码型变换实验
- 格式:docx
- 大小:2.79 MB
- 文档页数:8
姓名:学号:班级:第周星期第大节实验名称:HDB3码型变换一、实验目的1.掌握AMI编码规则,编码和解码原理。
2.掌握HDB3编码规则,编码和解码原理。
3.了解锁相环的工作原理和定时提取原理。
4.了解输入信号对定时提取的影响。
5.了解信号的传输时延。
6.了解AMI/HDB3编译码集成芯片CD22103。
二、实验仪器1.ZH5001A通信原理综合实验系统2.20MHz双踪示波器三、实验内容1.HDB3码变换规则验证(1)通过KX02的设置,产生7位周期m序列。
用示波器观测如下数据:(3)拔除KD01,输入数据为全1码。
用示波器观测如下数据:(4)KD01跳线中间接地,输入数据为全0码。
用示波器观测如下数据:♦输入数据(TPD01),HDB3输出单极性码数据(TPD08)2.HDB3码译码和时延测试(2)KD01设置为M;通过KX02的设置,产生7位周期m序列;KP02设置在HDB3位置。
用示波器观测如下数据:输入数据(TPD01),HDB3译码输出数据(TPD07)8个时钟周期3.HDB3编码信号中同步时钟分量定性观测(1)通过KX02的设置,产生7位周期m序列;KP02设置在HDB3位置;KD01设置为输入m序列;KD02分别设置为单极性码输出和双极性码输出。
用示波器观测如下数据:♦M序列,单极性码时同步时钟分量(TPP01)♦M序列,双极性码时同步时钟分量(TPP01)♦M序列,双极性码时放大后同步时钟分量(TPP02)(2)KD01设置为输入全1序列。
用示波器观测如下数据:♦全1序列时单极性码时同步时钟分量(TPP01)(3)KD01设置为输入全0序列。
用示波器观测如下数据:得到了正弦信号。
结论:●HDB3单极性码含有时钟分量;双极性码不含有时钟分量或是较少的时钟分量。
●HDB3码是否含有时钟分量与发送的序列无关,无论是M序列,全0码,全1码4.HDB3译码位定时恢复测量(1)通过KX02的设置,产生7位周期m序列;KP02设置在HDB3位置。
实验-CMI码型变换实验实验CMI码型变换实验一、实验原理和电路说明在实际的基带传输系统中,并不是所有码字都能在信道中传输。
例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。
同时,一般基带传输系统都从接收到的基带信号流中提取收定时信号,而收定时信号却又依赖于传输的码型,如果码型出现长时间的连“0”或连“1”符号,则基带信号可能会长时间的出现0电位,从而使收定时恢复系统难以保证收定时信号的准确性。
实际的基带传输系统还可能提出其他要求,因而对基带信号也存在各种可能的要求。
归纳起来,对传输用的基带信号的主要要求有两点:1、对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;2、对所选码型的电波波形要求,期望电波波形适宜于在信道中传输。
前一问题称为传输码型的选择;后一问题称为基带脉冲的选择。
这是两个既有独立性又有互相联系的问题,也是基带传输原理中十分重要的两个问题。
传输码(传输码又称为线路码)的结构将取决于实际信道特性和系统工作的条件。
在较为复杂的基带传输系统中,传输码的结构应具有下列主要特性:1、能从其相应的基带信号中获取定时信息;2、相应的基带信号无直流成分和只有很小的低频成分;3、不受信息源统计特性的影响,即能适应于信息源的变化;4、尽可能地提高传输码型的传输效率;5、具有内在的检错能力,等等。
满足或部分满足以上特性的传输码型种类繁多,主要有:CMI码、AMI、HDB3等等,下面将主要介绍CMI码。
根据CCITT建议,在程控数字交换机中CMI 码一般作为PCM四次群数字中继接口的码型。
在CMI码模块中,完成CMI的编码与解码功能。
CMI编码规则见表4.2.1所示:表4.2.1 CMI的编码规则输入码字编码结果0 011 00/11交替表示因而在CMI编码中,输入码字0直接输出01码型,较为简单。
对于输入为1的码字,其输出CMI码字存在两种结果00或11码,因而对输入1的状态必须记忆。
通信原理实验码型变换实验一、实验目的1.了解几种常用的数字基带信号.2.掌握常用数字基带传输码型的编码规则.3.掌握常用CPLD实现码型变换的方法.二、实验内容1.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB2.观察全0码或全1码时各码型波形。
3.观察HDB3码、AMI码、BNRZ码正、负极性波形。
4.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。
5.自行设计码型变换电路,下载并观察输出波形。
三、实验器材1.信号源模块2.码型变换模块3.20M双踪示波器一台4.频率计(可选)一台5.连接线若干四、实验步骤1.将信号源模块、码型变换模块小心地固定在主机箱中,确保电源接触良好。
2.插上电源线,打开主机箱右侧的交流开关,再分别桉下两个模块中的开关POWER1、POWER2,对应的发光二极管LED001、LED002、D900、D901发光,按一下信号源模块的复位键,两个模块均开始工作。
3.将信号源模块的拨码开关SW101、SW102设置为00000101 00000000,SW103、SW104 、SW105 设置为01110010 00110000 00101010。
按实验一的介绍,此时分频比千位、十位、个位均为0,百位为5,因此分频比为500,此时位同步信号频率应为4KHz。
观察BS、FS、2BS、NRZ各点波形。
4.分别将信号源模块和码型变换模块上以下四组输入/输出接点用连接线连接:BS与BS、FS与FS、2BS与2BS、NRZ与NRZ。
观察码型变换模块上其余各点波形。
5.任意改变信号源模块上的拨码开关SW103、SW104、SW105的设置,以信号源模块的NRZ码为内触发源,用双踪示波器观察码型变换模块各点波形。
6.将信号源模块上的拨码开关SW103、SW104、SW10全部拨为1或全部拨为0,观察码型变换模块各点波形。
CMI码型变换实验实验报告_图文本科实验报告实验名称, CMI码型变换实验课程名称, 实验时间, 任课教师, 实验地点,原理验证实验教师,综合设计实验类型, 学生姓名,自主创新学号/班级, 组号,学院, 同组搭档, 专业, 成绩,1. CMI码编码规则测试(1)用示波器同时观测CMI编码器输入数据,TPX01,和输出编码数据,TPX05,。
观测时用TPX01同步,仔细调整示波器同步。
找出并画下一个m序列周期输入数据和对应编码输出数据波形。
根据观测结果,分析编码输出数据是否与编码理论一致。
(实验结果如图,(2)(实验结果如图,2. 1码状态记忆测量(1) 用KX02设置输出周期为15位的序列,用示波器同时观测CMI编码器输入数据,TPX01,和1码状态记忆输出,TPX03,。
观测时用TPX01同步,仔细调整示波器同步。
画下一个m序列周期输入数据和对应1码状态记忆输出数据波形。
根据观测结果,分析是否符合相互关系。
(实验结果如图,(2)将KX02设置在其他位置,重复上述测量。
画下测量波形,分析测量结果。
(实验结果如图,3. CMI码解码波形测试用示波器同时观测CMI编码器输入数据,TPX01,和CMI解码器输出数据,TPY07,。
观测时用TPX01同步。
验证CMI译码器能否正常译码,两者波形除时延外应一一对应。
(实验结果如图,4. CMI码编码加错波形观测跳线开关KX03是加错控制开关,当KX03设置在E_EN位置时,左端,,将在输出编码数据流中每隔一定时间插入1个错码。
TPX06是发端加错指示测试点,用示波器同时观测加错指示点TPX06和输出编码数据TPX05的波形,观测时用TPX06同步。
画下有错码时的输出编码数据,并分析接收端CMI译码器可否检测出。
(实验结果如图,5. CMI码检错功能测试首先将输入信号选择跳线开关KX01设置在Dt位置,左端,,将加错跳线开关KX03设置在E_EN位置,人为插入错码,模拟数据经信道传输误码。
实验一码型变换实验一、实验目的1. 了解几种常用的数字基带信号。
2. 掌握常用数字基带传输码型的编码规则。
3. 掌握常用CPLD实现码型变换的方法。
二、实验内容1. 观察NRZ码、RZ码、AMI码、CMI码、HDB3码、BPH码的波形。
2. 观察全0码或全1码时各码型波形。
3. 观察HDB3码、AMI码的正、负极性波形。
4. .观察NRZ码、RZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。
5. 自行设计码型变换电路,下载并观察波形。
三、实验器材1. 信号源模块2. ⑥号模块(码型变换)3. ⑦号模块(载波同步)4. 20M双踪示波器5. 连接线(若干)四、实验原理(一)基本原理1、数字通信中,有些场合可不经过载波调制解调而让基带信号直接进行传输。
例如,市区内利用电传机直接电报通信,或者利用中继长距离直接传输PCM 信号等。
这种不使用载波调制装置而直接传送基带信号的系统,称为基带传输系统。
它的基本结构如图1所示:图1 基带传输系统基本结构结构说明:(1)信道信号合成器:产生适合于信传输的基带信号。
(2)信道可以是允许基带信号通过的媒质,如能通过从直流到高频的有线线路。
(3)接收滤波器:用来接收信号和尽可能排除信道噪声和其他干扰。
(4)抽样判决器:在噪声背景下判定与再产生基带信号。
2、基带调制与解调(1)数字基带调制器:把数字基带信号变换成基带信号传输的基带信号。
(2)基带解调器器:把信道基带信号变换成原始数字基带信号。
(3)对传输用的基带信号的主要要求(4)对代码:将原始信息符号编制成适合于传输用的码型;(5)对码型的电波形:电波形适宜于在信道中传输。
(二)编码规则1、NRZ码NRZ (Noreturn-To-Zero)码,全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。
例如图2:图2 NRZ码2、RZ码RZ (Return-To-Zero)码,全称是单极性归零码,与NRZ码不同的是,发送“1”时在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。
AMI码型变换实验报告一、实验目的:通过实验掌握数据信号的AMI码型变换原理和方法,了解其优点和缺点,并熟练掌握实现过程。
二、实验原理:AMI码型(Alternate Mark Inversion码型)是数据通信中常用的一种码型。
它的规则是:编号0以正脉冲表示,编号1以负脉冲表示,而编号0的相邻两个1之间的位置需要置零,这就是所谓的“交替出现”;三、实验仪器:信号发生器、示波器、电平判决电路、串行传输线路。
四、实验步骤:1.将信号发生器和示波器正确连接,并设置示波器触发源为信号发生器输出信号。
2.设置信号发生器,产生一组矩形波信号,频率为1kHz,幅度为5V,并将输出的电平切换为AMI码型。
3.将信号发生器的输出信号经过电平判决电路,观察并记录判决电路的输出结果。
4.将示波器连接至电平判决电路的输出端口,观察并记录示波器上的波形。
5.将判决电路的输出经过串行传输线路,利用示波器观察并记录在传输线路上的波形。
五、实验结果:经过上述实验步骤之后,我们得到了以下实验结果:1.经过电平判决电路后,在电平判决电路的输出端口得到了经过判决后的二进制数据,即AMI码型的数字信号;2.经过示波器的展示,我们可以清晰地观察到AMI码型的波形特点,即交替的正负脉冲;3.经过串行传输后,在传输线路上得到了经过信号传输后的波形,也是交替出现的正负脉冲。
六、实验总结:1.AMI码型的交替正负脉冲特点实现了时钟同步性能的提高,避免了NRZ码型可能出现的时钟漂移问题;2.AMI码型相比NRZ码型可以提高线路的利用率,因为NRZ码型在连续1的情况下没有电平变化,无法表征有效数据;3.实验结果表明,AMI码型通过交替出现的正负脉冲实现了数据的可靠传输,波形特点明显、易于辨识。
七、实验心得:通过这次AMI码型变换实验,我进一步了解了数据信号的不同编码方式,对AMI码型的原理和方法有了更深入的了解。
通过亲手操作实现了AMI码型的转换,增强了自己的实践能力。
HDB3码型变换实验报告实验报告:HDB3码型变换实验摘要:本实验通过使用HDB3编码技术实现了二进制数据的高密度编码和解码。
通过此实验,我们了解了HDB3编码的原理和过程,并验证了其在数据传输中的有效性和稳定性。
一、引言HDB3码型(High Density Bipolar Three Zero)是一种高密度双极三零编码方法,主要用于在数字通信系统中将二进制串转换为双极信号传输。
HDB3码型通过对数据串进行特定规则的编码,使得传输的信号中没有长时间的直流成分,从而提高了信号的稳定性和抗干扰性。
本实验通过编写程序,模拟HDB3编码过程,并通过软件实现数据的编码和解码。
二、实验原理1.编码过程HDB3编码过程中,每四个连续的0通过特定规则映射为一个与前面信号相反的双极信号,并在此信号的前后分别插入额外的零信号。
具体编码规则如下:-如果输入数据位为1,则保持信号不变。
-如果输入数据位为0,并且前面连续的0的个数为偶数,则将该输入数据位变换为与前面信号相反的双极信号。
-如果输入数据位为0,并且前面连续的0的个数为奇数,则将该输入数据位变换为与前面信号相同的双极信号,并在这个信号的前后分别插入额外的零信号。
2.解码过程HDB3解码过程中,根据出现的信号序列对双极信号进行解码,并还原为二进制数据串。
具体解码规则如下:-如果连续出现的双极信号为0,则输出0。
-如果连续出现的双极信号为正或负信号,则输出1,并通过观察插入的零信号个数来判断是否需要进行数据位反转。
三、实验步骤1.编写HDB3编码程序,实现编码过程。
2.编写HDB3解码程序,实现解码过程。
3.设计测试数据,包括正常数据和噪声数据,用于验证编码和解码的有效性和稳定性。
4.运行编码程序,将测试数据进行编码,并输出编码结果。
5.运行解码程序,将编码结果进行解码,并输出解码结果。
6.对比解码结果与原始数据,验证编码和解码的正确性。
四、实验结果经过实验,我们得到了准确的编码和解码结果,与原始数据完全一致。
实验一码型变换实验一、实验目的1. 了解几种常用的数字基带信号。
2. 掌握常用数字基带传输码型的编码规则。
3. 掌握常用CPLD实现码型变换的方法。
二、实验内容1. 观察NRZ码、RZ码、AMI码、CMI码、HDB3码、BPH码的波形。
2. 观察全0码或全1码时各码型波形。
3. 观察HDB3码、AMI码的正、负极性波形。
4. .观察NRZ码、RZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。
5. 自行设计码型变换电路,下载并观察波形。
三、实验器材1. 信号源模块2. ⑥号模块(码型变换)3. ⑦号模块(载波同步)4. 20M双踪示波器5. 连接线(若干)四、实验原理(一)基本原理1、数字通信中,有些场合可不经过载波调制解调而让基带信号直接进行传输。
例如,市区内利用电传机直接电报通信,或者利用中继长距离直接传输PCM 信号等。
这种不使用载波调制装置而直接传送基带信号的系统,称为基带传输系统。
它的基本结构如图1所示:图1 基带传输系统基本结构结构说明:(1)信道信号合成器:产生适合于信传输的基带信号。
(2)信道可以是允许基带信号通过的媒质,如能通过从直流到高频的有线线路。
(3)接收滤波器:用来接收信号和尽可能排除信道噪声和其他干扰。
(4)抽样判决器:在噪声背景下判定与再产生基带信号。
2、基带调制与解调(1)数字基带调制器:把数字基带信号变换成基带信号传输的基带信号。
(2)基带解调器器:把信道基带信号变换成原始数字基带信号。
(3)对传输用的基带信号的主要要求(4)对代码:将原始信息符号编制成适合于传输用的码型;(5)对码型的电波形:电波形适宜于在信道中传输。
(二)编码规则1、NRZ码NRZ (Noreturn-To-Zero)码,全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。
例如图2:图2 NRZ码2、RZ码RZ (Return-To-Zero)码,全称是单极性归零码,与NRZ码不同的是,发送“1”时在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。
码型变换实验
一、实验目的
1、了解几种常用的数字基带信号。
2、掌握常用基带传输码型的编码规则。
3、掌握常用CPLD实现码型变换的方法。
二、实验内容
1、观察NRZ码、RZ码、AMI码、HDB3码、CMI码、BPH码的波形。
2、观察全0码HDB3 码波形。
3、观察RZ码、AMI码、HDB3码、CMI码、BPH码经过码型反变换后的输出波形。
三、实验器材
1、信号源模块(一块)
2、6号模块(一块)
3、7号模块(一块)
4、20M双踪示波器(一台)
5、连接线
四、实验原理
(一)基本原理
在数字通信中,有些场合可以不经过载波调制和解调过程而让基带信号直接进行传输。
基带传输系统是指不使用载波装置而直接传送基带限号的系统。
其基本结构由信道信号形成器、信道、接收滤波器以及抽样判决器组成。
要先将基带脉冲输入信道信号形成器,经过一系列的处理再输出基带脉冲。
这里信道信号形成器用来适合于信道传输的基带信号,信道可以是允许基带信号通过的煤质(如可以通过从直流至高频的有线线路);接收滤波器用来接收信号和尽可能排除信道噪声和其他干扰;抽样判决器则是在噪声背景下用来判定与再生基带信号。
若一个变换器把数字基带信号变换成适合于基带信号传输的基带信号,则称此变换器为数字基带调制器;想反,把信道基带信号变换成原始数字基带信号的变换器,称之为基带解调器。
基带信号是代码的一种电表示形式。
在实际的基带传输系统中,并不是所有的基带电波形都能在信道中传输。
对传输用的基带信号的只要要求有两点:(1)对个种代码的要求,期望将原始信息符合编织成适合于传输用的码型;对所选码型的点波形要求,期望电波形适合于在信道中传输。
(二)编码规则
1、NRZ码
NRZ码的全称是单极性不归零码,在这种二元码中用高电平和低电平分别表示
二进制信息“1”和“0”,在整个码元期间保持不变。
2、RZ码
RZ码的全称是单极性归零码,与NRZ码不同的是,发送“1”时在整个码元
期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。
3、AMI码
AMI码的全称是传号交替反转码。
代码的0礽变换为传输码的0,而把代码中
的1交替地变换为传输码的+1,-1,+1,-1......。
由于AMI的传号交替反转,故由于它决定的基带信号将出现正负脉冲交替,而
0电位保持不变的规律。
这种基带信号无直流成分,且只有很小的低频成分,而
且它特别适宜在不允许这些成分通过的信道中传输。
AMI码还有编译码电路简单以及便于观察误码情况等优点,它是一种基本的线路码,在高密度信息得数据传输中,得到广泛采用。
4、HDB3码
HDB3码是对AMI码的一种改进码,它的全称是三级高级双极性码。
其编码规则如下:当出现4个或4个以上连0串时,则将每4个连0小段的第4个0变换成与前一非0符合统计性的符合,用V表示,使附加V符合后的序列不破坏“极性交替反转”造成的无直流特性,还必须保证相邻V符号也应极性交替。
当两个相邻V符号之间有奇数个非0符号时,用取代节“000V”取代4个连0信息码;当两个相邻V符号间有偶数个非0符号时,用取代节“B000”取代4连0信息码。
5、CMI码
CMI码是传号反转码的简称,其编码规则为:“1”码交替用“11”和“00”表示;“0”
码用“01”表示。
此码由于有较多的电平跃变,含丰富的定时信息。
6、PBH码
PBH码的全称是数字在双相码,又称Manchester码,即曼彻斯特码。
它是对每个二进制码分别利用了两个具有2个不同相位的二进制新码去取代的码,编码规则之一是:0变01;1变10。
特点是只使用两个电平,既能提供足够的定时分量,又无直流漂移,编码过程简单。
(三)点路原理
将信号源产生的NRZ码和为同步信号BS送入 U1进行变换,可以直接得到各种单
极性码和各种双极性码的正、负极性编码信号,如DHB3码的正、负极性编码信号
送入U2的选通控制端,控制模拟开关轮流选通正、负电平,从而得到完整的HDB3
码。
解码也同样需要将双极性的HDB3码交换成分别代表正极性和负极性的两路信
号,在送入CPLD进行解码,的到NRZ码。
其他双极性码的编译、解码过程相同。
五、实验步骤
1、CMI,RZ,PHB码编解码电路观测
1)将信号源模块和模块6、7固定在主机箱上,将螺丝拧紧,确保电源接触良好。
2)通过模块6上的拨码开工S1选择码型为CMI码,即“00100000”
3)信号源模块上S4、S5都拨到“1100”,S1、S2、S3分别设为“01110010”“01010101”
“00110011”
4)实验连线:
5)将模块7的S2设为“0111”,即时钟频率为256K
6)以“NRZIN”为内触发电源,用双踪示波器同时观测“NRZIN”与编码输出“DOUT1”
波形。
如下图黄色的为NRZIN的图片,蓝色的为DOUT1的图形。
7)以“NRZIN”为内触发源,用双踪示波器同时观测“NRZIN”与编码输出“NRZ-OUT”
波形。
如下图黄色的为NRZIN的图片,蓝色的为NRZ-OUT的图形。
8)拨码开关S1选择码型为RZ码(00010000)
以“NRZIN”为内触发电源,用双踪示波器同时观测“NRZIN”与编码输出“DOUT1”波形。
如下图黄色的为NRZIN的图片,蓝色的为DOUT1的图形。
以“NRZIN”为内触发电源,用双踪示波器同时观测“NRZIN”与编码输出“NRZ-OUT”波形。
如下图黄色的为NRZIN的图片,蓝色的为NRZ-OUT的图形。
9)将拨码开关S1选择码型为BPH码
以“NRZIN”为内触发电源,用双踪示波器同时观测“NRZIN”与编码输出“DOUT1”
波形。
如下图黄色的为NRZIN的图片,蓝色的为DOUT1的图形。
以“NRZIN”为内触发源,用双踪示波器同时观测“NRZIN”与编码输出“NRZ-OUT”
波形。
如下图黄色的为NRZIN的图片,蓝色的为NRZ-OUT的图形
2、AMI,HDB3编码解码电路观测
1)通过模块6上的拨号开关S1选择码型为AMI码,即“01000000”。
2)将信号源S4、S5拨到“1100”,S1、S2、S3分别设为“01110010”“00011000”“01000011”。
3)实验连线
4)模块7的S2设置为“1000”
5)以“NRZIN”为内触发电源,用双踪示波器同时观测“NRZIN”与编码输出“HDB3/AMI_OUT”波形。
6)以“NRZIN”为内触发电源,用双踪示波器同时观测“NRZIN”与编码输出“NRZ_OUT”波形。
7)通过拨号开关S1选择码型为HDB3码
(1)以“NRZIN”为内触发电源,用双踪示波器同时观测“NRZIN”与编码输出“HDB3/AMI_OUT”波形。
(2)以“NRZIN”为内触发电源,用双踪示波器同时观测“NRZIN”与编码输出“NRZ_OUT”波形。
3、将信号源模块上的拨号开关S1、S2、S3全部拨为0,
(1)以“NRZIN”为内触发电源,用双踪示波器同时观测“NRZIN”与编码输出“HDB3/AMI_OUT”波形。
(2)以“NRZIN”为内触发电源,用双踪示波器同时观测“NRZIN”与编码输出“NRZ_OUT”波形。
4、实验结束关闭电源,拆除连线。
六、实验感想
通过码型变换实验可以知道如NRZ码、RZ码、AMI码、HDB3码、CMI码、BPH码等几种常用的数字基带信号,掌握常用基带码型的编码规则例如NRZ码是单极性不归零码。