级统计如图所示,则该班“运动与健康”评价等级为A的人数是______.2.(2005,吉林省)图a,b是县统计部门对某地农村,县城近四年彩电,冰箱,摩托车三种商品购买情况的抽样调查统计图.根据统计图提供的信息回答问题:(1)分别对农村,县城购买的趋势作出大致判断(填“上升”、•“下降”或“基本平稳”);农村购买趋势彩电______;冰箱_____;摩托车_______;•县城购买趋势彩电_______;冰箱_______;摩托车________.(2)若2003年农村购买的彩电平均价格每台1500元,冰箱每台2000元,•摩托车每台4000元;县城购买的彩电平均价格每台2500元,冰箱每台3000元,•摩托车每台6000元,农村,县城2003年三种商品消费总值的比_______.图a 图b3.“三年的初中学习生活结束了,•愿中考将我送达另一个理想的彼岸”.•这27个字中,每个字的笔画数依次是:3,6,8,7,4,8,3,5,9,9,7,2,14,4,6,9,7,9,6,•5,1,3,11,13,8,8,8.其中笔画数是8的字出现的频数是______,频率是______.4.如图是某学校的一学生到校方式的频数分布直方统计图,根据图形可得步行人数占总人数的_____%.(第4题) (第6题)5.对某班同学的身高进行统计(单位:cm),频数分布表中165.5~170.5这一组的学生人数是12.频率为0.2,则该班有_____名同学.6.(2006,旅顺市)某区从2300•名参加初中毕业升学统一考试数学试测的学生中随机抽取200名学生的试卷,成绩从低到高按59~89,90~119,120~134,135~150分成四组进行统计(最低成绩为59分,且分数均为整数),整理后绘出如图所示的各分数段频数分布直方图的一部分,已知前三个小组从左到右的频率依次为0.25,•0.30,0.35.(1)第四组的频数为______,并将频数分布直方图补充完整;(2)若90分及其以上成绩为及格,则此次测试中数学成绩及格以上为_____人.7.(2008,重庆)光明中学七年级甲,乙,丙三个班中,每班的学生人数都为40名,•某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值)丙班数学成绩频数统计表根据以上图,表提供的信息,则80~90分这一组人数最多的班是_____.二、选择题8.某农场今年粮食,棉花,油料三种作物种植面积的比是5:2:1,在扇形统计图上表示粮食面积的扇形圆心角是()A.220° B.45° C.225° D.90°9.(2008,南通)图6-9是我国2003~2007年粮食产量及其增长速度的统计图,•下列说法不正确的是()A.这5年中,我国粮食产量先增后减 B.后4年中,我国粮食产量逐年增加C.这5年中,2004年我国粮食产量年增长率最大D.后4年中,2007年我国粮食产量年增长率最小10.(2005,安徽省)某市社会调查队对城区的一个社区居民的家庭经济状况进行调查,调查的结果是,该社区共有500户,设收入,中等收入和低收入家庭分别有125户,280户和95户,已知该市有100万户家庭,下列表述正确的是()A.该市高收入家庭约25万户B.该市中等收入家庭约56万户C.该市低收入家庭约19万户D.因城市社区家庭经济状况较好,•所以不能据此数据估计全市所有家庭经济状况11.(2005,南京市)图6-10是甲,乙两户居民家庭全年支出费用的扇形统计图.A.甲户比乙户多 B.甲,乙两户一样多C.乙户比甲户多 D.无法确定哪一户多12.下表是某一地区在一年中不同季节对同一商品的需求情况统计:若你是工商局的统计员,要为国家提供关于这商品的直观统计图,则应选择的统计图是()A.条形统计图 B.折线统计图 C.扇形统计图 D.前面三种都可以三、解答题13.(2008,河南)下图甲、乙反映的是某综合商场2008年1~5•月份的商品销售额统计情况,观察图甲和图乙,解答下面问题:(1)来自商场财务部的报告表明,商场1~5月份的销售总额一共是370万元,请你根据这一信息补全图甲,并写出两条由如上两图获得的信息;(2)商场服装部5月份的销售额是多少万元?(3)小华观察图乙后认为,5月份服装部的销售额比4月份减少了,•你同意他的看法吗?为什么?14.(2008,大连)典典同学学完统计知识后,•随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成扇形和条形统计图,如图所示.请根据以上不完整的统计图提供的信息,解答下列问题:(1)典典同学共调查了______名居民的年龄,扇形统计图中a=_____,b=_____;(2)补全条形统计图.(3)若该辖区年龄在0~14岁的居民约有3人,请估计年龄在15~59岁的居民的人数.15.(2006,浙江绍兴)下图是某校七年级360•位同学购买不同品牌计算器人数的扇形统计图,每位同学购买一只计算器.试回答下列问题:(1)分别求出购买各品牌计算器的人数;(2)试画出购买不同品牌计算器人数的频数分布直方图.16.(2006,浙江金华)某年级组织学生参加夏令营活动,本次夏令营分为甲,乙,•丙三组进行.下面统计图反映了学生参加夏令营的报名情况,请你根据图中的信息回答下列问题:(1)该年级报名参加丙组的人数为_______;(2)该年级报名参加本次活动的总人数为______,并补全频数分布直方图;(3)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少学生到丙组?答案1.19(提示:50×38%=19.)2.(1)上升;基本平稳;上升;基本平稳;上升;下降;(2)73:1293.5;0.185 4.50 5.606.(1)20;图略(2)1725 7.甲班8.C (提示:58×360°=225°.)9.D 10.D 11.D 12.A13.(1)图略.(按照4月份商场销售总额为65万元,正确补出图形)(答案不唯一,根据图中的信息,回答合理即可)(2)70×15%=10.5(万元).(3)不同意.因为4月份服装销售额为:65×16%=10.4(万元)<10.5(万元),所以5•月份服装部的销售额比4月份增加了,而不是减少了.14.(1)500 20% 12%(2)条形统计图如图所示:(3)∵3500÷20%=17500,∴17500×(46%+22%)=11900.∴年龄在15~59岁的居民总数约11900人.15.(1)购买甲品牌计算器人数:360×20%=72(人).购买乙品牌计算器人数:360×30%=108(人).购买丙品牌计算器人数:360×50%=180(人).(2)如图所示.16.(1)25 (2)50,图略(3)应从甲组抽调5名学生到丙组.。
2009年中考试题专题之10-平面直角坐标系试题及答案一、选择题1.(2009仙桃)如图,把图①中的⊙A经过平移得到⊙O(如图②),如果图①中⊙A上一点P 的坐标为(m,n),那么平移后在图②中的对应点P’的坐标为().A.(m+2,n+1) B.(m-2,n-1) C.(m-2,n+1) D.(m+2,n-1) 2.(2009年某某).菱形OABC在平面直角坐标系中的位置如图所示,452AOC OC∠==°,B的坐标为()A.(2,B.2),C.(211),D.(121),(2009年某某市)点(35)p,关于x轴对称的点的坐标为()A.(3,5) B.(5,3) C.(3,5) D.(3,5)4.(2009年某某市、某某市)如图所示,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得A B O''△,则点A'的坐标为().A.(3,1) B.(3,2) C.(2,3) D.(1,3)5.(2009年某某省)6.如果点P(m,1-2m)在第四象限,那么m的取值X围是【】A.210<<m B.021<<-m C.0<m D.21>mxy1243-1-2-3123AB第11题图7.(2009威海)如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b +的值为( ) A .2B .3C .4D .58.(2009某某綦江)如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标不可能...是( ) A .(4,0) B .(1.0) C .(-22,0) D .(2,0)9.(2009年崇左)已知点A 的坐标为()a b ,,O 为坐标原点,连结OA ,将线段OA 绕点O 按逆时针方向旋转90°得1OA ,则点1A 的坐标为( ).A .()a b -,B .()a b -,C .()b a -,D .()b a -,10. (2009襄樊市)如图3,在边长为1的正方形网格中,将ABC △向右平移两个单位长度得到A B C '''△,则与点B '关于x 轴对称的点的坐标是( D ) A .()01-, B .()11, C .()21-,D .()11-,y O(01),(20)A ,1(3)A b ,1(2)B a ,x1 23 4-1 12 xy Ay13.(2009年某某市) 有以下三个说法:①坐标的思想是法国数学家笛卡儿首先建立的;②除了平面直角坐标系外,我们也可以用方向和距离来确定物体的位置;③平面直角坐标系内的所有点都分别属于四个象限.其中错误的是( )A .只有① B.只有② C.只有③ D.①②③ 14.(2009年某某市) 已知点P (x ,y )在函数x x y -+=21的图象上,那么点P 应在平面直角坐标系中的( )A .第一象限B . 第二象限C . 第三象限D . 第四象限16. (2009年某某市)沪杭高速铁路已开工建设,某校研究性学习以此为课题,在研究列车的行驶速度时,得到一个数学问题.如图,若v 是关于t 的函数,图象为折线C B A O ---,其中)350,(1t A ,)350,(2t B ,)0,8017(C ,四边形OABC 的面积为70,则=-12t t ( ▲ )A .51B .163C .807D .1603117.(2009年某某市)在平面直角坐标系中,已知线段AB 的两个端点分别是()()41A B --,,1,1,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( )A .()43,B .()34,C .()12--,D .()21--,18. (2009年湘西自治州)12.在直角坐标系中,点M (sin50°,-cos70°)所在的象限是( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限19.(2009年某某某某)点P (-2,1)关于 y 轴对称的点的坐标为( ) A .(-2,-1)B .(2,1)C .(2,-1)D .(-2,1)20. (2009年某某)在平面直角坐标系中,点(25)A ,与点B 关于y 轴对称,则点B 的坐标是( )A .(52)--,B .(25)--,C .(25)-,D .(25)-,22. (09某某某某)在平面直角坐标系中,函数1y x =-+的图象经过( )A .一、二、三象限B .二、三、四象限C .一、三、四象限D .一、二、四象限 二、填空题1.(2009某某省某某市)将点P 向左平移2个单位,再向上平移1个单位得到P '(1-,3),则点P 的坐标是______.2.(2009年某某省某某市)如图是某某市行政区域图,若上虞市区所在地用坐标表示为(12),,某某市区所在地用坐标表示为(52)--,,那么嵊州市区所在地用坐标可表示为______________.4.(2009某某)如图所示,△A ’B ’C ’是由△ABC 向右平移5个单位,然后绕B 点逆时针旋转90°得到的(其中A ’、B ’、C ’的对应点分别是A 、B 、C ),点A ’的坐标是(4,4)点B ’的坐标是(1,1),则点A 的坐标是。
2009年中考数学复习教材回归知识讲解+例题解析+强化训练平面直角坐标系◆知识讲解①坐标平面内的点与有序实数对一一对应;②点P(a,b)到x轴的距离为│b│,•到y轴距离为│a③各象限内点的坐标的符号特征:P(a,b),P•在第一象限⇔a>0且b>0,P在第二象限⇔a<0,b>0,P在第三象限⇔a<0,b<0,P在第四象限⇔a>0,b<0;④点P(a,b):若点P在x轴上⇔a为任意实数,b=0;P在y轴上⇔a=0,b为任意实数;P在一,三象限坐标轴夹角平分线上⇔a=0;P在二,四象限坐标轴夹角平分线上⇔a=-b;⑤A(x1,y1),B(x1,y2):A,B关于x轴对称⇔x1=x2,y1=-y2;A、B关于的y轴对称⇔x1=-x2,y1=y2;A,B关于原点对称⇔x1=-x2,y1=-y2;AB∥x轴⇔y1=y2且x1≠x2;AB∥y轴⇔x1=x2且y1≠y2(A,B表示两个不同的点).◆例题解析例1已知点A(a,-5),B(8,b)根据下列要求,确定a,b的值.(1)A,B两点关于y轴对称;(2)A,B两点关于原点对称;(3)AB∥x轴;(4)A,B两点在一,三象限两坐标轴夹角的平分线上.【分析】(1)两点关于y轴对称时,它们的横坐标互为相反数,而纵坐标相同;(2)两点关于原点对称时,两点的横纵坐标都互为相反数;(3)两点连线平行于x轴时,这两点纵坐标相同(但横坐标不同);(4)当两点位于一,三象限两坐标轴夹角的平分线上时,每个点的横纵坐标相同.【解答】(1)当点A(a,-5),B(8,b)关于y轴对称时有:85 A BA Bx x ay y b=-=-⎧⎧∴⎨⎨==-⎩⎩(2)当点A(a,-5),B(8,b)关于原点对称时有85A BA Bx x ay y b=-=-⎧⎧∴⎨⎨=-=⎩⎩(3)当AB∥x轴时,有85A BA Bx x ay y b≠≠⎧⎧∴⎨⎨==-⎩⎩(4)当A,B两点位于一,三象限两坐标轴夹角平分线上时有:x A=y B且x A=y B即a=-5,•b=8.【点评】运用对称点的坐标之间的关系是解答本题的关键.例2 如图所示,在直角坐标系中,点A,B的坐标分别是(0,6),(-8,0),求Rt△ABO的内心的坐标.【分析】本题考查勾股定理,直角三角形内心的概念,运用内心到两坐标轴的距离,结合实际图形,确定内心的坐标.【解答】∵A(0,6),B(-8,0),∴OA=6,OB=8,在Rt△ABO中,AB2=OA2+OB2=62+82=100,∴AB=10(负值舍去).设Rt△ABO内切圆的半径为r,则由S△ABO=12×6×8=24,S△ABO =12r(AB+OA+OB)=•12r,知r=2,而内心在第二象限,∴内心的坐标为(-2,2).【点评】运用数形结合并借助面积是解答本题的关键.◆强化训练一、填空题1.(2006,诸暨)已知A,B,C,D点的坐标如图1所示,E是图中两条虚线的交点,若△ABC和△ADE相似,则E点的坐标为_______.图1 图2 图32.已知点A(m2+1,n2-2)与点B(2m,4n+6)关于原点对称,则A关于x•轴的对称点的坐标为_____,B关于y轴的对称点的坐标为______.3.(2006,苏州)在图2的直角坐标系中,△ABC的顶点都在网格点上,其中,A•点坐标为(2,-1),则△ABC的面积为_______平方单位.4.在直角坐标系中,已知点A(-5,0),B(-5,-5),∠OAB=90°,•有直角三角形与Rt△ABO全等并以BA为公共边,则这个三角形未知顶点的坐标是_______.5.已知m为整数,且点(12-4m,19-3m)在第二象限,则m2+2005的值为______.6.如图3所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的.左图案中左右眼睛的坐标分别是(-4,2),(-2,2),右图案中左眼的坐标是(3,4),•则右图案中右眼的坐标是_______.7.(2006,绍兴)如图4所示,将边长为1•的正方形OAPB•沿x•轴正方向连续翻转2006次,点P依次落在点P1,P2,P3,P4,…,P2006的位置,则P2006的横坐标x2006=_______.图4 图5 图6 8.(2008,潍坊)如图5所示,在平面直角坐标系中,Rt△OAB的顶点A1),若将△OAB逆时针旋转60°后,B到到达B′点,则B′点的坐标是_______.二、选择题9.(2008,贵阳)对任意实数x,点P(x,x2-2x)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限10.图6是中国象棋棋盘的一部分,若○帅在点(1,-1)上,○车在点(3,-1)上,•则○马在点()A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)11.已知平面直角坐标系上的三个点O(0,0),A(-1,1),B(-1,0),•将△ABO 绕点O按顺时针方向旋转135°,则点A,B的对应点A,B的坐标分别是()A2)B),(2,2)C.(0)D12.已知点A(2a+3b,-2)和点B(8,3a+2b)关于x轴对称,那么a+b=()A.2 B.-2 C.0 D.413.若点A(-2,n)在x轴上,则点B(n-1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限14.如图7所示,在平面直角坐标系中,ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()用心爱心专心A.(3,7)B.(5,3)C.(7,3)D.(8,2)图7 图815.(2008,济南)已知△ABC在平面直角坐标系中的位置如图8所示,将△ABC向右平移6个单位,则平移后A的坐标是()A.(-2,1)B.(2,1)C.(2,-1)D.(-2,-1)16.在平面直角坐标系中,O是坐标原点,已知A点的坐标为(1,1),•请你在坐标轴上找出点B,使△AOB为等腰三角形,则符合条件的点B共有()A.6个B.7个C.8个D.9个三、解答题17.(2008,河南)如图所示,在平面直角坐标系中,点A的坐标是(10,0),•点B的坐标为(8,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,•求点C的坐标.18.(2006,晋江)如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,•点A在原点,AB=3,AD=5,矩形以每秒2个单位长度沿x轴正方向做匀速运动.同时点P 从A点出发以每秒1个单位长度沿A─B─C─D的路线做匀速运动.当P点运动到D点时停止运动,矩形ABCD也随之停止运动.(1)求P点从A点运动到D点所需的时间;(2)设P点运动时间为t(s);①当t=5时,求出点P的坐标;②若△OAP的面积为S,试求出S与t之间的函数关系式(并写出相应的自变量t•的取值范围).19.(2006,泰州)将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,•OA=6,OC=10.(1)如图所示,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;(2)如图所示,将矩形变为矩形OA′B′C′,在OA′,OC′边上选择取适当的点E′,F′,将△E′OF沿E′F折叠,使O点落在A′B′边上的D′点,过D′作D′G•∥A′O交E′F于T点,交OC′于G点,求证:TG=A′E′.用心爱心专心(3)在图的条件下,设T(x,y):①探求:y与x之间的函数关系式;②指出变量x的取值范围.20.(2005,南京市)如果将点P绕定点M旋转180°后与点Q重合,那么称点P•与点Q 关于点M对称,定点M叫做对称中心.此时,点M是线段PQ的中点.如图5-14所示,在直角坐标系,△ABO的顶点A,B,O的坐标分别为(1,0),(0,1),(0,0).点列P1,P2,P3,•…中的相邻两点都关于△ABO的一个顶点对称,点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与点P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P7关于点O对称,…,对称中心分别是A,B,O,A,B,O,…,且这些对称中心依次循环.已知P1的坐标是(1,1),试写出点P2,P7,P100的坐标.21.(2005,沈阳市)如图所示,在方格纸(每个小方格都是边长为1•个单位长度的正方形)中,我们称每个小正方形的顶点为格点,•以格点为顶点的图形称为格点图形.如图中的△ABC称为格点△ABC.(1)如果A,D两点的坐标分别是(1,1)和(0,-1),请你在方格纸中建立平面直角坐标系,并直接写出点B,点C的坐标;(2)请根据你所学过的平移,旋转或轴对称等知识,•说明图中“格点四边形图案”是如何通过“格点△ABC图案”变换得到的.22.(2005,苏州市)如图a所示,平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A点坐标为(10,0),C点坐标为(0,6),D是BC边上的动点(与点B,C 不重合),•现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,将△BDE沿DE翻折,得到△GDE,并使直线DG,DF重合.(1)如图b所示,若翻折后点F落在OA边上,求点D,E的坐标;(2)设D(a,6),E(10,b),求b关于a的关系式.(a) (b)答案1.(4,-3)2.由m2+1+2m=0,且2m<1,m<0,得m=-1,n2-2+4n+6=0得n=-2即A(2,2),B (-2,-2),∴A关于x轴对称点为(2,-2),B关于y轴对称点为(2,-2).3.5用心爱心专心4.画图并讨论得未知点坐标为(0,-5),(-10,0),(-10,-5).5.由已知得12-4m<0,19-3m>0,∴3<m<613且m 为整数,∴m=4,5,6;m 2+2005•的值相应为2021,2030,2041.6.(5,4) 7.2006 8.(2,32) 9.C 10.D 11.B 12.由已知得2a+3b=8,3a+2b=2解得a=-2,b=4,∴a+b=2,故选A .13.B 14.C 15.B 16.C17.如图所示,∵四边形OCDB 是平行四边形,B (8,0).∴CD ∥OA ,CD=OB=8.过点M 作MF ⊥CD 于点F ,则CF=12CD=4. 过点C 作CE ⊥OA 于点E .∵A (10,0),∴OA=10,OM=5.∴OE=OM -ME=OM -CF=5-4=1.连接MC ,则MC=12OA=5.∴在Rt △CMF 中,MF=.∴点C 的坐标为(1,3).18.(1)P 点从A 点运动到D 点所需的时间为(3+5+3)÷1s=11s(2)①当t=5时,P 点从A 点运动到BC 上,此时OA=10,AB+BP=5,∴BP=2,过点P 作PE ⊥AD 于点E ,则PE=AB=3,AE=BP=2,∴OD=OA+AE=10+2=12, ∴点P 的坐标为(12,3);•②分三种情况:当0<t ≤3时,点P 在AB 上运动.此时OA=2t ,AP=t ,∴S=12×2t ×t=t 2. 当3<t ≤8时,点P 在BC 上运动,此时OA=2t .∴S=12×2t ×3=3t . 当8<t<11时,点P 在CD 上运动,此时OA=2t ,AB+BC+CP=t .∴DP=(AB+BC+CD )-(AB+BC+CP )=11-t∴S=12×2t×(11-t)=-t2+11t.19.(1)设OE=a,∵△EOC≌△EDC ∴OE=DE=a,OC=CD=10.又AE=6-a.在Rt△DBC中,∴AD=10-8=2.在Rt△DAE中,AE2+AD2=DE2.即(6-a)2+22=a2,∴a=103,∴E(0,103)(2)连接OT,∵△E′OF≌△E′D′F∴∠FE′D′=∠FE′O,E′D=E′O又∵E′T=E′T,∴△E′DT≌△E′OT∴∠E′D′T=∠E′O′T∵∠E′D′T+∠E′D′A′=∠E′OT+∠TOG=90°∴∠E′D′A′=∠TOG又∵A′D′∥OG,A′O∥D′G∠A′OC′=90°=∠D′GO=∠OA′D′∴四边形A′DGO为矩形,∴A′D′=OG∴△A′E′D′≌△OTG,∴A′E′=TG(3)①由(2)知:A′E′=TG=y,OG=A′D′=x, E′O=E′D′=6-y.在Rt△E′A′D′中,x2+y2=(6-y)2∴y=-112x2+3②在(1)的情况下,x取得最大值x=A′E′=6-103=83.在E′点与A′点重合时,x取得最小值,x=6.∴83≤x≤620.P2的坐标是(1,-1),P7的坐标是(1,1),P100的坐标是(-1,-3),先找出规律,再写出P100的坐标.21.(1)如图所示.B(-1,-1),C(3,-1).用心爱心专心(2)把“格点△ABC图案”向右平移10个单位长度,再向上平移5个单位长度后,•再以点P(11,4)为旋转中心,按顺时针方向旋转180°,即得到“格点四边形图案”.22.(1)由已知得DF=OF=OC=CD=6∴D(6,6),又OA=10.∴DB=4,故DG=GE=EB=DB=4.∴EA=2,即E(10,2).(2)由题设可知∠CDO=∠ODF,∠BDE=∠GDE,∵∠CDO+∠ODF+∠BDE+∠GDE=180°,∴∠CDO+∠BDE=90°,∵∠COD+∠CDO=90°,∴∠COD=∠BDE,又∵∠OCD=∠DBE=90°∴△COD∽△BDE∴CD COBE BD=,又BE=6-b,BD=10-a∴6610ab a=--,即b=16a2-53a+6.。